//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to generate code from scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" namespace llvm { /// SCEVExpander - This class uses information about analyze scalars to /// rewrite expressions in canonical form. /// /// Clients should create an instance of this class when rewriting is needed, /// and destroy it when finished to allow the release of the associated /// memory. struct SCEVExpander : public SCEVVisitor { ScalarEvolution &SE; LoopInfo &LI; std::map InsertedExpressions; std::set InsertedInstructions; Instruction *InsertPt; friend struct SCEVVisitor; public: SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {} LoopInfo &getLoopInfo() const { return LI; } /// clear - Erase the contents of the InsertedExpressions map so that users /// trying to expand the same expression into multiple BasicBlocks or /// different places within the same BasicBlock can do so. void clear() { InsertedExpressions.clear(); } /// isInsertedInstruction - Return true if the specified instruction was /// inserted by the code rewriter. If so, the client should not modify the /// instruction. bool isInsertedInstruction(Instruction *I) const { return InsertedInstructions.count(I); } /// getOrInsertCanonicalInductionVariable - This method returns the /// canonical induction variable of the specified type for the specified /// loop (inserting one if there is none). A canonical induction variable /// starts at zero and steps by one on each iteration. Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){ assert(Ty->isInteger() && "Can only insert integer induction variables!"); SCEVHandle H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty), SE.getIntegerSCEV(1, Ty), L); return expand(H); } /// addInsertedValue - Remember the specified instruction as being the /// canonical form for the specified SCEV. void addInsertedValue(Instruction *I, SCEV *S) { InsertedExpressions[S] = (Value*)I; InsertedInstructions.insert(I); } Instruction *getInsertionPoint() const { return InsertPt; } /// expandCodeFor - Insert code to directly compute the specified SCEV /// expression into the program. The inserted code is inserted into the /// specified block. Value *expandCodeFor(SCEVHandle SH, Instruction *IP); /// InsertCastOfTo - Insert a cast of V to the specified type, doing what /// we can to share the casts. static Value *InsertCastOfTo(Instruction::CastOps opcode, Value *V, const Type *Ty); /// InsertBinop - Insert the specified binary operator, doing a small amount /// of work to avoid inserting an obviously redundant operation. static Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, Instruction *InsertPt); protected: Value *expand(SCEV *S); Value *visitConstant(SCEVConstant *S) { return S->getValue(); } Value *visitTruncateExpr(SCEVTruncateExpr *S); Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S); Value *visitSignExtendExpr(SCEVSignExtendExpr *S); Value *visitAddExpr(SCEVAddExpr *S); Value *visitMulExpr(SCEVMulExpr *S); Value *visitUDivExpr(SCEVUDivExpr *S) { Value *LHS = expand(S->getLHS()); Value *RHS = expand(S->getRHS()); return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt); } Value *visitAddRecExpr(SCEVAddRecExpr *S); Value *visitSMaxExpr(SCEVSMaxExpr *S); Value *visitUMaxExpr(SCEVUMaxExpr *S); Value *visitUnknown(SCEVUnknown *S) { return S->getValue(); } }; } #endif