//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PowerPC-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // PPCGenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ppcfastisel" #include "PPC.h" #include "PPCISelLowering.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "MCTargetDesc/PPCPredicates.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; namespace { typedef struct Address { enum { RegBase, FrameIndexBase } BaseType; union { unsigned Reg; int FI; } Base; long Offset; // Innocuous defaults for our address. Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; } } Address; class PPCFastISel : public FastISel { const TargetMachine &TM; const TargetInstrInfo &TII; const TargetLowering &TLI; const PPCSubtarget &PPCSubTarget; LLVMContext *Context; public: explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()), PPCSubTarget( *((static_cast(&TM))->getSubtargetImpl()) ), Context(&FuncInfo.Fn->getContext()) { } // Backend specific FastISel code. private: virtual bool TargetSelectInstruction(const Instruction *I); virtual unsigned TargetMaterializeConstant(const Constant *C); virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI); virtual bool FastLowerArguments(); virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm); virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm); virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill); virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); // Instruction selection routines. private: bool SelectLoad(const Instruction *I); bool SelectStore(const Instruction *I); bool SelectBranch(const Instruction *I); bool SelectIndirectBr(const Instruction *I); bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); bool SelectRet(const Instruction *I); bool SelectIntExt(const Instruction *I); // Utility routines. private: bool isTypeLegal(Type *Ty, MVT &VT); bool isLoadTypeLegal(Type *Ty, MVT &VT); bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, bool isZExt, unsigned DestReg); bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, const TargetRegisterClass *RC, bool IsZExt = true, unsigned FP64LoadOpc = PPC::LFD); bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); bool PPCComputeAddress(const Value *Obj, Address &Addr); void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, unsigned &IndexReg); bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, bool IsZExt); unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); unsigned PPCMaterializeInt(const Constant *C, MVT VT); unsigned PPCMaterialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); unsigned PPCMaterialize64BitInt(int64_t Imm, const TargetRegisterClass *RC); // Call handling routines. private: CCAssignFn *usePPC32CCs(unsigned Flag); private: #include "PPCGenFastISel.inc" }; } // end anonymous namespace #include "PPCGenCallingConv.inc" // Function whose sole purpose is to kill compiler warnings // stemming from unused functions included from PPCGenCallingConv.inc. CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { if (Flag == 1) return CC_PPC32_SVR4; else if (Flag == 2) return CC_PPC32_SVR4_ByVal; else if (Flag == 3) return CC_PPC32_SVR4_VarArg; else return RetCC_PPC; } static Optional getComparePred(CmpInst::Predicate Pred) { switch (Pred) { // These are not representable with any single compare. case CmpInst::FCMP_FALSE: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: default: return Optional(); case CmpInst::FCMP_OEQ: case CmpInst::ICMP_EQ: return PPC::PRED_EQ; case CmpInst::FCMP_OGT: case CmpInst::ICMP_UGT: case CmpInst::ICMP_SGT: return PPC::PRED_GT; case CmpInst::FCMP_OGE: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGE: return PPC::PRED_GE; case CmpInst::FCMP_OLT: case CmpInst::ICMP_ULT: case CmpInst::ICMP_SLT: return PPC::PRED_LT; case CmpInst::FCMP_OLE: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SLE: return PPC::PRED_LE; case CmpInst::FCMP_ONE: case CmpInst::ICMP_NE: return PPC::PRED_NE; case CmpInst::FCMP_ORD: return PPC::PRED_NU; case CmpInst::FCMP_UNO: return PPC::PRED_UN; } } // Determine whether the type Ty is simple enough to be handled by // fast-isel, and return its equivalent machine type in VT. // FIXME: Copied directly from ARM -- factor into base class? bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { EVT Evt = TLI.getValueType(Ty, true); // Only handle simple types. if (Evt == MVT::Other || !Evt.isSimple()) return false; VT = Evt.getSimpleVT(); // Handle all legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } // Determine whether the type Ty is simple enough to be handled by // fast-isel as a load target, and return its equivalent machine type in VT. bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { if (isTypeLegal(Ty, VT)) return true; // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { return true; } return false; } // Given a value Obj, create an Address object Addr that represents its // address. Return false if we can't handle it. bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(Obj)) { // Don't walk into other basic blocks unless the object is an alloca from // another block, otherwise it may not have a virtual register assigned. if (FuncInfo.StaticAllocaMap.count(static_cast(Obj)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast(Obj)) { Opcode = C->getOpcode(); U = C; } switch (Opcode) { default: break; case Instruction::BitCast: // Look through bitcasts. return PPCComputeAddress(U->getOperand(0), Addr); case Instruction::IntToPtr: // Look past no-op inttoptrs. if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return PPCComputeAddress(U->getOperand(0), Addr); break; case Instruction::PtrToInt: // Look past no-op ptrtoints. if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) return PPCComputeAddress(U->getOperand(0), Addr); break; case Instruction::GetElementPtr: { Address SavedAddr = Addr; long TmpOffset = Addr.Offset; // Iterate through the GEP folding the constants into offsets where // we can. gep_type_iterator GTI = gep_type_begin(U); for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); II != IE; ++II, ++GTI) { const Value *Op = *II; if (StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD.getStructLayout(STy); unsigned Idx = cast(Op)->getZExtValue(); TmpOffset += SL->getElementOffset(Idx); } else { uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast(Op)) { // Constant-offset addressing. TmpOffset += CI->getSExtValue() * S; break; } if (isa(Op) && (!isa(Op) || FuncInfo.MBBMap[cast(Op)->getParent()] == FuncInfo.MBB) && isa(cast(Op)->getOperand(1))) { // An add (in the same block) with a constant operand. Fold the // constant. ConstantInt *CI = cast(cast(Op)->getOperand(1)); TmpOffset += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast(Op)->getOperand(0); continue; } // Unsupported goto unsupported_gep; } } } // Try to grab the base operand now. Addr.Offset = TmpOffset; if (PPCComputeAddress(U->getOperand(0), Addr)) return true; // We failed, restore everything and try the other options. Addr = SavedAddr; unsupported_gep: break; } case Instruction::Alloca: { const AllocaInst *AI = cast(Obj); DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { Addr.BaseType = Address::FrameIndexBase; Addr.Base.FI = SI->second; return true; } break; } } // FIXME: References to parameters fall through to the behavior // below. They should be able to reference a frame index since // they are stored to the stack, so we can get "ld rx, offset(r1)" // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will // just contain the parameter. Try to handle this with a FI. // Try to get this in a register if nothing else has worked. if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); // Prevent assignment of base register to X0, which is inappropriate // for loads and stores alike. if (Addr.Base.Reg != 0) MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); return Addr.Base.Reg != 0; } // Fix up some addresses that can't be used directly. For example, if // an offset won't fit in an instruction field, we may need to move it // into an index register. void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, unsigned &IndexReg) { // Check whether the offset fits in the instruction field. if (!isInt<16>(Addr.Offset)) UseOffset = false; // If this is a stack pointer and the offset needs to be simplified then // put the alloca address into a register, set the base type back to // register and continue. This should almost never happen. if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8), ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); Addr.Base.Reg = ResultReg; Addr.BaseType = Address::RegBase; } if (!UseOffset) { IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) : Type::getInt64Ty(*Context)); const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); IndexReg = PPCMaterializeInt(Offset, MVT::i64); assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); } } // Emit a load instruction if possible, returning true if we succeeded, // otherwise false. See commentary below for how the register class of // the load is determined. bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, const TargetRegisterClass *RC, bool IsZExt, unsigned FP64LoadOpc) { unsigned Opc; bool UseOffset = true; // If ResultReg is given, it determines the register class of the load. // Otherwise, RC is the register class to use. If the result of the // load isn't anticipated in this block, both may be zero, in which // case we must make a conservative guess. In particular, don't assign // R0 or X0 to the result register, as the result may be used in a load, // store, add-immediate, or isel that won't permit this. (Though // perhaps the spill and reload of live-exit values would handle this?) const TargetRegisterClass *UseRC = (ResultReg ? MRI.getRegClass(ResultReg) : (RC ? RC : (VT == MVT::f64 ? &PPC::F8RCRegClass : (VT == MVT::f32 ? &PPC::F4RCRegClass : (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : &PPC::GPRC_and_GPRC_NOR0RegClass))))); bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); switch (VT.SimpleTy) { default: // e.g., vector types not handled return false; case MVT::i8: Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; break; case MVT::i16: Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : (Is32BitInt ? PPC::LHA : PPC::LHA8)); break; case MVT::i32: Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) UseOffset = false; break; case MVT::i64: Opc = PPC::LD; assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && "64-bit load with 32-bit target??"); UseOffset = ((Addr.Offset & 3) == 0); break; case MVT::f32: Opc = PPC::LFS; break; case MVT::f64: Opc = FP64LoadOpc; break; } // If necessary, materialize the offset into a register and use // the indexed form. Also handle stack pointers with special needs. unsigned IndexReg = 0; PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); if (ResultReg == 0) ResultReg = createResultReg(UseRC); // Note: If we still have a frame index here, we know the offset is // in range, as otherwise PPCSimplifyAddress would have converted it // into a RegBase. if (Addr.BaseType == Address::FrameIndexBase) { MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), MFI.getObjectAlignment(Addr.Base.FI)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); // Base reg with offset in range. } else if (UseOffset) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addImm(Addr.Offset).addReg(Addr.Base.Reg); // Indexed form. } else { // Get the RR opcode corresponding to the RI one. FIXME: It would be // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it // is hard to get at. switch (Opc) { default: llvm_unreachable("Unexpected opcode!"); case PPC::LBZ: Opc = PPC::LBZX; break; case PPC::LBZ8: Opc = PPC::LBZX8; break; case PPC::LHZ: Opc = PPC::LHZX; break; case PPC::LHZ8: Opc = PPC::LHZX8; break; case PPC::LHA: Opc = PPC::LHAX; break; case PPC::LHA8: Opc = PPC::LHAX8; break; case PPC::LWZ: Opc = PPC::LWZX; break; case PPC::LWZ8: Opc = PPC::LWZX8; break; case PPC::LWA: Opc = PPC::LWAX; break; case PPC::LWA_32: Opc = PPC::LWAX_32; break; case PPC::LD: Opc = PPC::LDX; break; case PPC::LFS: Opc = PPC::LFSX; break; case PPC::LFD: Opc = PPC::LFDX; break; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Addr.Base.Reg).addReg(IndexReg); } return true; } // Attempt to fast-select a load instruction. bool PPCFastISel::SelectLoad(const Instruction *I) { // FIXME: No atomic loads are supported. if (cast(I)->isAtomic()) return false; // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(I->getType(), VT)) return false; // See if we can handle this address. Address Addr; if (!PPCComputeAddress(I->getOperand(0), Addr)) return false; // Look at the currently assigned register for this instruction // to determine the required register class. This is necessary // to constrain RA from using R0/X0 when this is not legal. unsigned AssignedReg = FuncInfo.ValueMap[I]; const TargetRegisterClass *RC = AssignedReg ? MRI.getRegClass(AssignedReg) : 0; unsigned ResultReg = 0; if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) return false; UpdateValueMap(I, ResultReg); return true; } // Emit a store instruction to store SrcReg at Addr. bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { assert(SrcReg && "Nothing to store!"); unsigned Opc; bool UseOffset = true; const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); switch (VT.SimpleTy) { default: // e.g., vector types not handled return false; case MVT::i8: Opc = Is32BitInt ? PPC::STB : PPC::STB8; break; case MVT::i16: Opc = Is32BitInt ? PPC::STH : PPC::STH8; break; case MVT::i32: assert(Is32BitInt && "Not GPRC for i32??"); Opc = PPC::STW; break; case MVT::i64: Opc = PPC::STD; UseOffset = ((Addr.Offset & 3) == 0); break; case MVT::f32: Opc = PPC::STFS; break; case MVT::f64: Opc = PPC::STFD; break; } // If necessary, materialize the offset into a register and use // the indexed form. Also handle stack pointers with special needs. unsigned IndexReg = 0; PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); // Note: If we still have a frame index here, we know the offset is // in range, as otherwise PPCSimplifyAddress would have converted it // into a RegBase. if (Addr.BaseType == Address::FrameIndexBase) { MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), MFI.getObjectAlignment(Addr.Base.FI)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg) .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); // Base reg with offset in range. } else if (UseOffset) { if (Addr.Offset == 0 && Opc == PPC::STW8) dbgs() << "Possible problem here.