//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "X86FrameLowering.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; // FIXME: completely move here. extern cl::opt ForceStackAlign; bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { return !MF.getFrameInfo()->hasVarSizedObjects(); } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool X86FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineModuleInfo &MMI = MF.getMMI(); const TargetRegisterInfo *RegInfo = TM.getRegisterInfo(); return (MF.getTarget().Options.DisableFramePointerElim(MF) || RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() || MF.getInfo()->getForceFramePointer() || MMI.callsUnwindInit() || MMI.callsEHReturn()); } static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::SUB64ri8; return X86::SUB64ri32; } else { if (isInt<8>(Imm)) return X86::SUB32ri8; return X86::SUB32ri; } } static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::ADD64ri8; return X86::ADD64ri32; } else { if (isInt<8>(Imm)) return X86::ADD32ri8; return X86::ADD32ri; } } static unsigned getLEArOpcode(unsigned IsLP64) { return IsLP64 ? X86::LEA64r : X86::LEA32r; } /// findDeadCallerSavedReg - Return a caller-saved register that isn't live /// when it reaches the "return" instruction. We can then pop a stack object /// to this register without worry about clobbering it. static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const TargetRegisterInfo &TRI, bool Is64Bit) { const MachineFunction *MF = MBB.getParent(); const Function *F = MF->getFunction(); if (!F || MF->getMMI().callsEHReturn()) return 0; static const uint16_t CallerSavedRegs32Bit[] = { X86::EAX, X86::EDX, X86::ECX, 0 }; static const uint16_t CallerSavedRegs64Bit[] = { X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI, X86::R8, X86::R9, X86::R10, X86::R11, 0 }; unsigned Opc = MBBI->getOpcode(); switch (Opc) { default: return 0; case X86::RET: case X86::RETI: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: case X86::EH_RETURN: case X86::EH_RETURN64: { SmallSet Uses; for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MBBI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) Uses.insert(*AI); } const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit; for (; *CS; ++CS) if (!Uses.count(*CS)) return *CS; } } return 0; } /// emitSPUpdate - Emit a series of instructions to increment / decrement the /// stack pointer by a constant value. static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, int64_t NumBytes, bool Is64Bit, bool IsLP64, bool UseLEA, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; unsigned Opc; if (UseLEA) Opc = getLEArOpcode(IsLP64); else Opc = isSub ? getSUBriOpcode(IsLP64, Offset) : getADDriOpcode(IsLP64, Offset); uint64_t Chunk = (1LL << 31) - 1; DebugLoc DL = MBB.findDebugLoc(MBBI); while (Offset) { uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; if (ThisVal == (Is64Bit ? 8 : 4)) { // Use push / pop instead. unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); if (Reg) { Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) : (Is64Bit ? X86::POP64r : X86::POP32r); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc)) .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)); if (isSub) MI->setFlag(MachineInstr::FrameSetup); Offset -= ThisVal; continue; } } MachineInstr *MI = NULL; if (UseLEA) { MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), StackPtr, false, isSub ? -ThisVal : ThisVal); } else { MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(ThisVal); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } if (isSub) MI->setFlag(MachineInstr::FrameSetup); Offset -= ThisVal; } } /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. static void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { if (MBBI == MBB.begin()) return; MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || Opc == X86::LEA32r || Opc == X86::LEA64_32r) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += PI->getOperand(2).getImm(); MBB.erase(PI); } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= PI->getOperand(2).getImm(); MBB.erase(PI); } } /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator. static void mergeSPUpdatesDown(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { // FIXME: THIS ISN'T RUN!!! return; if (MBBI == MBB.end()) return; MachineBasicBlock::iterator NI = llvm::next(MBBI); if (NI == MBB.end()) return; unsigned Opc = NI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } } /// mergeSPUpdates - Checks the instruction before/after the passed /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the /// stack adjustment is returned as a positive value for ADD/LEA and a negative for /// SUB. static int mergeSPUpdates(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, bool doMergeWithPrevious) { if ((doMergeWithPrevious && MBBI == MBB.begin()) || (!doMergeWithPrevious && MBBI == MBB.end())) return 0; MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); unsigned Opc = PI->getOpcode(); int Offset = 0; if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || Opc == X86::LEA32r || Opc == X86::LEA64_32r) && PI->getOperand(0).getReg() == StackPtr){ Offset += PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { Offset -= PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } return Offset; } static bool isEAXLiveIn(MachineFunction &MF) { for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), EE = MF.getRegInfo().livein_end(); II != EE; ++II) { unsigned Reg = II->first; if (Reg == X86::EAX || Reg == X86::AX || Reg == X86::AH || Reg == X86::AL) return true; } return false; } void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF, MCSymbol *Label, unsigned FramePtr) const { MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); // Add callee saved registers to move list. const std::vector &CSI = MFI->getCalleeSavedInfo(); if (CSI.empty()) return; const X86RegisterInfo *RegInfo = TM.getRegisterInfo(); bool HasFP = hasFP(MF); // Calculate amount of bytes used for return address storing. int stackGrowth = -RegInfo->getSlotSize(); // FIXME: This is dirty hack. The code itself is pretty mess right now. // It should be rewritten from scratch and generalized sometimes. // Determine maximum offset (minimum due to stack growth). int64_t MaxOffset = 0; for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) MaxOffset = std::min(MaxOffset, MFI->getObjectOffset(I->getFrameIdx())); // Calculate offsets. int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); unsigned Reg = I->getReg(); Offset = MaxOffset - Offset + saveAreaOffset; // Don't output a new machine move if we're re-saving the frame // pointer. This happens when the PrologEpilogInserter has inserted an extra // "PUSH" of the frame pointer -- the "emitPrologue" method automatically // generates one when frame pointers are used. If we generate a "machine // move" for this extra "PUSH", the linker will lose track of the fact that // the frame pointer should have the value of the first "PUSH" when it's // trying to unwind. // // FIXME: This looks inelegant. It's possibly correct, but it's covering up // another bug. I.e., one where we generate a prolog like this: // // pushl %ebp // movl %esp, %ebp // pushl %ebp // pushl %esi // ... // // The immediate re-push of EBP is unnecessary. At the least, it's an // optimization bug. EBP can be used as a scratch register in certain // cases, but probably not when we have a frame pointer. if (HasFP && FramePtr == Reg) continue; unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); MMI.addFrameInst(MCCFIInstruction::createOffset(Label, DwarfReg, Offset)); } } /// getCompactUnwindRegNum - Get the compact unwind number for a given /// register. The number corresponds to the enum lists in /// compact_unwind_encoding.h. static int getCompactUnwindRegNum(unsigned Reg, bool is64Bit) { static const uint16_t CU32BitRegs[] = { X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 }; static const uint16_t CU64BitRegs[] = { X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; const uint16_t *CURegs = is64Bit ? CU64BitRegs : CU32BitRegs; for (int Idx = 1; *CURegs; ++CURegs, ++Idx) if (*CURegs == Reg) return Idx; return -1; } // Number of registers that can be saved in a compact unwind encoding. #define CU_NUM_SAVED_REGS 6 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding /// used with frameless stacks. It is passed the number of registers to be saved /// and an array of the registers saved. static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS], unsigned RegCount, bool Is64Bit) { // The saved registers are numbered from 1 to 6. In order to encode the order // in which they were saved, we re-number them according to their place in the // register order. The re-numbering is relative to the last re-numbered // register. E.g., if we have registers {6, 2, 4, 5} saved in that order: // // Orig Re-Num // ---- ------ // 6 6 // 2 2 // 4 3 // 5 3 // for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) { int CUReg = getCompactUnwindRegNum(SavedRegs[i], Is64Bit); if (CUReg == -1) return ~0U; SavedRegs[i] = CUReg; } // Reverse the list. std::swap(SavedRegs[0], SavedRegs[5]); std::swap(SavedRegs[1], SavedRegs[4]); std::swap(SavedRegs[2], SavedRegs[3]); uint32_t RenumRegs[CU_NUM_SAVED_REGS]; for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) { unsigned Countless = 0; for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) if (SavedRegs[j] < SavedRegs[i]) ++Countless; RenumRegs[i] = SavedRegs[i] - Countless - 1; } // Take the renumbered values and encode them into a 10-bit number. uint32_t permutationEncoding = 0; switch (RegCount) { case 6: permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] + 6 * RenumRegs[2] + 2 * RenumRegs[3] + RenumRegs[4]; break; case 5: permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] + 6 * RenumRegs[3] + 2 * RenumRegs[4] + RenumRegs[5]; break; case 4: permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] + 3 * RenumRegs[4] + RenumRegs[5]; break; case 3: permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] + RenumRegs[5]; break; case 2: permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; break; case 1: permutationEncoding |= RenumRegs[5]; break; } assert((permutationEncoding & 0x3FF) == permutationEncoding && "Invalid compact register encoding!"); return permutationEncoding; } /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a /// compact encoding with a frame pointer. static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS], bool Is64Bit) { // Encode the registers in the order they were saved, 3-bits per register. The // registers are numbered from 1 to CU_NUM_SAVED_REGS. uint32_t RegEnc = 0; for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) { unsigned Reg = SavedRegs[I]; if (Reg == 0) continue; int CURegNum = getCompactUnwindRegNum(Reg, Is64Bit); if (CURegNum == -1) return ~0U; // Encode the 3-bit register number in order, skipping over 3-bits for each // register. RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); } assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!"); return RegEnc; } uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const { const X86RegisterInfo *RegInfo = TM.getRegisterInfo(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned StackPtr = RegInfo->getStackRegister(); bool Is64Bit = STI.is64Bit(); bool HasFP = hasFP(MF); unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 }; unsigned SavedRegIdx = 0; unsigned OffsetSize = (Is64Bit ? 8 : 4); unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r); unsigned PushInstrSize = 1; unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr); unsigned MoveInstrSize = (Is64Bit ? 3 : 2); unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2); unsigned StackDivide = (Is64Bit ? 