//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// // // The LLVM Compiler Infrastructure // // This file was developed by the Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DAG pattern matching instruction selector for X86, // converting from a legalized dag to a X86 dag. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86Subtarget.h" #include "X86ISelLowering.h" #include "llvm/GlobalValue.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" using namespace llvm; //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// namespace { /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses /// SDOperand's instead of register numbers for the leaves of the matched /// tree. struct X86ISelAddressMode { enum { RegBase, FrameIndexBase, } BaseType; struct { // This is really a union, discriminated by BaseType! SDOperand Reg; int FrameIndex; } Base; unsigned Scale; SDOperand IndexReg; unsigned Disp; GlobalValue *GV; X86ISelAddressMode() : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0) { } }; } namespace { Statistic<> NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. /// class X86DAGToDAGISel : public SelectionDAGISel { /// ContainsFPCode - Every instruction we select that uses or defines a FP /// register should set this to true. bool ContainsFPCode; /// X86Lowering - This object fully describes how to lower LLVM code to an /// X86-specific SelectionDAG. X86TargetLowering X86Lowering; /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; public: X86DAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) { Subtarget = &TM.getSubtarget(); } virtual const char *getPassName() const { return "X86 DAG->DAG Instruction Selection"; } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); // Include the pieces autogenerated from the target description. #include "X86GenDAGISel.inc" private: SDOperand Select(SDOperand N); void SelectAddress(SDOperand N, X86ISelAddressMode &AM); bool MatchAddress(SDOperand N, X86ISelAddressMode &AM); /// getI8Imm - Return a target constant with the specified value, of type /// i8. inline SDOperand getI8Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i8); } /// getI16Imm - Return a target constant with the specified value, of type /// i16. inline SDOperand getI16Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i16); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDOperand getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } }; } /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel /// when it has created a SelectionDAG for us to codegen. void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Codegen the basic block. DAG.setRoot(Select(DAG.getRoot())); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); } /// SelectAddress - Pattern match the maximal addressing mode for this node. void X86DAGToDAGISel::SelectAddress(SDOperand N, X86ISelAddressMode &AM) { MatchAddress(N, AM); if (AM.BaseType == X86ISelAddressMode::RegBase) { if (AM.Base.Reg.Val) AM.Base.Reg = Select(AM.Base.Reg); else AM.Base.Reg = CurDAG->getRegister(0, MVT::i32); } if (!AM.IndexReg.Val) { AM.IndexReg = CurDAG->getRegister(0, MVT::i32); } else { AM.IndexReg = Select(AM.IndexReg); } } /// FIXME: copied from X86ISelPattern.cpp /// MatchAddress - Add the specified node to the specified addressing mode, /// returning true if it cannot be done. This just pattern matches for the /// addressing mode bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) { switch (N.getOpcode()) { default: break; case ISD::FrameIndex: if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { AM.BaseType = X86ISelAddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::GlobalAddress: if (AM.GV == 0) { GlobalValue *GV = cast(N)->getGlobal(); // For Darwin, external and weak symbols are indirect, so we want to load // the value at address GV, not the value of GV itself. This means that // the GlobalAddress must be in the base or index register of the address, // not the GV offset field. if (Subtarget->getIndirectExternAndWeakGlobals() && (GV->hasWeakLinkage() || GV->isExternal())) { break; } else { AM.GV = GV; return false; } } break; case ISD::Constant: AM.Disp += cast(N)->getValue(); return false; case ISD::SHL: if (AM.IndexReg.Val == 0 && AM.Scale == 1) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) { unsigned Val = CN->getValue(); if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDOperand ShVal = N.Val->getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && isa(ShVal.Val->getOperand(1))) { AM.IndexReg = ShVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(ShVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() << Val; } else { AM.IndexReg = ShVal; } return false; } } break; case ISD::MUL: // X*[3,5,9] -> X+X*[2,4,8] if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { AM.Scale = unsigned(CN->getValue())-1; SDOperand MulVal = N.Val->getOperand(0); SDOperand Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && isa(MulVal.Val->getOperand(1))) { Reg = MulVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(MulVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() * CN->getValue(); } else { Reg = N.Val->getOperand(0); } AM.IndexReg = AM.Base.Reg = Reg; return false; } break; case ISD::ADD: { X86ISelAddressMode Backup = AM; if (!MatchAddress(N.Val->getOperand(0), AM) && !MatchAddress(N.Val->getOperand(1), AM)) return false; AM = Backup; if (!MatchAddress(N.Val->getOperand(1), AM) && !MatchAddress(N.Val->getOperand(0), AM)) return false; AM = Backup; break; } } // Is the base register already occupied? if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { // If so, check to see if the scale index register is set. if (AM.IndexReg.Val == 0) { AM.IndexReg = N; AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86ISelAddressMode::RegBase; AM.Base.Reg = N; return false; } SDOperand X86DAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; MVT::ValueType OpVT = N->getValueType(0); unsigned Opc; if (N->getOpcode() >= ISD::BUILTIN_OP_END) return Op; // Already selected. switch (N->getOpcode()) { default: break; case ISD::SHL: if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) { if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y switch (OpVT) { default: assert(0 && "Cannot shift this type!"); case MVT::i8: Opc = X86::ADD8rr; break; case MVT::i16: Opc = X86::ADD16rr; break; case MVT::i32: Opc = X86::ADD32rr; break; } SDOperand Tmp0 = Select(N->getOperand(0)); return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Tmp0, Tmp0); } } break; case ISD::RET: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. switch (N->getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 3: assert(0 && "Not yet handled return instruction!"); break; case 2: { SDOperand Val = Select(N->getOperand(1)); switch (N->getOperand(1).getValueType()) { default: assert(0 && "All other types should have been promoted!!"); case MVT::i32: Chain = CurDAG->getCopyToReg(Chain, X86::EAX, Val); break; case MVT::f32: case MVT::f64: assert(0 && "Not yet handled return instruction!"); break; } } case 1: break; } if (X86Lowering.getBytesToPopOnReturn() == 0) return CurDAG->SelectNodeTo(N, X86::RET, MVT::Other, Chain); else return CurDAG->SelectNodeTo(N, X86::RET, MVT::Other, getI16Imm(X86Lowering.getBytesToPopOnReturn()), Chain); } case ISD::LOAD: { switch (OpVT) { default: assert(0 && "Cannot load this type!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8rm; break; case MVT::i16: Opc = X86::MOV16rm; break; case MVT::i32: Opc = X86::MOV32rm; break; case MVT::f32: Opc = X86::MOVSSrm; break; case MVT::f64: Opc = X86::FLD64m; ContainsFPCode = true; break; } if (ConstantPoolSDNode *CP = dyn_cast(N->getOperand(1))){ unsigned CPIdx = BB->getParent()->getConstantPool()-> getConstantPoolIndex(CP->get()); // ??? assert(0 && "Can't handle load from constant pool!"); } else { X86ISelAddressMode AM; SDOperand Chain = Select(N->getOperand(0)); // Token chain. SelectAddress(N->getOperand(1), AM); SDOperand Scale = getI8Imm (AM.Scale); SDOperand Disp = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp) : getI32Imm(AM.Disp); if (AM.BaseType == X86ISelAddressMode::RegBase) { return CurDAG->SelectNodeTo(N, Opc, OpVT, MVT::Other, AM.Base.Reg, Scale, AM.IndexReg, Disp, Chain) .getValue(Op.ResNo); } else { SDOperand Base = CurDAG->getFrameIndex(AM.Base.FrameIndex, MVT::i32); return CurDAG->SelectNodeTo(N, Opc, OpVT, MVT::Other, Base, Scale, AM.IndexReg, Disp, Chain) .getValue(Op.ResNo); } } } case ISD::STORE: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. SDOperand Tmp1 = Select(N->getOperand(1)); X86ISelAddressMode AM; SelectAddress(N->getOperand(2), AM); Opc = 0; if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) { switch (CN->getValueType(0)) { default: assert(0 && "Invalid type for operation!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8mi; break; case MVT::i16: Opc = X86::MOV16mi; break; case MVT::i32: Opc = X86::MOV32mi; break; } } if (!Opc) { switch (N->getOperand(1).getValueType()) { default: assert(0 && "Cannot store this type!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8mr; break; case MVT::i16: Opc = X86::MOV16mr; break; case MVT::i32: Opc = X86::MOV32mr; break; case MVT::f32: Opc = X86::MOVSSmr; break; case MVT::f64: Opc = X86::FST64m; break; } } SDOperand Scale = getI8Imm (AM.Scale); SDOperand Disp = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp) : getI32Imm(AM.Disp); if (AM.BaseType == X86ISelAddressMode::RegBase) { return CurDAG->SelectNodeTo(N, Opc, MVT::Other, AM.Base.Reg, Scale, AM.IndexReg, Disp, Tmp1, Chain); } else { SDOperand Base = CurDAG->getFrameIndex(AM.Base.FrameIndex, MVT::i32); return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Base, Scale, AM.IndexReg, Disp, Tmp1, Chain); } } } return SelectCode(Op); } /// createX86ISelDag - This pass converts a legalized DAG into a /// X86-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createX86ISelDag(TargetMachine &TM) { return new X86DAGToDAGISel(TM); }