\n"; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); // Indexed form. } else { // Get the RR opcode corresponding to the RI one. FIXME: It would be // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it // is hard to get at. switch (Opc) { default: llvm_unreachable("Unexpected opcode!"); case PPC::STB: Opc = PPC::STBX; break; case PPC::STH : Opc = PPC::STHX; break; case PPC::STW : Opc = PPC::STWX; break; case PPC::STB8: Opc = PPC::STBX8; break; case PPC::STH8: Opc = PPC::STHX8; break; case PPC::STW8: Opc = PPC::STWX8; break; case PPC::STD: Opc = PPC::STDX; break; case PPC::STFS: Opc = PPC::STFSX; break; case PPC::STFD: Opc = PPC::STFDX; break; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); } return true; } // Attempt to fast-select a store instruction. bool PPCFastISel::SelectStore(const Instruction *I) { Value *Op0 = I->getOperand(0); unsigned SrcReg = 0; // FIXME: No atomics loads are supported. if (cast(I)->isAtomic()) return false; // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(Op0->getType(), VT)) return false; // Get the value to be stored into a register. SrcReg = getRegForValue(Op0); if (SrcReg == 0) return false; // See if we can handle this address. Address Addr; if (!PPCComputeAddress(I->getOperand(1), Addr)) return false; if (!PPCEmitStore(VT, SrcReg, Addr)) return false; return true; } // Attempt to fast-select a branch instruction. bool PPCFastISel::SelectBranch(const Instruction *I) { const BranchInst *BI = cast(I); MachineBasicBlock *BrBB = FuncInfo.MBB; MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // For now, just try the simplest case where it's fed by a compare. if (const CmpInst *CI = dyn_cast(BI->getCondition())) { Optional OptPPCPred = getComparePred(CI->getPredicate()); if (!OptPPCPred) return false; PPC::Predicate PPCPred = OptPPCPred.getValue(); // Take advantage of fall-through opportunities. if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); PPCPred = PPC::InvertPredicate(PPCPred); } unsigned CondReg = createResultReg(&PPC::CRRCRegClass); if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), CondReg)) return false; BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC)) .addImm(PPCPred).addReg(CondReg).addMBB(TBB); FastEmitBranch(FBB, DL); FuncInfo.MBB->addSuccessor(TBB); return true; } else if (const ConstantInt *CI = dyn_cast(BI->getCondition())) { uint64_t Imm = CI->getZExtValue(); MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; FastEmitBranch(Target, DL); return true; } // FIXME: ARM looks for a case where the block containing the compare // has been split from the block containing the branch. If this happens, // there is a vreg available containing the result of the compare. I'm // not sure we can do much, as we've lost the predicate information with // the compare instruction -- we have a 4-bit CR but don't know which bit // to test here. return false; } // Attempt to emit a compare of the two source values. Signed and unsigned // comparisons are supported. Return false if we can't handle it. bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, bool IsZExt, unsigned DestReg) { Type *Ty = SrcValue1->getType(); EVT SrcEVT = TLI.getValueType(Ty, true); if (!SrcEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); // See if operand 2 is an immediate encodeable in the compare. // FIXME: Operands are not in canonical order at -O0, so an immediate // operand in position 1 is a lost opportunity for now. We are // similar to ARM in this regard. long Imm = 0; bool UseImm = false; // Only 16-bit integer constants can be represented in compares for // PowerPC. Others will be materialized into a register. if (const ConstantInt *ConstInt = dyn_cast(SrcValue2)) { if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { const APInt &CIVal = ConstInt->getValue(); Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) UseImm = true; } } unsigned CmpOpc; bool NeedsExt = false; switch (SrcVT.SimpleTy) { default: return false; case MVT::f32: CmpOpc = PPC::FCMPUS; break; case MVT::f64: CmpOpc = PPC::FCMPUD; break; case MVT::i1: case MVT::i8: case MVT::i16: NeedsExt = true; // Intentional fall-through. case MVT::i32: if (!UseImm) CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; else CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; break; case MVT::i64: if (!UseImm) CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; else CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; break; } unsigned SrcReg1 = getRegForValue(SrcValue1); if (SrcReg1 == 0) return false; unsigned SrcReg2 = 0; if (!UseImm) { SrcReg2 = getRegForValue(SrcValue2); if (SrcReg2 == 0) return false; } if (NeedsExt) { unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) return false; SrcReg1 = ExtReg; if (!UseImm) { unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) return false; SrcReg2 = ExtReg; } } if (!UseImm) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg) .addReg(SrcReg1).addReg(SrcReg2); else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg) .addReg(SrcReg1).addImm(Imm); return true; } // Attempt to fast-select a binary integer operation that isn't already // handled automatically. bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { EVT DestVT = TLI.getValueType(I->getType(), true); // We can get here in