8 : 4); unsigned InstrOffset = 0; unsigned StackAdjust = 0; unsigned StackSize = 0; MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB. bool ExpectEnd = false; for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opc = MI.getOpcode(); if (Opc == X86::PROLOG_LABEL) continue; if (!MI.getFlag(MachineInstr::FrameSetup)) break; // We don't exect any more prolog instructions. if (ExpectEnd) return CU::UNWIND_MODE_DWARF; if (Opc == PushInstr) { // If there are too many saved registers, we cannot use compact encoding. if (SavedRegIdx >= CU_NUM_SAVED_REGS) return CU::UNWIND_MODE_DWARF; unsigned Reg = MI.getOperand(0).getReg(); if (Reg == (Is64Bit ? X86::RAX : X86::EAX)) { ExpectEnd = true; continue; } SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg(); StackAdjust += OffsetSize; InstrOffset += PushInstrSize; } else if (Opc == MoveInstr) { unsigned SrcReg = MI.getOperand(1).getReg(); unsigned DstReg = MI.getOperand(0).getReg(); if (DstReg != FramePtr || SrcReg != StackPtr) return CU::UNWIND_MODE_DWARF; StackAdjust = 0; memset(SavedRegs, 0, sizeof(SavedRegs)); SavedRegIdx = 0; InstrOffset += MoveInstrSize; } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) { if (StackSize) // We already have a stack size. return CU::UNWIND_MODE_DWARF; if (!MI.getOperand(0).isReg() || MI.getOperand(0).getReg() != MI.getOperand(1).getReg() || MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm()) // We need this to be a stack adjustment pointer. Something like: // // %RSP = SUB64ri8 %RSP, 48 return CU::UNWIND_MODE_DWARF; StackSize = MI.getOperand(2).getImm() / StackDivide; SubtractInstrIdx += InstrOffset; ExpectEnd = true; } } // Encode that we are using EBP/RBP as the frame pointer. uint32_t CompactUnwindEncoding = 0; StackAdjust /= StackDivide; if (HasFP) { if ((StackAdjust & 0xFF) != StackAdjust) // Offset was too big for compact encoding. return CU::UNWIND_MODE_DWARF; // Get the encoding of the saved registers when we have a frame pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; } else { ++StackAdjust; uint32_t TotalStackSize = StackAdjust + StackSize; if ((TotalStackSize & 0xFF) == TotalStackSize) { // Frameless stack with a small stack size. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; // Encode the stack size. CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16; } else { if ((StackAdjust & 0x7) != StackAdjust) // The extra stack adjustments are too big for us to handle. return CU::UNWIND_MODE_DWARF; // Frameless stack with an offset too large for us to encode compactly. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' // instruction. CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; // Encode any extra stack stack adjustments (done via push instructions). CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; } // Encode the number of registers saved. CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; // Get the encoding of the saved registers when we don't have a frame // pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx, Is64Bit); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; // Encode the register encoding. CompactUnwindEncoding |= RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; } return CompactUnwindEncoding; } /// usesTheStack - This function checks if any of the users of EFLAGS /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has /// to use the stack, and if we don't adjust the stack we clobber the first /// frame index. /// See X86InstrInfo::copyPhysReg. static bool usesTheStack(MachineFunction &MF) { MachineRegisterInfo &MRI = MF.getRegInfo(); for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS), re = MRI.reg_end(); ri != re; ++ri) if (ri->isCopy()) return true; return false; } /// emitPrologue - Push callee-saved registers onto the stack, which /// automatically adjust the stack pointer. Adjust the stack pointer to allocate /// space for local variables. Also emit labels used by the exception handler to /// generate the exception handling frames. void X86FrameLowering::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); const Function *Fn = MF.getFunction(); const X86RegisterInfo *RegInfo = TM.getRegisterInfo(); const X86InstrInfo &TII = *TM.getInstrInfo(); MachineModuleInfo &MMI = MF.getMMI(); X86MachineFunctionInfo *X86FI = MF.getInfo(); bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry(); uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. bool HasFP = hasFP(MF); bool Is64Bit = STI.is64Bit(); bool IsLP64 = STI.isTarget64BitLP64(); bool IsWin64 = STI.isTargetWin64(); bool UseLEA = STI.useLeaForSP(); unsigned StackAlign = getStackAlignment(); unsigned SlotSize = RegInfo->getSlotSize(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned StackPtr = RegInfo->getStackRegister(); unsigned BasePtr = RegInfo->getBaseRegister(); DebugLoc DL; // If we're forcing a stack realignment we can't rely on just the frame // info, we need to know the ABI stack alignment as well in case we // have a call out. Otherwise just make sure we have some alignment - we'll // go with the minimum SlotSize. if (ForceStackAlign) { if (MFI->hasCalls()) MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; else if (MaxAlign < SlotSize) MaxAlign = SlotSize; } // Add RETADDR move area to callee saved frame size. int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) X86FI->setCalleeSavedFrameSize( X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); // If this is x86-64 and the Red Zone is not disabled, if we are a leaf // function, and use up to 128 bytes of stack space, don't have a frame // pointer, calls, or dynamic alloca then we do not need to adjust the // stack pointer (we fit in the Red Zone). We also check that we don't // push and pop from the stack. if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoRedZone) && !RegInfo->needsStackRealignment(MF) && !MFI->hasVarSizedObjects() && // No dynamic alloca. !MFI->adjustsStack() && // No calls. !IsWin64 && // Win64 has no Red Zone !usesTheStack(MF) && // Don't push and pop. !MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); if (HasFP) MinSize += SlotSize; StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); MFI->setStackSize(StackSize); } // Insert stack pointer adjustment for later moving of return addr. Only // applies to tail call optimized functions where the callee argument stack // size is bigger than the callers. if (TailCallReturnAddrDelta < 0) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)), StackPtr) .addReg(StackPtr) .addImm(-TailCallReturnAddrDelta) .setMIFlag(MachineInstr::FrameSetup); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } // Mapping for machine moves: // // DST: VirtualFP AND // SRC: VirtualFP => DW_CFA_def_cfa_offset // ELSE => DW_CFA_def_cfa // // SRC: VirtualFP AND // DST: Register => DW_CFA_def_cfa_register // // ELSE // OFFSET < 0 => DW_CFA_offset_extended_sf // REG < 64 => DW_CFA_offset + Reg // ELSE => DW_CFA_offset_extended uint64_t NumBytes = 0; int stackGrowth = -SlotSize; if (HasFP) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; if (RegInfo->needsStackRealignment(MF)) { // Callee-saved registers are pushed on stack before the stack // is realigned. FrameSize -= X86FI->getCalleeSavedFrameSize(); NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; } else { NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); } // Get the offset of the stack slot for the EBP register, which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. // Update the frame offset adjustment. MFI->setOffsetAdjustment(-NumBytes); // Save EBP/RBP into the appropriate stack slot. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(FramePtr, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); if (needsFrameMoves) { // Mark the place where EBP/RBP was saved. MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)) .addSym(FrameLabel); // Define the current CFA rule to use the provided offset. assert(StackSize); MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(FrameLabel, 2 * stackGrowth)); // Change the rule for the FramePtr to be an "offset" rule. unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true); MMI.addFrameInst(MCCFIInstruction::createOffset(FrameLabel, DwarfFramePtr, 2 * stackGrowth)); } // Update EBP with the new base value. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); if (needsFrameMoves) { // Mark effective beginning of when frame pointer becomes valid. MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)) .addSym(FrameLabel); // Define the current CFA to use the EBP/RBP register. unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true); MMI.addFrameInst( MCCFIInstruction::createDefCfaRegister(FrameLabel, DwarfFramePtr)); } // Mark the FramePtr as live-in in every block except the entry. for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); I != E; ++I) I->addLiveIn(FramePtr); } else { NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); } // Skip the callee-saved push instructions. bool PushedRegs = false; int StackOffset = 2 * stackGrowth; while (MBBI != MBB.end() && (MBBI->getOpcode() == X86::PUSH32r || MBBI->getOpcode() == X86::PUSH64r)) { PushedRegs = true; MBBI->setFlag(MachineInstr::FrameSetup); ++MBBI; if (!HasFP && needsFrameMoves) { // Mark callee-saved push instruction. MCSymbol *Label = MMI.getContext().CreateTempSymbol(); BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label); // Define the current CFA rule to use the provided offset. assert(StackSize); MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(Label, StackOffset)); StackOffset += stackGrowth; } } // Realign stack after we pushed callee-saved registers (so that we'll be // able to calculate their offsets from the frame pointer). // NOTE: We push the registers before realigning the stack, so // vector callee-saved (xmm) registers may be saved w/o proper // alignment in this way. However, currently these regs are saved in // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so // this shouldn't be a problem. if (RegInfo->needsStackRealignment(MF)) { assert(HasFP && "There should be a frame pointer if stack is realigned."); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr) .addReg(StackPtr) .addImm(-MaxAlign) .setMIFlag(MachineInstr::FrameSetup); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); } // If there is an SUB32ri of ESP immediately before this instruction, merge // the two. This can be the case when tail call elimination is enabled and // the callee has more arguments then the caller. NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); // If there is an ADD32ri or SUB32ri of ESP immediately after this // instruction, merge the two instructions. mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); // Adjust stack pointer: ESP -= numbytes. // Windows and cygwin/mingw require a prologue helper routine when allocating // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the // stack and adjust the stack pointer in one go. The 64-bit version of // __chkstk is only responsible for probing the stack. The 64-bit prologue is // responsible for adjusting the stack pointer. Touching the stack at 4K // increments is necessary to ensure that the guard pages used by the OS // virtual memory manager are allocated in correct sequence. if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) { const char *StackProbeSymbol; bool isSPUpdateNeeded = false; if (Is64Bit) { if (STI.isTargetCygMing()) StackProbeSymbol = "___chkstk"; else { StackProbeSymbol = "__chkstk"; isSPUpdateNeeded = true; } } else if (STI.isTargetCygMing()) StackProbeSymbol = "_alloca"; else StackProbeSymbol = "_chkstk"; // Check whether EAX is livein for this function. bool isEAXAlive = isEAXLiveIn(MF); if (isEAXAlive) { // Sanity check that EAX is not livein for this function. // It should not be, so throw an assert. assert(!Is64Bit && "EAX is livein in x64 case!"); // Save EAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) .addReg(X86::EAX, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } if (Is64Bit) { // Handle the 64-bit Windows ABI case where we need to call __chkstk. // Function prologue is responsible for adjusting the stack pointer. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } else { // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. // We'll also use 4 already allocated bytes for EAX. