//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that BPF uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "BPFISelLowering.h" #include "BPF.h" #include "BPFTargetMachine.h" #include "BPFSubtarget.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" using namespace llvm; #define DEBUG_TYPE "bpf-lower" namespace { // Diagnostic information for unimplemented or unsupported feature reporting. class DiagnosticInfoUnsupported : public DiagnosticInfo { private: // Debug location where this diagnostic is triggered. DebugLoc DLoc; const Twine &Description; const Function &Fn; SDValue Value; static int KindID; static int getKindID() { if (KindID == 0) KindID = llvm::getNextAvailablePluginDiagnosticKind(); return KindID; } public: DiagnosticInfoUnsupported(SDLoc DLoc, const Function &Fn, const Twine &Desc, SDValue Value) : DiagnosticInfo(getKindID(), DS_Error), DLoc(DLoc.getDebugLoc()), Description(Desc), Fn(Fn), Value(Value) {} void print(DiagnosticPrinter &DP) const override { std::string Str; raw_string_ostream OS(Str); if (DLoc) { DILocation DIL(DLoc.getAsMDNode()); StringRef Filename = DIL.getFilename(); unsigned Line = DIL.getLineNumber(); unsigned Column = DIL.getColumnNumber(); OS << Filename << ':' << Line << ':' << Column << ' '; } OS << "in function " << Fn.getName() << ' ' << *Fn.getFunctionType() << '\n' << Description; if (Value) Value->print(OS); OS << '\n'; OS.flush(); DP << Str; } static bool classof(const DiagnosticInfo *DI) { return DI->getKind() == getKindID(); } }; int DiagnosticInfoUnsupported::KindID = 0; } BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM, const BPFSubtarget &STI) : TargetLowering(TM) { // Set up the register classes. addRegisterClass(MVT::i64, &BPF::GPRRegClass); // Compute derived properties from the register classes computeRegisterProperties(STI.getRegisterInfo()); setStackPointerRegisterToSaveRestore(BPF::R11); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::SETCC, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i64, Expand); setOperationAction(ISD::MULHS, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::ADDC, MVT::i64, Expand); setOperationAction(ISD::ADDE, MVT::i64, Expand); setOperationAction(ISD::SUBC, MVT::i64, Expand); setOperationAction(ISD::SUBE, MVT::i64, Expand); // no UNDEF allowed setOperationAction(ISD::UNDEF, MVT::i64, Expand); setOperationAction(ISD::ROTR, MVT::i64, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); setOperationAction(ISD::CTTZ, MVT::i64, Custom); setOperationAction(ISD::CTLZ, MVT::i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); setOperationAction(ISD::CTPOP, MVT::i64, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); // Extended load operations for i1 types must be promoted for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); } setBooleanContents(ZeroOrOneBooleanContent); // Function alignments (log2) setMinFunctionAlignment(3); setPrefFunctionAlignment(3); // inline memcpy() for kernel to see explicit copy MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 128; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 128; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 128; } SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); default: llvm_unreachable("unimplemented operand"); } } // Calling Convention Implementation #include "BPFGenCallingConv.inc" SDValue BPFTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: break; } MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_BPF64); for (auto &VA : ArgLocs) { if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { default: { errs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getSimpleVT().SimpleTy << '\n'; llvm_unreachable(0); } case MVT::i64: unsigned VReg = RegInfo.createVirtualRegister(&BPF::GPRRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); // If this is an 8/16/32-bit value, it is really passed promoted to 64 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); } } else { DiagnosticInfoUnsupported Err(DL, *MF.getFunction(), "defined with too many args", SDValue()); DAG.getContext()->diagnose(Err); } } if (IsVarArg || MF.getFunction()->hasStructRetAttr()) { DiagnosticInfoUnsupported Err( DL, *MF.getFunction(), "functions with VarArgs or StructRet are not supported", SDValue()); DAG.getContext()->diagnose(Err); } return Chain; } SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; auto &Outs = CLI.Outs; auto &OutVals = CLI.OutVals; auto &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); // BPF target does not support tail call optimization. IsTailCall = false; switch (CallConv) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::Fast: case CallingConv::C: break; } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_BPF64); unsigned NumBytes = CCInfo.getNextStackOffset(); if (Outs.size() >= 6) { DiagnosticInfoUnsupported Err(CLI.DL, *MF.getFunction(), "too many args to ", Callee); DAG.getContext()->diagnose(Err); } for (auto &Arg : Outs) { ISD::ArgFlagsTy Flags = Arg.Flags; if (!Flags.isByVal()) continue; DiagnosticInfoUnsupported Err(CLI.DL, *MF.getFunction(), "pass by value not supported ", Callee); DAG.getContext()->diagnose(Err); } Chain = DAG.getCALLSEQ_START( Chain, DAG.getConstant(NumBytes, getPointerTy(), true), CLI.DL); SmallVector, 5> RegsToPass; // Walk arg assignments for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; } // Push arguments into RegsToPass vector if (VA.isRegLoc()) RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); else llvm_unreachable("call arg pass bug"); } SDValue InFlag; // Build a sequence of copy-to-reg nodes chained together with token chain and // flag operands which copy the outgoing args into registers. The InFlag in // necessary since all emitted instructions must be stuck together. for (auto &Reg : RegsToPass) { Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, getPointerTy(), G->getOffset(), 0); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy(), 0); // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (auto &Reg : RegsToPass) Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END( Chain, DAG.getConstant(NumBytes, getPointerTy(), true), DAG.getConstant(0, getPointerTy(), true), InFlag, CLI.DL); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG, InVals); } SDValue BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc DL, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location SmallVector RVLocs; MachineFunction &MF = DAG.getMachineFunction(); // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); if (MF.getFunction()->getReturnType()->isAggregateType()) { DiagnosticInfoUnsupported Err(DL, *MF.getFunction(), "only integer returns supported", SDValue()); DAG.getContext()->diagnose(Err); } // Analize return values. CCInfo.AnalyzeReturn(Outs, RetCC_BPF64); SDValue Flag; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together, // avoiding something bad. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } unsigned Opc = BPFISD::RET_FLAG; RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(Opc, DL, MVT::Other, RetOps); } SDValue BPFTargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); if (Ins.size() >= 2) { DiagnosticInfoUnsupported Err(DL, *MF.getFunction(), "only small returns supported", SDValue()); DAG.getContext()->diagnose(Err); } CCInfo.AnalyzeCallResult(Ins, RetCC_BPF64); // Copy all of the result registers out of their specified physreg. for (auto &Val : RVLocs) { Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(), Val.getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: case ISD::SETLT: case ISD::SETLE: CC = ISD::getSetCCSwappedOperands(CC); std::swap(LHS, RHS); break; } } SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc DL(Op); NegateCC(LHS, RHS, CC); return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS, DAG.getConstant(CC, MVT::i64), Dest); } SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TrueV = Op.getOperand(2); SDValue FalseV = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDLoc DL(Op); NegateCC(LHS, RHS, CC); SDValue TargetCC = DAG.getConstant(CC, MVT::i64); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops); } const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case BPFISD::RET_FLAG: return "BPFISD::RET_FLAG"; case BPFISD::CALL: return "BPFISD::CALL"; case BPFISD::SELECT_CC: return "BPFISD::SELECT_CC"; case BPFISD::BR_CC: return "BPFISD::BR_CC"; case BPFISD::Wrapper: return "BPFISD::Wrapper"; } } SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const GlobalValue *GV = cast(Op)->getGlobal(); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64); return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA); } MachineBasicBlock * BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { unsigned Opc = MI->getOpcode(); const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); assert(Opc == BPF::Select && "Unexpected instr type to insert"); // To "insert" a SELECT instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator I = BB; ++I; // ThisMBB: // ... // TrueVal = ... // jmp_XX r1, r2 goto Copy1MBB // fallthrough --> Copy0MBB MachineBasicBlock *ThisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(I, Copy0MBB); F->insert(I, Copy1MBB); // Update machine-CFG edges by transferring all successors of the current // block to the new block which will contain the Phi node for the select. Copy1MBB->splice(Copy1MBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); Copy1MBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(Copy0MBB); BB->addSuccessor(Copy1MBB); // Insert Branch if Flag unsigned LHS = MI->getOperand(1).getReg(); unsigned RHS = MI->getOperand(2).getReg(); int CC = MI->getOperand(3).getImm(); switch (CC) { case ISD::SETGT: BuildMI(BB, DL, TII.get(BPF::JSGT_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; case ISD::SETUGT: BuildMI(BB, DL, TII.get(BPF::JUGT_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; case ISD::SETGE: BuildMI(BB, DL, TII.get(BPF::JSGE_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; case ISD::SETUGE: BuildMI(BB, DL, TII.get(BPF::JUGE_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; case ISD::SETEQ: BuildMI(BB, DL, TII.get(BPF::JEQ_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; case ISD::SETNE: BuildMI(BB, DL, TII.get(BPF::JNE_rr)) .addReg(LHS) .addReg(RHS) .addMBB(Copy1MBB); break; default: report_fatal_error("unimplemented select CondCode " + Twine(CC)); } // Copy0MBB: // %FalseValue = ... // # fallthrough to Copy1MBB BB = Copy0MBB; // Update machine-CFG edges BB->addSuccessor(Copy1MBB); // Copy1MBB: // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ] // ... BB = Copy1MBB; BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(5).getReg()) .addMBB(Copy0MBB) .addReg(MI->getOperand(4).getReg()) .addMBB(ThisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; }