the case when we have a binary operation on a non-legal // type and the target independent selector doesn't know how to handle it. if (DestVT != MVT::i16 && DestVT != MVT::i8) return false; // Look at the currently assigned register for this instruction // to determine the required register class. If there is no register, // make a conservative choice (don't assign R0). unsigned AssignedReg = FuncInfo.ValueMap[I]; const TargetRegisterClass *RC = (AssignedReg ? MRI.getRegClass(AssignedReg) : &PPC::GPRC_and_GPRC_NOR0RegClass); bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); unsigned Opc; switch (ISDOpcode) { default: return false; case ISD::ADD: Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; break; case ISD::OR: Opc = IsGPRC ? PPC::OR : PPC::OR8; break; case ISD::SUB: Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; break; } unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); unsigned SrcReg1 = getRegForValue(I->getOperand(0)); if (SrcReg1 == 0) return false; // Handle case of small immediate operand. if (const ConstantInt *ConstInt = dyn_cast(I->getOperand(1))) { const APInt &CIVal = ConstInt->getValue(); int Imm = (int)CIVal.getSExtValue(); bool UseImm = true; if (isInt<16>(Imm)) { switch (Opc) { default: llvm_unreachable("Missing case!"); case PPC::ADD4: Opc = PPC::ADDI; MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); break; case PPC::ADD8: Opc = PPC::ADDI8; MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); break; case PPC::OR: Opc = PPC::ORI; break; case PPC::OR8: Opc = PPC::ORI8; break; case PPC::SUBF: if (Imm == -32768) UseImm = false; else { Opc = PPC::ADDI; MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); Imm = -Imm; } break; case PPC::SUBF8: if (Imm == -32768) UseImm = false; else { Opc = PPC::ADDI8; MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); Imm = -Imm; } break; } if (UseImm) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(SrcReg1).addImm(Imm); UpdateValueMap(I, ResultReg); return true; } } } // Reg-reg case. unsigned SrcReg2 = getRegForValue(I->getOperand(1)); if (SrcReg2 == 0) return false; // Reverse operands for subtract-from. if (ISDOpcode == ISD::SUB) std::swap(SrcReg1, SrcReg2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(SrcReg1).addReg(SrcReg2); UpdateValueMap(I, ResultReg); return true; } // Attempt to fast-select a return instruction. bool PPCFastISel::SelectRet(const Instruction *I) { if (!FuncInfo.CanLowerReturn) return false; const ReturnInst *Ret = cast(I); const Function &F = *I->getParent()->getParent(); // Build a list of return value registers. SmallVector RetRegs; CallingConv::ID CC = F.getCallingConv(); if (Ret->getNumOperands() > 0) { SmallVector Outs; GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context); CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); const Value *RV = Ret->getOperand(0); // FIXME: Only one output register for now. if (ValLocs.size() > 1) return false; // Special case for returning a constant integer of any size. // Materialize the constant as an i64 and copy it to the return // register. This avoids an unnecessary extend or truncate. if (isa(*RV)) { const Constant *C = cast(RV); unsigned SrcReg = PPCMaterializeInt(C, MVT::i64); unsigned RetReg = ValLocs[0].getLocReg(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); RetRegs.push_back(RetReg); } else { unsigned Reg = getRegForValue(RV); if (Reg == 0) return false; // Copy the result values into the output registers. for (unsigned i = 0; i < ValLocs.size(); ++i) { CCValAssign &VA = ValLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); RetRegs.push_back(VA.getLocReg()); unsigned SrcReg = Reg + VA.getValNo(); EVT RVEVT = TLI.getValueType(RV->getType()); if (!RVEVT.isSimple()) return false; MVT RVVT = RVEVT.getSimpleVT(); MVT DestVT = VA.getLocVT(); if (RVVT != DestVT && RVVT != MVT::i8 && RVVT != MVT::i16 && RVVT != MVT::i32) return false; if (RVVT != DestVT) { switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: llvm_unreachable("Full value assign but types don't match?"); case CCValAssign::AExt: case CCValAssign::ZExt: { const TargetRegisterClass *RC = (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; unsigned TmpReg = createResultReg(RC); if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) return false; SrcReg = TmpReg; break; } case CCValAssign::SExt: { const TargetRegisterClass *RC = (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; unsigned TmpReg = createResultReg(RC); if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) return false; SrcReg = TmpReg; break; } } } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), RetRegs[i]) .addReg(SrcReg); } } } MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BLR)); for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) MIB.addReg(RetRegs[i], RegState::Implicit); return true; } // Attempt to emit an integer extend of SrcReg into DestReg. Both // signed and zero extensions are supported. Return