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) .setMIFlag(MachineInstr::FrameSetup); } BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32)) .addExternalSymbol(StackProbeSymbol) .addReg(StackPtr, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit) .setMIFlag(MachineInstr::FrameSetup); // MSVC x64's __chkstk does not adjust %rsp itself. // It also does not clobber %rax so we can reuse it when adjusting %rsp. if (isSPUpdateNeeded) { BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr) .addReg(StackPtr) .addReg(X86::RAX) .setMIFlag(MachineInstr::FrameSetup); } if (isEAXAlive) { // Restore EAX MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), StackPtr, false, NumBytes - 4); MI->setFlag(MachineInstr::FrameSetup); MBB.insert(MBBI, MI); } } else if (NumBytes) emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); // If we need a base pointer, set it up here. It's whatever the value // of the stack pointer is at this point. Any variable size objects // will be allocated after this, so we can still use the base pointer // to reference locals. if (RegInfo->hasBasePointer(MF)) { // Update the frame pointer with the current stack pointer. unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr; BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); } if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) { // Mark end of stack pointer adjustment. MCSymbol *Label = MMI.getContext().CreateTempSymbol(); BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)) .addSym(Label); if (!HasFP && NumBytes) { // Define the current CFA rule to use the provided offset. assert(StackSize); MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset( Label, -StackSize + stackGrowth)); } // Emit DWARF info specifying the offsets of the callee-saved registers. if (PushedRegs) emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr); } // Darwin 10.7 and greater has support for compact unwind encoding. if (STI.getTargetTriple().isMacOSX() && !STI.getTargetTriple().isMacOSXVersionLT(10, 7)) MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF)); } void X86FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); const X86RegisterInfo *RegInfo = TM.getRegisterInfo(); const X86InstrInfo &TII = *TM.getInstrInfo(); MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); assert(MBBI != MBB.end() && "Returning block has no instructions"); unsigned RetOpcode = MBBI->getOpcode(); DebugLoc DL = MBBI->getDebugLoc(); bool Is64Bit = STI.is64Bit(); bool IsLP64 = STI.isTarget64BitLP64(); bool UseLEA = STI.useLeaForSP(); unsigned StackAlign = getStackAlignment(); unsigned SlotSize = RegInfo->getSlotSize(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned StackPtr = RegInfo->getStackRegister(); switch (RetOpcode) { default: llvm_unreachable("Can only insert epilog into returning blocks"); case X86::RET: case X86::RETI: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: case X86::EH_RETURN: case X86::EH_RETURN64: break; // These are ok } // Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = MFI->getStackSize(); uint64_t MaxAlign = MFI->getMaxAlignment(); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t NumBytes = 0; // If we're forcing a stack realignment we can't rely on just the frame // info, we need to know the ABI stack alignment as well in case we // have a call out. Otherwise just make sure we have some alignment - we'll // go with the minimum. if (ForceStackAlign) { if (MFI->hasCalls()) MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; else MaxAlign = MaxAlign ? MaxAlign : 4; } if (hasFP(MF)) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; if (RegInfo->needsStackRealignment(MF)) { // Callee-saved registers were pushed on stack before the stack // was realigned. FrameSize -= CSSize; NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; } else { NumBytes = FrameSize - CSSize; } // Pop EBP. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); } else { NumBytes = StackSize - CSSize; } // Skip the callee-saved pop instructions. while (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE && !PI->isTerminator()) break; --MBBI; } MachineBasicBlock::iterator FirstCSPop = MBBI; DL = MBBI->getDebugLoc(); // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (NumBytes || MFI->hasVarSizedObjects()) mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); // If dynamic alloca is used, then reset esp to point to the last callee-saved // slot before popping them off! Same applies for the case, when stack was // realigned. if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) { if (RegInfo->needsStackRealignment(MF)) MBBI = FirstCSPop; if (CSSize != 0) { unsigned Opc = getLEArOpcode(IsLP64); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, false, -CSSize); } else { unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr); BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(FramePtr); } } else if (NumBytes) { // Adjust stack pointer back: ESP += numbytes. emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); } // We're returning from function via eh_return. if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { MBBI = MBB.getLastNonDebugInstr(); MachineOperand &DestAddr = MBBI->getOperand(0); assert(DestAddr.isReg() && "Offset should be in register!"); BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(DestAddr.getReg()); } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || RetOpcode == X86::TCRETURNmi64) { bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; // Tail call return: adjust the stack pointer and jump to callee. MBBI = MBB.getLastNonDebugInstr(); MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); assert(StackAdjust.isImm() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); int MaxTCDelta = X86FI->getTCReturnAddrDelta(); int Offset = 0; assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); // Incoporate the retaddr area. Offset = StackAdj-MaxTCDelta; assert(Offset >= 0 && "Offset should never be negative"); if (Offset) { // Check for possible merge with preceding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); } // Jump to label or value in