//===-- ARMSubtarget.cpp - ARM Subtarget Information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARM specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "ARMSubtarget.h" #include "ARMGenSubtarget.inc" #include "ARMBaseRegisterInfo.h" #include "llvm/GlobalValue.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; static cl::opt ReserveR9("arm-reserve-r9", cl::Hidden, cl::desc("Reserve R9, making it unavailable as GPR")); static cl::opt DarwinUseMOVT("arm-darwin-use-movt", cl::init(true), cl::Hidden); static cl::opt StrictAlign("arm-strict-align", cl::Hidden, cl::desc("Disallow all unaligned memory accesses")); ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &FS, bool isT) : ARMArchVersion(V4) , ARMProcFamily(Others) , ARMFPUType(None) , UseNEONForSinglePrecisionFP(false) , SlowFPVMLx(false) , HasVMLxForwarding(false) , SlowFPBrcc(false) , IsThumb(isT) , ThumbMode(Thumb1) , NoARM(false) , PostRAScheduler(false) , IsR9Reserved(ReserveR9) , UseMovt(false) , HasFP16(false) , HasD16(false) , HasHardwareDivide(false) , HasT2ExtractPack(false) , HasDataBarrier(false) , Pref32BitThumb(false) , HasMPExtension(false) , FPOnlySP(false) , AllowsUnalignedMem(false) , stackAlignment(4) , CPUString("generic") , TargetTriple(TT) , TargetABI(ARM_ABI_APCS) { // Default to soft float ABI if (FloatABIType == FloatABI::Default) FloatABIType = FloatABI::Soft; // Determine default and user specified characteristics // When no arch is specified either by CPU or by attributes, make the default // ARMv4T. const char *ARMArchFeature = ""; if (CPUString == "generic" && (FS.empty() || FS == "generic")) { ARMArchVersion = V4T; ARMArchFeature = ",+v4t"; } // Set the boolean corresponding to the current target triple, or the default // if one cannot be determined, to true. unsigned Len = TT.length(); unsigned Idx = 0; if (Len >= 5 && TT.substr(0, 4) == "armv") Idx = 4; else if (Len >= 6 && TT.substr(0, 5) == "thumb") { IsThumb = true; if (Len >= 7 && TT[5] == 'v') Idx = 6; } if (Idx) { unsigned SubVer = TT[Idx]; if (SubVer >= '7' && SubVer <= '9') { ARMArchVersion = V7A; ARMArchFeature = ",+v7a"; if (Len >= Idx+2 && TT[Idx+1] == 'm') { ARMArchVersion = V7M; ARMArchFeature = ",+v7m"; } } else if (SubVer == '6') { ARMArchVersion = V6; ARMArchFeature = ",+v6"; if (Len >= Idx+3 && TT[Idx+1] == 't' && TT[Idx+2] == '2') { ARMArchVersion = V6T2; ARMArchFeature = ",+v6t2"; } } else if (SubVer == '5') { ARMArchVersion = V5T; ARMArchFeature = ",+v5t"; if (Len >= Idx+3 && TT[Idx+1] == 't' && TT[Idx+2] == 'e') { ARMArchVersion = V5TE; ARMArchFeature = ",+v5te"; } } else if (SubVer == '4') { if (Len >= Idx+2 && TT[Idx+1] == 't') { ARMArchVersion = V4T; ARMArchFeature = ",+v4t"; } else { ARMArchVersion = V4; ARMArchFeature = ""; } } } if (TT.find("eabi") != std::string::npos) TargetABI = ARM_ABI_AAPCS; // Parse features string. If the first entry in FS (the CPU) is missing, // insert the architecture feature derived from the target triple. This is // important for setting features that are implied based on the architecture // version. std::string FSWithArch; if (FS.empty()) FSWithArch = std::string(ARMArchFeature); else if (FS.find(',') == 0) FSWithArch = std::string(ARMArchFeature) + FS; else FSWithArch = FS; CPUString = ParseSubtargetFeatures(FSWithArch, CPUString); // After parsing Itineraries, set ItinData.IssueWidth. computeIssueWidth(); // Thumb2 implies at least V6T2. if (ARMArchVersion >= V6T2) ThumbMode = Thumb2; else if (ThumbMode >= Thumb2) ARMArchVersion = V6T2; if (isAAPCS_ABI()) stackAlignment = 8; if (!isTargetDarwin()) UseMovt = hasV6T2Ops(); else { IsR9Reserved = ReserveR9 | (ARMArchVersion < V6); UseMovt = DarwinUseMOVT && hasV6T2Ops(); } if (!isThumb() || hasThumb2()) PostRAScheduler = true; // v6+ may or may not support unaligned mem access depending on the system // configuration. if (!StrictAlign && hasV6Ops() && isTargetDarwin()) AllowsUnalignedMem = true; } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol. bool ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const { if (RelocM == Reloc::Static) return false; // Materializable GVs (in JIT lazy compilation mode) do not require an extra // load from stub. bool isDecl = GV->hasAvailableExternallyLinkage(); if (GV->isDeclaration() && !GV->isMaterializable()) isDecl = true; if (!isTargetDarwin()) { // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return false; return true; } else { if (RelocM == Reloc::PIC_) { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) // Hidden $non_lazy_ptr reference. return true; return false; } else { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; } } return false; } unsigned ARMSubtarget::getMispredictionPenalty() const { // If we have a reasonable estimate of the pipeline depth, then we can // estimate the penalty of a misprediction based on that. if (isCortexA8()) return 13; else if (isCortexA9()) return 8; // Otherwise, just return a sensible default. return 10; } void ARMSubtarget::computeIssueWidth() { unsigned allStage1Units = 0; for (const InstrItinerary *itin = InstrItins.Itineraries; itin->FirstStage != ~0U; ++itin) { const InstrStage *IS = InstrItins.Stages + itin->FirstStage; allStage1Units |= IS->getUnits(); } InstrItins.IssueWidth = 0; while (allStage1Units) { ++InstrItins.IssueWidth; // clear the lowest bit allStage1Units ^= allStage1Units & ~(allStage1Units - 1); } assert(InstrItins.IssueWidth <= 2 && "itinerary bug, too many stage 1 units"); } bool ARMSubtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtarget::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const { Mode = TargetSubtarget::ANTIDEP_CRITICAL; CriticalPathRCs.clear(); CriticalPathRCs.push_back(&ARM::GPRRegClass); return PostRAScheduler && OptLevel >= CodeGenOpt::Default; }