false if we // can't handle it. bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, bool IsZExt) { if (DestVT != MVT::i32 && DestVT != MVT::i64) return false; if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) return false; // Signed extensions use EXTSB, EXTSH, EXTSW. if (!IsZExt) { unsigned Opc; if (SrcVT == MVT::i8) Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; else if (SrcVT == MVT::i16) Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; else { assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); Opc = PPC::EXTSW_32_64; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addReg(SrcReg); // Unsigned 32-bit extensions use RLWINM. } else if (DestVT == MVT::i32) { unsigned MB; if (SrcVT == MVT::i8) MB = 24; else { assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); MB = 16; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM), DestReg) .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). } else { unsigned MB; if (SrcVT == MVT::i8) MB = 56; else if (SrcVT == MVT::i16) MB = 48; else MB = 32; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICL_32_64), DestReg) .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); } return true; } // Attempt to fast-select an indirect branch instruction. bool PPCFastISel::SelectIndirectBr(const Instruction *I) { unsigned AddrReg = getRegForValue(I->getOperand(0)); if (AddrReg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8)) .addReg(AddrReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8)); const IndirectBrInst *IB = cast(I); for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); return true; } // Attempt to fast-select an integer extend instruction. bool PPCFastISel::SelectIntExt(const Instruction *I) { Type *DestTy = I->getType(); Value *Src = I->getOperand(0); Type *SrcTy = Src->getType(); bool IsZExt = isa(I); unsigned SrcReg = getRegForValue(Src); if (!SrcReg) return false; EVT SrcEVT, DestEVT; SrcEVT = TLI.getValueType(SrcTy, true); DestEVT = TLI.getValueType(DestTy, true); if (!SrcEVT.isSimple()) return false; if (!DestEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DestVT = DestEVT.getSimpleVT(); // If we know the register class needed for the result of this // instruction, use it. Otherwise pick the register class of the // correct size that does not contain X0/R0, since we don't know // whether downstream uses permit that assignment. unsigned AssignedReg = FuncInfo.ValueMap[I]; const TargetRegisterClass *RC = (AssignedReg ? MRI.getRegClass(AssignedReg) : (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : &PPC::GPRC_and_GPRC_NOR0RegClass)); unsigned ResultReg = createResultReg(RC); if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) return false; UpdateValueMap(I, ResultReg); return true; } // Attempt to fast-select an instruction that wasn't handled by // the table-generated machinery. bool PPCFastISel::TargetSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { case Instruction::Load: return SelectLoad(I); case Instruction::Store: return SelectStore(I); case Instruction::Br: return SelectBranch(I); case Instruction::IndirectBr: return SelectIndirectBr(I); case Instruction::Add: return SelectBinaryIntOp(I, ISD::ADD); case Instruction::Or: return SelectBinaryIntOp(I, ISD::OR); case Instruction::Sub: return SelectBinaryIntOp(I, ISD::SUB); case Instruction::Ret: return SelectRet(I); case Instruction::ZExt: case Instruction::SExt: return SelectIntExt(I); // Here add other flavors of Instruction::XXX that automated // cases don't catch. For example, switches are terminators // that aren't yet handled. default: break; } return false; } // Materialize a floating-point constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { // No plans to handle long double here. if (VT != MVT::f32 && VT != MVT::f64) return 0; // All FP constants are loaded from the constant pool. unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); assert(Align > 0 && "Unexpectedly missing alignment information!"); unsigned Idx = MCP.getConstantPoolIndex(cast(CFP), Align); unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); CodeModel::Model CModel = TM.getCodeModel(); MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT), TmpReg) .addConstantPoolIndex(Idx).addReg(PPC::X2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addImm(0).addReg(TmpReg).addMemOperand(MMO); } else { // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA), TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) .addReg(TmpReg) .addMemOperand(MMO); } return DestReg; } // Materialize the address of a global value into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { assert(VT == MVT::i64 && "Non-address!"); const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; unsigned DestReg = createResultReg(RC); // Global values may be plain old object addresses, TLS object // addresses, constant pool entries, or jump tables. How we generate // code for these may depend on small, medium, or large code