//===-- MachineFunction.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code information for a function. This allows // target-specific information about the generated code to be stored with each // function. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetCacheInfo.h" #include "llvm/Function.h" #include "llvm/iOther.h" using namespace llvm; static AnnotationID MF_AID( AnnotationManager::getID("CodeGen::MachineCodeForFunction")); namespace { struct Printer : public MachineFunctionPass { const char *getPassName() const { return "MachineFunction Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } bool runOnMachineFunction(MachineFunction &MF) { MF.dump(); return false; } }; } FunctionPass *llvm::createMachineFunctionPrinterPass() { return new Printer(); } namespace { struct Deleter : public MachineFunctionPass { const char *getPassName() const { return "Machine Code Deleter"; } bool runOnMachineFunction(MachineFunction &MF) { // Delete all of the MachineInstrs out of the function. When the sparc // backend gets fixed, this can be dramatically simpler, but actually // putting this stuff into the MachineBasicBlock destructor! for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) while (!BB->empty()) delete BB->pop_back(); // Delete the annotation from the function now. MachineFunction::destruct(MF.getFunction()); return true; } }; } /// MachineCodeDeletion Pass - This pass deletes all of the machine code for /// the current function, which should happen after the function has been /// emitted to a .s file or to memory. FunctionPass *llvm::createMachineCodeDeleter() { return new Deleter(); } //===---------------------------------------------------------------------===// // MachineFunction implementation //===---------------------------------------------------------------------===// MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM) : Annotation(MF_AID), Fn(F), Target(TM) { SSARegMapping = new SSARegMap(); MFInfo = new MachineFunctionInfo(*this); FrameInfo = new MachineFrameInfo(); ConstantPool = new MachineConstantPool(); } MachineFunction::~MachineFunction() { delete SSARegMapping; delete MFInfo; delete FrameInfo; delete ConstantPool; } void MachineFunction::dump() const { print(std::cerr); } void MachineFunction::print(std::ostream &OS) const { OS << "\n" << *(Value*)Fn->getFunctionType() << " \"" << Fn->getName() << "\"\n"; // Print Frame Information getFrameInfo()->print(*this, OS); // Print Constant Pool getConstantPool()->print(OS); for (const_iterator BB = begin(); BB != end(); ++BB) { const BasicBlock *LBB = BB->getBasicBlock(); OS << "\n" << LBB->getName() << " (" << (const void*)LBB << "):\n"; for (MachineBasicBlock::const_iterator I = BB->begin(); I != BB->end();++I){ OS << "\t"; (*I)->print(OS, Target); } } OS << "\nEnd function \"" << Fn->getName() << "\"\n\n"; } // The next two methods are used to construct and to retrieve // the MachineCodeForFunction object for the given function. // construct() -- Allocates and initializes for a given function and target // get() -- Returns a handle to the object. // This should not be called before "construct()" // for a given Function. // MachineFunction& MachineFunction::construct(const Function *Fn, const TargetMachine &Tar) { assert(Fn->getAnnotation(MF_AID) == 0 && "Object already exists for this function!"); MachineFunction* mcInfo = new MachineFunction(Fn, Tar); Fn->addAnnotation(mcInfo); return *mcInfo; } void MachineFunction::destruct(const Function *Fn) { bool Deleted = Fn->deleteAnnotation(MF_AID); assert(Deleted && "Machine code did not exist for function!"); } MachineFunction& MachineFunction::get(const Function *F) { MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID); assert(mc && "Call construct() method first to allocate the object"); return *mc; } void MachineFunction::clearSSARegMap() { delete SSARegMapping; SSARegMapping = 0; } //===----------------------------------------------------------------------===// // MachineFrameInfo implementation //===----------------------------------------------------------------------===// /// CreateStackObject - Create a stack object for a value of the specified type. /// int MachineFrameInfo::CreateStackObject(const Type *Ty, const TargetData &TD) { return CreateStackObject(TD.getTypeSize(Ty), TD.getTypeAlignment(Ty)); } int MachineFrameInfo::CreateStackObject(const TargetRegisterClass *RC) { return CreateStackObject(RC->getSize(), RC->getAlignment()); } void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{ int ValOffset = MF.getTarget().getFrameInfo().getOffsetOfLocalArea(); for (unsigned i = 0, e = Objects.size(); i != e; ++i) { const StackObject &SO = Objects[i]; OS << " is "; if (SO.Size == 0) OS << "variable sized"; else OS << SO.Size << " byte" << (SO.Size != 1 ? "s" : " "); if (i < NumFixedObjects) OS << " fixed"; if (i < NumFixedObjects || SO.SPOffset != -1) { int Off = SO.SPOffset + ValOffset; OS << " at location [SP"; if (Off > 0) OS << "+" << Off; else if (Off < 0) OS << Off; OS << "]"; } OS << "\n"; } if (HasVarSizedObjects) OS << " Stack frame contains variable sized objects\n"; } void MachineFrameInfo::dump(const MachineFunction &MF) const { print(MF, std::cerr); } //===----------------------------------------------------------------------===// // MachineConstantPool implementation //===----------------------------------------------------------------------===// void MachineConstantPool::print(std::ostream &OS) const { for (unsigned i = 0, e = Constants.size(); i != e; ++i) OS << " is" << *(Value*)Constants[i] << "\n"; } void MachineConstantPool::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // MachineFunctionInfo implementation //===----------------------------------------------------------------------===// static unsigned ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F, unsigned &maxOptionalNumArgs) { const TargetFrameInfo &frameInfo = target.getFrameInfo(); unsigned maxSize = 0; for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (const CallInst *callInst = dyn_cast(I)) { unsigned numOperands = callInst->getNumOperands() - 1; int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs(); if (numExtra <= 0) continue; unsigned sizeForThisCall; if (frameInfo.argsOnStackHaveFixedSize()) { int argSize = frameInfo.getSizeOfEachArgOnStack(); sizeForThisCall = numExtra * (unsigned) argSize; } else { assert(0 && "UNTESTED CODE: Size per stack argument is not " "fixed on this architecture: use actual arg sizes to " "compute MaxOptionalArgsSize"); sizeForThisCall = 0; for (unsigned i = 0; i < numOperands; ++i) sizeForThisCall += target.getTargetData().getTypeSize(callInst-> getOperand(i)->getType()); } if (maxSize < sizeForThisCall) maxSize = sizeForThisCall; if ((int)maxOptionalNumArgs < numExtra) maxOptionalNumArgs = (unsigned) numExtra; } return maxSize; } // Align data larger than one L1 cache line on L1 cache line boundaries. // Align all smaller data on the next higher 2^x boundary (4, 8, ...), // but not higher than the alignment of the largest type we support // (currently a double word). -- see class TargetData). // // This function is similar to the corresponding function in EmitAssembly.cpp // but they are unrelated. This one does not align at more than a // double-word boundary whereas that one might. // inline unsigned SizeToAlignment(unsigned size, const TargetMachine& target) { unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); if (size > (unsigned) cacheLineSize / 2) return cacheLineSize; else for (unsigned sz=1; /*no condition*/; sz *= 2) if (sz >= size || sz >= target.getTargetData().getDoubleAlignment()) return sz; } void MachineFunctionInfo::CalculateArgSize() { maxOptionalArgsSize = ComputeMaxOptionalArgsSize(MF.getTarget(), MF.getFunction(), maxOptionalNumArgs); staticStackSize = maxOptionalArgsSize + MF.getTarget().getFrameInfo().getMinStackFrameSize(); } int MachineFunctionInfo::computeOffsetforLocalVar(const Value* val, unsigned &getPaddedSize, unsigned sizeToUse) { if (sizeToUse == 0) sizeToUse = MF.getTarget().findOptimalStorageSize(val->getType()); unsigned align = SizeToAlignment(sizeToUse, MF.getTarget()); bool growUp; int firstOffset = MF.getTarget().getFrameInfo().getFirstAutomaticVarOffset(MF, growUp); int offset = growUp? firstOffset + getAutomaticVarsSize() : firstOffset - (getAutomaticVarsSize() + sizeToUse); int aligned = MF.getTarget().getFrameInfo().adjustAlignment(offset, growUp, align); getPaddedSize = sizeToUse + abs(aligned - offset); return aligned; } int MachineFunctionInfo::allocateLocalVar(const Value* val, unsigned sizeToUse) { assert(! automaticVarsAreaFrozen && "Size of auto vars area has been used to compute an offset so " "no more automatic vars should be allocated!"); // Check if we've allocated a stack slot for this value already // hash_map::const_iterator pair = offsets.find(val); if (pair != offsets.end()) return pair->second; unsigned getPaddedSize; unsigned offset = computeOffsetforLocalVar(val, getPaddedSize, sizeToUse); offsets[val] = offset; incrementAutomaticVarsSize(getPaddedSize); return offset; } int MachineFunctionInfo::allocateSpilledValue(const Type* type) { assert(! spillsAreaFrozen && "Size of reg spills area has been used to compute an offset so " "no more register spill slots should be allocated!"); unsigned size = MF.getTarget().getTargetData().getTypeSize(type); unsigned char align = MF.getTarget().getTargetData().getTypeAlignment(type); bool growUp; int firstOffset = MF.getTarget().getFrameInfo().getRegSpillAreaOffset(MF, growUp); int offset = growUp? firstOffset + getRegSpillsSize() : firstOffset - (getRegSpillsSize() + size); int aligned = MF.getTarget().getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementRegSpillsSize(size); // update size of reg. spills area return aligned; } int MachineFunctionInfo::pushTempValue(unsigned size) { unsigned align = SizeToAlignment(size, MF.getTarget()); bool growUp; int firstOffset = MF.getTarget().getFrameInfo().getTmpAreaOffset(MF, growUp); int offset = growUp? firstOffset + currentTmpValuesSize : firstOffset - (currentTmpValuesSize + size); int aligned = MF.getTarget().getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementTmpAreaSize(size); // update "current" size of tmp area return aligned; } void MachineFunctionInfo::popAllTempValues() { resetTmpAreaSize(); // clear tmp area to reuse }