register. if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi) ? X86::TAILJMPd : X86::TAILJMPd64)); if (JumpTarget.isGlobal()) MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); else { assert(JumpTarget.isSymbol()); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi) ? X86::TAILJMPm : X86::TAILJMPm64)); for (unsigned i = 0; i != 5; ++i) MIB.addOperand(MBBI->getOperand(i)); } else if (RetOpcode == X86::TCRETURNri64) { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)). addReg(JumpTarget.getReg(), RegState::Kill); } else { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)). addReg(JumpTarget.getReg(), RegState::Kill); } MachineInstr *NewMI = prior(MBBI); NewMI->copyImplicitOps(MF, MBBI); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && (X86FI->getTCReturnAddrDelta() < 0)) { // Add the return addr area delta back since we are not tail calling. int delta = -1*X86FI->getTCReturnAddrDelta(); MBBI = MBB.getLastNonDebugInstr(); // Check for possible merge with preceding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); } } int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { const X86RegisterInfo *RegInfo = static_cast(MF.getTarget().getRegisterInfo()); const MachineFrameInfo *MFI = MF.getFrameInfo(); int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); uint64_t StackSize = MFI->getStackSize(); if (RegInfo->hasBasePointer(MF)) { assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!"); if (FI < 0) { // Skip the saved EBP. return Offset + RegInfo->getSlotSize(); } else { assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); return Offset + StackSize; } } else if (RegInfo->needsStackRealignment(MF)) { if (FI < 0) { // Skip the saved EBP. return Offset + RegInfo->getSlotSize(); } else { assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); return Offset + StackSize; } // FIXME: Support tail calls } else { if (!hasFP(MF)) return Offset + StackSize; // Skip the saved EBP. Offset += RegInfo->getSlotSize(); // Skip the RETADDR move area const X86MachineFunctionInfo *X86FI = MF.getInfo(); int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; } return Offset; } int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const { const X86RegisterInfo *RegInfo = static_cast(MF.getTarget().getRegisterInfo()); // We can't calculate offset from frame pointer if the stack is realigned, // so enforce usage of stack/base pointer. The base pointer is used when we // have dynamic allocas in addition to dynamic realignment. if (RegInfo->hasBasePointer(MF)) FrameReg = RegInfo->getBaseRegister(); else if (RegInfo->needsStackRealignment(MF)) FrameReg = RegInfo->getStackRegister(); else FrameReg = RegInfo->getFrameRegister(MF); return getFrameIndexOffset(MF, FI); } bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; DebugLoc DL = MBB.findDebugLoc(MI); MachineFunction &MF = *MBB.getParent(); unsigned SlotSize = STI.is64Bit() ? 8 : 4; unsigned FPReg = TRI->getFrameRegister(MF); unsigned CalleeFrameSize = 0; const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); // Push GPRs. It increases frame size. unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); if (Reg == FPReg) // X86RegisterInfo::emitPrologue will handle spilling of frame register. continue; CalleeFrameSize += SlotSize; BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } X86FI->setCalleeSavedFrameSize(CalleeFrameSize); // Make XMM regs spilled. X86 does not have ability of push/pop XMM. // It can be done by spilling XMMs to stack frame. // Note that only Win64 ABI might spill XMMs. for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RC, TRI); } return true; } bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; DebugLoc DL = MBB.findDebugLoc(MI); MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); // Reload XMMs from stack frame. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); } // POP GPRs. unsigned FPReg = TRI->getFrameRegister(MF); unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; if (Reg == FPReg) // X86RegisterInfo::emitEpilogue will handle restoring of frame register. continue; BuildMI(MBB, MI, DL, TII.get(Opc), Reg); } return true; } void X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { MachineFrameInfo *MFI = MF.getFrameInfo(); const X86RegisterInfo *RegInfo = TM.getRegisterInfo(); unsigned SlotSize = RegInfo->getSlotSize(); X86MachineFunctionInfo *X86FI = MF.getInfo(); int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) { // create RETURNADDR area // arg // arg // RETADDR // { ... // RETADDR area // ... // } // [EBP] MFI->CreateFixedObject(-TailCallReturnAddrDelta, (-1U*SlotSize)+TailCallReturnAddrDelta, true); } if (hasFP(MF)) { assert((TailCallReturnAddrDelta <= 0) && "The Delta should always be zero or negative"); const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering(); // Create a frame entry for the EBP register that must be saved. int FrameIdx = MFI->CreateFixedObject(SlotSize, -(int)SlotSize + TFI.getOffsetOfLocalArea() + TailCallReturnAddrDelta, true); assert(FrameIdx == MFI->getObjectIndexBegin() && "Slot for EBP register must be last in order to be found!"); (void)FrameIdx; } // Spill the BasePtr if it's used. if (RegInfo->hasBasePointer(MF)) MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister()); } static bool HasNestArgument(const MachineFunction *MF) { const Function *F = MF->getFunction(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; I++) { if (I->hasNestAttr()) return true; } return false; } /// GetScratchRegister - Get a temp register for performing work in the /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform /// and the properties of the function either one or two registers will be /// needed. Set primary to true for the first register, false for the second. static unsigned GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) { CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); // Erlang stuff. if (CallingConvention == CallingConv::HiPE) { if (Is64Bit) return Primary ? X86::R14 : X86::R13; else return Primary ? X86::EBX : X86::EDI; } if (Is64Bit) return Primary ? X86::R11 : X86::R12; bool IsNested = HasNestArgument(&MF); if (CallingConvention == CallingConv::X86_FastCall || CallingConvention == CallingConv::Fast) { if (IsNested) report_fatal_error("Segmented stacks does not support fastcall with " "nested function."); return Primary ? X86::EAX : X86::ECX; } if (IsNested) return Primary ? X86::EDX : X86::EAX; return Primary ? X86::ECX : X86::EAX; } // The stack limit in the TCB is set to this many bytes above the actual stack // limit. static const uint64_t kSplitStackAvailable = 256; void X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { MachineBasicBlock &prologueMBB = MF.front(); MachineFrameInfo *MFI = MF.getFrameInfo(); const X86InstrInfo &TII = *TM.getInstrInfo(); uint64_t StackSize; bool Is64Bit = STI.is64Bit(); unsigned TlsReg, TlsOffset; DebugLoc DL; unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "Scratch register is live-in"); if (MF.getFunction()->isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && !STI.isTargetFreeBSD()) report_fatal_error("Segmented stacks not supported on this platform."); MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); X86MachineFunctionInfo *X86FI = MF.getInfo(); bool IsNested = false; // We need to know if the function has a nest argument only in 64 bit mode. if (Is64Bit) IsNested = HasNestArgument(&MF); // The MOV R10, RAX needs to be in a different block, since the RET we emit in // allocMBB needs to be last (terminating) instruction. for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(), e = prologueMBB.livein_end(); i != e; i++) { allocMBB->addLiveIn(*i); checkMBB->addLiveIn(*i); } if (IsNested) allocMBB->addLiveIn(X86::R10); MF.push_front(allocMBB); MF.push_front(checkMBB); // Eventually StackSize will be calculated by a link-time pass; which will // also decide whether checking code needs to be injected into this particular // prologue. StackSize = MFI->getStackSize(); // When the frame size is less than 256 we just compare the stack // boundary directly to the value of the stack pointer, per gcc. bool CompareStackPointer = StackSize < kSplitStackAvailable; // Read the limit off the current stacklet off the stack_guard location. if (Is64Bit) { if (STI.isTargetLinux()) { TlsReg = X86::FS; TlsOffset = 0x70; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. } else if (STI.isTargetFreeBSD()) { TlsReg = X86::FS; TlsOffset = 0x18; } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = X86::RSP; else BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else { if (STI.isTargetLinux()) { TlsReg = X86::GS; TlsOffset = 0x30; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x48 + 90*4; } else if (STI.isTargetWin32()) { TlsReg = X86::FS; TlsOffset = 0x14; // pvArbitrary, reserved for application use } else if (STI.isTargetFreeBSD()) { report_fatal_error("Segmented stacks not supported on FreeBSD i386."); } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = X86::ESP; else BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); if (STI.isTargetLinux() || STI.isTargetWin32()) { BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else if (STI.isTargetDarwin()) { // TlsOffset doesn't fit into a mod r/m byte so we need an extra register unsigned ScratchReg2; bool SaveScratch2; if (CompareStackPointer) { // The primary scratch register is available for holding the TLS offset ScratchReg2 = GetScratchRegister(Is64Bit, MF, true); SaveScratch2 = false; } else { // Need to use a second register to hold the TLS offset ScratchReg2 = GetScratchRegister(Is64Bit, MF, false); // Unfortunately, with fastcc the second scratch register may hold an arg SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); } // If Scratch2 is live-in then it needs to be saved assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && "Scratch register is live-in and not saved"); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) .addReg(ScratchReg2, RegState::Kill); BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) .addImm(TlsOffset); BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) .addReg(ScratchReg) .addReg(ScratchReg2).addImm(1).addReg(0) .addImm(0) .addReg(TlsReg); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); } } // This jump is taken if SP >= (Stacklet Limit + Stack Space required). // It jumps to normal execution of the function body. BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB); // On 32 bit we first push the arguments size and then the frame size. On 64 // bit, we pass the stack frame size in r10 and the argument size in r11. if (Is64Bit) { // Functions with nested arguments use R10, so it needs to be saved across // the call to _morestack if (IsNested) BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10); BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10) .addImm(StackSize); BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11) .addImm(X86FI->getArgumentStackSize()); MF.getRegInfo().setPhysRegUsed(X86::R10); MF.getRegInfo().setPhysRegUsed(X86::R11); } else { BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(X86FI->getArgumentStackSize()); BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(StackSize); } // __morestack is in libgcc if (Is64Bit) BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack"); else BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) .addExternalSymbol("__morestack"); if (IsNested) BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); else BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); allocMBB->addSuccessor(&prologueMBB); checkMBB->addSuccessor(allocMBB); checkMBB->addSuccessor(&prologueMBB); #ifdef XDEBUG MF.verify(); #endif } /// Erlang programs may need a special prologue to handle the stack size they /// might need at runtime. That is because Erlang/OTP does not implement a C /// stack but uses a custom implementation of hybrid stack/heap architecture. /// (for more information see Eric Stenman's Ph.D. thesis: /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) /// /// CheckStack: /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart /// OldStart: /// ... /// IncStack: /// call inc_stack # doubles the stack space /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const { const X86InstrInfo &TII = *TM.getInstrInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize(); const bool Is64Bit = STI.is64Bit(); DebugLoc DL; // HiPE-specific values const unsigned HipeLeafWords = 24; const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; const unsigned Guaranteed = HipeLeafWords * SlotSize; unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? MF.getFunction()->arg_size() - CCRegisteredArgs : 0; unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize; assert(STI.isTargetLinux() && "HiPE prologue is only supported on Linux operating systems."); // Compute the largest caller's frame that is needed to fit the callees' // frames. This 'MaxStack' is computed from: // // a) the fixed frame size, which is the space needed for all spilled temps, // b) outgoing on-stack parameter areas, and // c) the minimum stack space this function needs to make available for the // functions it calls (a tunable ABI property). if (MFI->hasCalls()) { unsigned MoreStackForCalls = 0; for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end(); MBBI != MBBE; ++MBBI) for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end(); MI != ME; ++MI) { if (!MI->isCall()) continue; // Get callee operand. const MachineOperand &MO = MI->getOperand(0); // Only take account of global function calls (no closures etc.). if (!MO.isGlobal()) continue; const Function *F = dyn_cast(MO.getGlobal()); if (!F) continue; // Do not update 'MaxStack' for primitive and built-in functions // (encoded with names either starting with "erlang."/"bif_" or not // having a ".", such as a simple .., or an // "_", such as the BIF "suspend_0") as they are executed on another // stack. if (F->getName().find("erlang.") != StringRef::npos || F->getName().find("bif_") != StringRef::npos || F->getName().find_first_of("._") == StringRef::npos) continue; unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; if (HipeLeafWords - 1 > CalleeStkArity) MoreStackForCalls = std::max(MoreStackForCalls, (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); } MaxStack += MoreStackForCalls; } // If the stack frame needed is larger than the guaranteed then runtime checks // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. if (MaxStack > Guaranteed) { MachineBasicBlock &prologueMBB = MF.front(); MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(), E = prologueMBB.livein_end(); I != E; I++) { stackCheckMBB->addLiveIn(*I); incStackMBB->addLiveIn(*I); } MF.push_front(incStackMBB); MF.push_front(stackCheckMBB); unsigned ScratchReg, SPReg, PReg, SPLimitOffset; unsigned LEAop, CMPop, CALLop; if (Is64Bit) { SPReg = X86::RSP; PReg = X86::RBP; LEAop = X86::LEA64r; CMPop = X86::CMP64rm; CALLop = X86::CALL64pcrel32; SPLimitOffset = 0x90; } else { SPReg = X86::ESP; PReg = X86::EBP; LEAop = X86::LEA32r; CMPop = X86::CMP32rm; CALLop = X86::CALLpcrel32; SPLimitOffset = 0x4c; } ScratchReg = GetScratchRegister(Is64Bit, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "HiPE prologue scratch register is live-in"); // Create new MBB for StackCheck: addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); // SPLimitOffset is in a fixed heap location (pointed by BP). addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB); // Create new MBB for IncStack: BuildMI(incStackMBB, DL, TII.get(CALLop)). addExternalSymbol("inc_stack_0"); addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB); stackCheckMBB->addSuccessor(&prologueMBB, 99); stackCheckMBB->addSuccessor(incStackMBB, 1); incStackMBB->addSuccessor(&prologueMBB, 99); incStackMBB->addSuccessor(incStackMBB, 1); } #ifdef XDEBUG MF.verify(); #endif } void X86FrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const X86InstrInfo &TII = *TM.getInstrInfo(); const X86RegisterInfo &RegInfo = *TM.getRegisterInfo(); unsigned StackPtr = RegInfo.getStackRegister(); bool reseveCallFrame = hasReservedCallFrame(MF); int Opcode = I->getOpcode(); bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); bool IsLP64 = STI.isTarget64BitLP64(); DebugLoc DL = I->getDebugLoc(); uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0; uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0; I = MBB.erase(I); if (!reseveCallFrame) { // If the stack pointer can be changed after prologue, turn the // adjcallstackup instruction into a 'sub ESP, ' and the // adjcallstackdown instruction into 'add ESP, ' // TODO: consider using push / pop instead of sub + store / add if (Amount == 0) return; // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; MachineInstr *New = 0; if (Opcode == TII.getCallFrameSetupOpcode()) { New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)), StackPtr) .addReg(StackPtr) .addImm(Amount); } else { assert(Opcode == TII.getCallFrameDestroyOpcode()); // Factor out the amount the callee already popped. Amount -= CalleeAmt; if (Amount) { unsigned Opc = getADDriOpcode(IsLP64, Amount); New = BuildMI(MF, DL, TII.get(Opc), StackPtr) .addReg(StackPtr).addImm(Amount); } } if (New) { // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); // Replace the pseudo instruction with a new instruction. MBB.insert(I, New); } return; } if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) { // If we are performing frame pointer elimination and if the callee pops // something off the stack pointer, add it back. We do this until we have // more advanced stack pointer tracking ability. unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt); MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr) .addReg(StackPtr).addImm(CalleeAmt); // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); // We are not tracking the stack pointer adjustment by the callee, so make // sure we restore the stack pointer immediately after the call, there may // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. MachineBasicBlock::iterator B = MBB.begin(); while (I != B && !llvm::prior(I)->isCall()) --I; MBB.insert(I, New); } }