model. CodeModel::Model CModel = TM.getCodeModel(); // FIXME: Jump tables are not yet required because fast-isel doesn't // handle switches; if that changes, we need them as well. For now, // what follows assumes everything's a generic (or TLS) global address. const GlobalVariable *GVar = dyn_cast(GV); if (!GVar) { // If GV is an alias, use the aliasee for determining thread-locality. if (const GlobalAlias *GA = dyn_cast(GV)) GVar = dyn_cast_or_null(GA->resolveAliasedGlobal(false)); assert((GVar || isa(GV)) && "Unexpected GV subclass!"); } // FIXME: We don't yet handle the complexity of TLS. bool IsTLS = GVar && GVar->isThreadLocal(); if (IsTLS) return 0; // For small code model, generate a simple TOC load. if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg) .addGlobalAddress(GV).addReg(PPC::X2); else { // If the address is an externally defined symbol, a symbol with // common or externally available linkage, a function address, or a // jump table address (not yet needed), or if we are generating code // for large code model, we generate: // LDtocL(GV, ADDIStocHA(%X2, GV)) // Otherwise we generate: // ADDItocL(ADDIStocHA(%X2, GV), GV) // Either way, start with the ADDIStocHA: unsigned HighPartReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA), HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); // !GVar implies a function address. An external variable is one // without an initializer. // If/when switches are implemented, jump tables should be handled // on the "if" path here. if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() || GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage()) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL), DestReg).addGlobalAddress(GV).addReg(HighPartReg); else // Otherwise generate the ADDItocL. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL), DestReg).addReg(HighPartReg).addGlobalAddress(GV); } return DestReg; } // Materialize a 32-bit integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, const TargetRegisterClass *RC) { unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; unsigned ResultReg = createResultReg(RC); bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); if (isInt<16>(Imm)) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) .addImm(Imm); else if (Lo) { // Both Lo and Hi have nonzero bits. unsigned TmpReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) .addImm(Hi); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) .addReg(TmpReg).addImm(Lo); } else // Just Hi bits. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) .addImm(Hi); return ResultReg; } // Materialize a 64-bit integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, const TargetRegisterClass *RC) { unsigned Remainder = 0; unsigned Shift = 0; // If the value doesn't fit in 32 bits, see if we can shift it // so that it fits in 32 bits. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; if (isInt<32>(ImmSh)) Imm = ImmSh; else { Remainder = Imm; Shift = 32; Imm >>= 32; } } // Handle the high-order 32 bits (if shifted) or the whole 32 bits // (if not shifted). unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); if (!Shift) return TmpReg1; // If upper 32 bits were not zero, we've built them and need to shift // them into place. unsigned TmpReg2; if (Imm) { TmpReg2 = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR), TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); } else TmpReg2 = TmpReg1; unsigned TmpReg3, Hi, Lo; if ((Hi = (Remainder >> 16) & 0xFFFF)) { TmpReg3 = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8), TmpReg3).addReg(TmpReg2).addImm(Hi); } else TmpReg3 = TmpReg2; if ((Lo = Remainder & 0xFFFF)) { unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8), ResultReg).addReg(TmpReg3).addImm(Lo); return ResultReg; } return TmpReg3; } // Materialize an integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) { if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) return 0; const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); // If the constant is in range, use a load-immediate. const ConstantInt *CI = cast(C); if (isInt<16>(CI->getSExtValue())) { unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; unsigned ImmReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg) .addImm(CI->getSExtValue()); return ImmReg; } // Construct the constant piecewise. int64_t Imm = CI->getZExtValue(); if (VT == MVT::i64) return PPCMaterialize64BitInt(Imm, RC); else if (VT == MVT::i32) return PPCMaterialize32BitInt(Imm, RC); return 0; } // Materialize a constant into a register, and return the register // number (or zero if we failed to handle it). unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); if (const ConstantFP *CFP = dyn_cast(C)) return PPCMaterializeFP(CFP, VT); else if (const GlobalValue *GV = dyn_cast(C)) return PPCMaterializeGV(GV, VT); else if (isa(C)) return PPCMaterializeInt(C, VT); // TBD: Global values. return 0; } // Materialize the address created by an