//===-- SIInstrInfo.h - SI Instruction Info Interface -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Interface definition for SIInstrInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_R600_SIINSTRINFO_H #define LLVM_LIB_TARGET_R600_SIINSTRINFO_H #include "AMDGPUInstrInfo.h" #include "SIDefines.h" #include "SIRegisterInfo.h" namespace llvm { class SIInstrInfo : public AMDGPUInstrInfo { private: const SIRegisterInfo RI; unsigned buildExtractSubReg(MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const; MachineOperand buildExtractSubRegOrImm(MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const; unsigned split64BitImm(SmallVectorImpl &Worklist, MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, const TargetRegisterClass *RC, const MachineOperand &Op) const; void swapOperands(MachineBasicBlock::iterator Inst) const; void splitScalar64BitUnaryOp(SmallVectorImpl &Worklist, MachineInstr *Inst, unsigned Opcode) const; void splitScalar64BitBinaryOp(SmallVectorImpl &Worklist, MachineInstr *Inst, unsigned Opcode) const; void splitScalar64BitBCNT(SmallVectorImpl &Worklist, MachineInstr *Inst) const; void splitScalar64BitBFE(SmallVectorImpl &Worklist, MachineInstr *Inst) const; void addDescImplicitUseDef(const MCInstrDesc &Desc, MachineInstr *MI) const; bool checkInstOffsetsDoNotOverlap(MachineInstr *MIa, MachineInstr *MIb) const; unsigned findUsedSGPR(const MachineInstr *MI, int OpIndices[3]) const; public: explicit SIInstrInfo(const AMDGPUSubtarget &st); const SIRegisterInfo &getRegisterInfo() const override { return RI; } bool isReallyTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA) const override; bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const override; bool getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, unsigned &Offset, const TargetRegisterInfo *TRI) const final; bool shouldClusterLoads(MachineInstr *FirstLdSt, MachineInstr *SecondLdSt, unsigned NumLoads) const final; void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const override; unsigned calculateLDSSpillAddress(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, RegScavenger *RS, unsigned TmpReg, unsigned Offset, unsigned Size) const; void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override; // \brief Returns an opcode that can be used to move a value to a \p DstRC // register. If there is no hardware instruction that can store to \p // DstRC, then AMDGPU::COPY is returned. unsigned getMovOpcode(const TargetRegisterClass *DstRC) const; unsigned commuteOpcode(const MachineInstr &MI) const; MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI = false) const override; bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override; bool isTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA = nullptr) const; bool areMemAccessesTriviallyDisjoint( MachineInstr *MIa, MachineInstr *MIb, AliasAnalysis *AA = nullptr) const override; MachineInstr *buildMovInstr(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned DstReg, unsigned SrcReg) const override; bool isMov(unsigned Opcode) const override; bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override; bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const final; unsigned getMachineCSELookAheadLimit() const override { return 500; } bool isSALU(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SALU; } bool isVALU(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VALU; } bool isSOP1(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOP1; } bool isSOP2(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOP2; } bool isSOPC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPC; } bool isSOPK(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPK; } bool isSOPP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPP; } bool isVOP1(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP1; } bool isVOP2(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP2; } bool isVOP3(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP3; } bool isVOPC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOPC; } bool isMUBUF(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MUBUF; } bool isMTBUF(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MTBUF; } bool isSMRD(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SMRD; } bool isDS(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::DS; } bool isMIMG(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MIMG; } bool isFLAT(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FLAT; } bool isWQM(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::WQM; } bool isVGPRSpill(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VGPRSpill; } bool isInlineConstant(const APInt &Imm) const; bool isInlineConstant(const MachineOperand &MO, unsigned OpSize) const; bool isLiteralConstant(const MachineOperand &MO, unsigned OpSize) const; bool isImmOperandLegal(const MachineInstr *MI, unsigned OpNo, const MachineOperand &MO) const; /// \brief