//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief The AMDGPU target machine contains all of the hardware specific /// information needed to emit code for R600 and SI GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetMachine.h" #include "AMDGPU.h" #include "R600ISelLowering.h" #include "R600InstrInfo.h" #include "R600MachineScheduler.h" #include "SIISelLowering.h" #include "SIInstrInfo.h" #include "llvm/Analysis/Passes.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Verifier.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/PassManager.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_os_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include using namespace llvm; extern "C" void LLVMInitializeR600Target() { // Register the target RegisterTargetMachine X(TheAMDGPUTarget); } static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { return new ScheduleDAGMILive(C, make_unique()); } static MachineSchedRegistry SchedCustomRegistry("r600", "Run R600's custom scheduler", createR600MachineScheduler); AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, TargetOptions Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OptLevel) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OptLevel), Subtarget(TT, CPU, FS, *this), IntrinsicInfo() { setRequiresStructuredCFG(true); initAsmInfo(); } AMDGPUTargetMachine::~AMDGPUTargetMachine() { } namespace { class AMDGPUPassConfig : public TargetPassConfig { public: AMDGPUPassConfig(AMDGPUTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} AMDGPUTargetMachine &getAMDGPUTargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override { const AMDGPUSubtarget &ST = TM->getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) return createR600MachineScheduler(C); return nullptr; } void addCodeGenPrepare() override; bool addPreISel() override; bool addInstSelector() override; bool addPreRegAlloc() override; bool addPostRegAlloc() override; bool addPreSched2() override; bool addPreEmitPass() override; }; } // End of anonymous namespace TargetPassConfig *AMDGPUTargetMachine::createPassConfig(PassManagerBase &PM) { return new AMDGPUPassConfig(this, PM); } //===----------------------------------------------------------------------===// // AMDGPU Analysis Pass Setup //===----------------------------------------------------------------------===// void AMDGPUTargetMachine::addAnalysisPasses(PassManagerBase &PM) { // Add first the target-independent BasicTTI pass, then our AMDGPU pass. This // allows the AMDGPU pass to delegate to the target independent layer when // appropriate. PM.add(createBasicTargetTransformInfoPass(this)); PM.add(createAMDGPUTargetTransformInfoPass(this)); } void AMDGPUPassConfig::addCodeGenPrepare() { const AMDGPUSubtarget &ST = TM->getSubtarget(); if (ST.isPromoteAllocaEnabled()) { addPass(createAMDGPUPromoteAlloca(ST)); addPass(createSROAPass()); } TargetPassConfig::addCodeGenPrepare(); } bool AMDGPUPassConfig::addPreISel() { const AMDGPUSubtarget &ST = TM->getSubtarget(); addPass(createFlattenCFGPass()); if (ST.IsIRStructurizerEnabled()) addPass(createStructurizeCFGPass()); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { addPass(createSinkingPass()); addPass(createSITypeRewriter()); addPass(createSIAnnotateControlFlowPass()); } else { addPass(createR600TextureIntrinsicsReplacer()); } return false; } bool AMDGPUPassConfig::addInstSelector() { addPass(createAMDGPUISelDag(getAMDGPUTargetMachine())); addPass(createSILowerI1CopiesPass()); return false; } bool AMDGPUPassConfig::addPreRegAlloc() { const AMDGPUSubtarget &ST = TM->getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { addPass(createR600VectorRegMerger(*TM)); } else { addPass(createSIFixSGPRCopiesPass(*TM)); // SIFixSGPRCopies can generate a lot of duplicate instructions, // so we need to run MachineCSE afterwards. addPass(&MachineCSEID); if (getOptLevel() > CodeGenOpt::None && ST.loadStoreOptEnabled()) { // Don't do this with no optimizations since it throws away debug info by // merging nonadjacent loads. // This should be run after scheduling, but before register allocation. It // also need extra copies to the address operand to be eliminated. initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry()); insertPass(&MachineSchedulerID, &SILoadStoreOptimizerID); } addPass(createSIShrinkInstructionsPass()); addPass(createSIFixSGPRLiveRangesPass()); } return false; } bool AMDGPUPassConfig::addPostRegAlloc() { const AMDGPUSubtarget &ST = TM->getSubtarget(); addPass(createSIShrinkInstructionsPass()); if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { addPass(createSIInsertWaits(*TM)); } return false; } bool AMDGPUPassConfig::addPreSched2() { const AMDGPUSubtarget &ST = TM->getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) addPass(createR600EmitClauseMarkers()); if (ST.isIfCvtEnabled()) addPass(&IfConverterID); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) addPass(createR600ClauseMergePass(*TM)); return false; } bool AMDGPUPassConfig::addPreEmitPass() { const AMDGPUSubtarget &ST = TM->getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { addPass(createAMDGPUCFGStructurizerPass()); addPass(createR600ExpandSpecialInstrsPass(*TM)); addPass(&FinalizeMachineBundlesID); addPass(createR600Packetizer(*TM)); addPass(createR600ControlFlowFinalizer(*TM)); } else { addPass(createSILowerControlFlowPass(*TM)); } return false; }