//===-- IA64ISelLowering.cpp - IA64 DAG Lowering Implementation -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Duraid Madina and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the IA64ISelLowering class. // //===----------------------------------------------------------------------===// #include "IA64ISelLowering.h" #include "IA64MachineFunctionInfo.h" #include "IA64TargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Constants.h" #include "llvm/Function.h" using namespace llvm; IA64TargetLowering::IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) { // register class for general registers addRegisterClass(MVT::i64, IA64::GRRegisterClass); // register class for FP registers addRegisterClass(MVT::f64, IA64::FPRegisterClass); // register class for predicate registers addRegisterClass(MVT::i1, IA64::PRRegisterClass); setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setSetCCResultType(MVT::i1); setShiftAmountType(MVT::i64); setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote); setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand); setOperationAction(ISD::FREM , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::UREM , MVT::f32 , Expand); setOperationAction(ISD::UREM , MVT::f64 , Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::MEMSET , MVT::Other, Expand); setOperationAction(ISD::MEMCPY , MVT::Other, Expand); setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); // We don't support sin/cos/sqrt setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); //IA64 has these, but they are not implemented setOperationAction(ISD::CTTZ , MVT::i64 , Expand); setOperationAction(ISD::CTLZ , MVT::i64 , Expand); computeRegisterProperties(); addLegalFPImmediate(+0.0); addLegalFPImmediate(+1.0); } /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDOperand Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(1))) if (ConstantFP *CFP = dyn_cast(CP->get())) return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); } return false; } std::vector IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; // // add beautiful description of IA64 stack frame format // here (from intel 24535803.pdf most likely) // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); MachineBasicBlock& BB = MF.front(); unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35, IA64::r36, IA64::r37, IA64::r38, IA64::r39}; unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, IA64::F12,IA64::F13,IA64::F14, IA64::F15}; unsigned argVreg[8]; unsigned argPreg[8]; unsigned argOpc[8]; unsigned used_FPArgs = 0; // how many FP args have been used so far? unsigned ArgOffset = 0; int count = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { SDOperand newroot, argt; if(count < 8) { // need to fix this logic? maybe. switch (getValueType(I->getType())) { default: assert(0 && "ERROR in LowerArgs: can't lower this type of arg.\n"); case MVT::f32: // fixme? (well, will need to for weird FP structy stuff, // see intel ABI docs) case MVT::f64: //XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]); MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn // floating point args go into f8..f15 as-needed, the increment argVreg[count] = // is below..: MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64)); // FP args go into f8..f15 as needed: (hence the ++) argPreg[count] = args_FP[used_FPArgs++]; argOpc[count] = IA64::FMOV; argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::f64); if (I->getType() == Type::FloatTy) argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt); break; case MVT::i1: // NOTE: as far as C abi stuff goes, // bools are just boring old ints case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: //XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]); MF.addLiveIn(args_int[count]); // mark this register as liveIn argVreg[count] = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); argPreg[count] = args_int[count]; argOpc[count] = IA64::MOV; argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64); if ( getValueType(I->getType()) != MVT::i64) argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()), newroot); break; } } else { // more than 8 args go into the frame // Create the frame index object for this incoming parameter... ArgOffset = 16 + 8 * (count - 8); int FI = MFI->CreateFixedObject(8, ArgOffset); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); argt = newroot = DAG.getLoad(getValueType(I->getType()), DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } ++count; DAG.setRoot(newroot.getValue(1)); ArgValues.push_back(argt); } // Create a vreg to hold the output of (what will become) // the "alloc" instruction VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR); // we create a PSEUDO_ALLOC (pseudo)instruction for now /* BuildMI(&BB, IA64::IDEF, 0, IA64::r1); // hmm: BuildMI(&BB, IA64::IDEF, 0, IA64::r12); BuildMI(&BB, IA64::IDEF, 0, IA64::rp); // ..hmm. BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1); // hmm: BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12); BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp); // ..hmm. */ unsigned tempOffset=0; // if this is a varargs function, we simply lower llvm.va_start by // pointing to the first entry if(F.isVarArg()) { tempOffset=0; VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset); } // here we actually do the moving of args, and store them to the stack // too if this is a varargs function: for (int i = 0; i < count && i < 8; ++i) { BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]); if(F.isVarArg()) { // if this is a varargs function, we copy the input registers to the stack int FI = MFI->CreateFixedObject(8, tempOffset); tempOffset+=8; //XXX: is it safe to use r22 like this? BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI); // FIXME: we should use st8.spill here, one day BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]); } } // Finally, inform the code generator which regs we return values in. // (see the ISD::RET: case in the instruction selector) switch (getValueType(F.getReturnType())) { default: assert(0 && "i have no idea where to return this type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: MF.addLiveOut(IA64::r8); break; case MVT::f32: case MVT::f64: MF.addLiveOut(IA64::F8); break; } return ArgValues; } std::pair IA64TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); unsigned NumBytes = 16; unsigned outRegsUsed = 0; if (Args.size() > 8) { NumBytes += (Args.size() - 8) * 8; outRegsUsed = 8; } else { outRegsUsed = Args.size(); } // FIXME? this WILL fail if we ever try to pass around an arg that // consumes more than a single output slot (a 'real' double, int128 // some sort of aggregate etc.), as we'll underestimate how many 'outX' // registers we use. Hopefully, the assembler will notice. MF.getInfo()->outRegsUsed= std::max(outRegsUsed, MF.getInfo()->outRegsUsed); Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); std::vector args_to_use; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "unexpected argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: //promote to 64-bits, sign/zero extending based on type //of the argument if(Args[i].second->isSigned()) Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Args[i].first); else Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, Args[i].first); break; case MVT::f32: //promote to 64-bits Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first); case MVT::f64: case MVT::i64: break; } args_to_use.push_back(Args[i].first); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee, args_to_use), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } SDOperand IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, Value *VAListV, SelectionDAG &DAG) { // vastart just stores the address of the VarArgsFrameIndex slot. SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64); return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, DAG.getSrcValue(VAListV)); } std::pair IA64TargetLowering:: LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, const Type *ArgTy, SelectionDAG &DAG) { MVT::ValueType ArgVT = getValueType(ArgTy); SDOperand Val = DAG.getLoad(MVT::i64, Chain, VAListP, DAG.getSrcValue(VAListV)); SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val, DAG.getSrcValue(NULL)); unsigned Amt; if (ArgVT == MVT::i32 || ArgVT == MVT::f32) Amt = 8; else { assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && "Other types should have been promoted for varargs!"); Amt = 8; } Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, DAG.getConstant(Amt, Val.getValueType())); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Val, VAListP, DAG.getSrcValue(VAListV)); return std::make_pair(Result, Chain); } std::pair IA64TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { assert(0 && "LowerFrameReturnAddress unimplemented"); abort(); }