Return true if this 64-bit VALU instruction has a 32-bit encoding. /// This function will return false if you pass it a 32-bit instruction. bool hasVALU32BitEncoding(unsigned Opcode) const; /// \brief Returns true if this operand uses the constant bus. bool usesConstantBus(const MachineRegisterInfo &MRI, const MachineOperand &MO, unsigned OpSize) const; /// \brief Return true if this instruction has any modifiers. /// e.g. src[012]_mod, omod, clamp. bool hasModifiers(unsigned Opcode) const; bool hasModifiersSet(const MachineInstr &MI, unsigned OpName) const; bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const override; static unsigned getVALUOp(const MachineInstr &MI); bool isSALUOpSupportedOnVALU(const MachineInstr &MI) const; /// \brief Return the correct register class for \p OpNo. For target-specific /// instructions, this will return the register class that has been defined /// in tablegen. For generic instructions, like REG_SEQUENCE it will return /// the register class of its machine operand. /// to infer the correct register class base on the other operands. const TargetRegisterClass *getOpRegClass(const MachineInstr &MI, unsigned OpNo) const; /// \brief Return the size in bytes of the operand OpNo on the given // instruction opcode. unsigned getOpSize(uint16_t Opcode, unsigned OpNo) const { const MCOperandInfo &OpInfo = get(Opcode).OpInfo[OpNo]; if (OpInfo.RegClass == -1) { // If this is an immediate operand, this must be a 32-bit literal. assert(OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE); return 4; } return RI.getRegClass(OpInfo.RegClass)->getSize(); } /// \brief This form should usually be preferred since it handles operands /// with unknown register classes. unsigned getOpSize(const MachineInstr &MI, unsigned OpNo) const { return getOpRegClass(MI, OpNo)->getSize(); } /// \returns true if it is legal for the operand at index \p OpNo /// to read a VGPR. bool canReadVGPR(const MachineInstr &MI, unsigned OpNo) const; /// \brief Legalize the \p OpIndex operand of this instruction by inserting /// a MOV. For example: /// ADD_I32_e32 VGPR0, 15 /// to /// MOV VGPR1, 15 /// ADD_I32_e32 VGPR0, VGPR1 /// /// If the operand being legalized is a register, then a COPY will be used /// instead of MOV. void legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const; /// \brief Check if \p MO is a legal operand if it was the \p OpIdx Operand /// for \p MI. bool isOperandLegal(const MachineInstr *MI, unsigned OpIdx, const MachineOperand *MO = nullptr) const; /// \brief Legalize all operands in this instruction. This function may /// create new instruction and insert them before \p MI. void legalizeOperands(MachineInstr *MI) const; /// \brief Split an SMRD instruction into two smaller loads of half the // size storing the results in \p Lo and \p Hi. void splitSMRD(MachineInstr *MI, const TargetRegisterClass *HalfRC, unsigned HalfImmOp, unsigned HalfSGPROp, MachineInstr *&Lo, MachineInstr *&Hi) const; void moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const; /// \brief Replace this instruction's opcode with the equivalent VALU /// opcode. This function will also move the users of \p MI to the /// VALU if necessary. void moveToVALU(MachineInstr &MI) const; unsigned calculateIndirectAddress(unsigned RegIndex, unsigned Channel) const override; const TargetRegisterClass *getIndirectAddrRegClass() const override; MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const override; MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const override; void reserveIndirectRegisters(BitVector &Reserved, const MachineFunction &MF) const; void LoadM0(MachineInstr *MoveRel, MachineBasicBlock::iterator I, unsigned SavReg, unsigned IndexReg) const; void insertNOPs(MachineBasicBlock::iterator MI, int Count) const; /// \brief Returns the operand named \p Op. If \p MI does not have an /// operand named \c Op, this function returns nullptr. MachineOperand *getNamedOperand(MachineInstr &MI, unsigned OperandName) const; const MachineOperand *getNamedOperand(const MachineInstr &MI, unsigned OpName) const { return getNamedOperand(const_cast(MI), OpName); } uint64_t getDefaultRsrcDataFormat() const; }; namespace AMDGPU { int getVOPe64(uint16_t Opcode); int getVOPe32(uint16_t Opcode); int getCommuteRev(uint16_t Opcode); int getCommuteOrig(uint16_t Opcode); int getAddr64Inst(uint16_t Opcode); int getAtomicRetOp(uint16_t Opcode); int getAtomicNoRetOp(uint16_t Opcode); const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL; const uint64_t RSRC_TID_ENABLE = 1LL << 55; } // End namespace AMDGPU namespace SI { namespace KernelInputOffsets { /// Offsets in bytes from the start of the input buffer enum Offsets { NGROUPS_X = 0, NGROUPS_Y = 4, NGROUPS_Z = 8, GLOBAL_SIZE_X = 12, GLOBAL_SIZE_Y = 16, GLOBAL_SIZE_Z = 20, LOCAL_SIZE_X = 24, LOCAL_SIZE_Y = 28, LOCAL_SIZE_Z = 32 }; } // End namespace KernelInputOffsets } // End namespace SI } // End namespace llvm #endif