alloca into a register, and // return the register number (or zero if we failed to handle it). TBD. unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { return AI && 0; } // Fold loads into extends when possible. // FIXME: We can have multiple redundant extend/trunc instructions // following a load. The folding only picks up one. Extend this // to check subsequent instructions for the same pattern and remove // them. Thus ResultReg should be the def reg for the last redundant // instruction in a chain, and all intervening instructions can be // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll // to add ELF64-NOT: rldicl to the appropriate tests when this works. bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) { // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(LI->getType(), VT)) return false; // Combine load followed by zero- or sign-extend. bool IsZExt = false; switch(MI->getOpcode()) { default: return false; case PPC::RLDICL: case PPC::RLDICL_32_64: { IsZExt = true; unsigned MB = MI->getOperand(3).getImm(); if ((VT == MVT::i8 && MB <= 56) || (VT == MVT::i16 && MB <= 48) || (VT == MVT::i32 && MB <= 32)) break; return false; } case PPC::RLWINM: case PPC::RLWINM8: { IsZExt = true; unsigned MB = MI->getOperand(3).getImm(); if ((VT == MVT::i8 && MB <= 24) || (VT == MVT::i16 && MB <= 16)) break; return false; } case PPC::EXTSB: case PPC::EXTSB8: case PPC::EXTSB8_32_64: /* There is no sign-extending load-byte instruction. */ return false; case PPC::EXTSH: case PPC::EXTSH8: case PPC::EXTSH8_32_64: { if (VT != MVT::i16 && VT != MVT::i8) return false; break; } case PPC::EXTSW: case PPC::EXTSW_32_64: { if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) return false; break; } } // See if we can handle this address. Address Addr; if (!PPCComputeAddress(LI->getOperand(0), Addr)) return false; unsigned ResultReg = MI->getOperand(0).getReg(); if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt)) return false; MI->eraseFromParent(); return true; } // Attempt to lower call arguments in a faster way than done by // the selection DAG code. bool PPCFastISel::FastLowerArguments() { // Defer to normal argument lowering for now. It's reasonably // efficient. Consider doing something like ARM to handle the // case where all args fit in registers, no varargs, no float // or vector args. return false; } // Handle materializing integer constants into a register. This is not // automatically generated for PowerPC, so must be explicitly created here. unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { if (Opc != ISD::Constant) return 0; if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) return 0; const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); if (VT == MVT::i64) return PPCMaterialize64BitInt(Imm, RC); else return PPCMaterialize32BitInt(Imm, RC); } // Override for ADDI and ADDI8 to set the correct register class // on RHS operand 0. The automatic infrastructure naively assumes // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost // for these cases. At the moment, none of the other automatically // generated RI instructions require special treatment. However, once // SelectSelect is implemented, "isel" requires similar handling. // // Also be conservative about the output register class. Avoid // assigning R0 or X0 to the output register for GPRC and G8RC // register classes, as any such result could be used in ADDI, etc., // where those regs have another meaning. unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm) { if (MachineInstOpcode == PPC::ADDI) MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); else if (MachineInstOpcode == PPC::ADDI8) MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); const TargetRegisterClass *UseRC = (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Op0IsKill, Imm); } // Override for instructions with one register operand to avoid use of // R0/X0. The automatic infrastructure isn't aware of the context so // we must be conservative. unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass* RC, unsigned Op0, bool Op0IsKill) { const TargetRegisterClass *UseRC = (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); } // Override for instructions with two register operands to avoid use // of R0/X0. The automatic infrastructure isn't aware of the context // so we must be conservative. unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass* RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { const TargetRegisterClass *UseRC = (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, Op1, Op1IsKill); } namespace llvm { // Create the fast instruction selector for PowerPC64 ELF. FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) { const TargetMachine &TM = FuncInfo.MF->getTarget(); // Only available on 64-bit ELF for now. const PPCSubtarget *Subtarget = &TM.getSubtarget(); if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) return new PPCFastISel(FuncInfo, LibInfo); return 0; } }