//===-- Module.cpp - Implement the Module class ------------------*- C++ -*--=// // // This file implements the Module class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/InstrTypes.h" #include "llvm/Type.h" #include "llvm/ConstantVals.h" #include "llvm/DerivedTypes.h" #include "Support/STLExtras.h" #include "ValueHolderImpl.h" #include // Instantiate Templates - This ugliness is the price we have to pay // for having a DefHolderImpl.h file seperate from DefHolder.h! :( // template class ValueHolder; template class ValueHolder; // Define the GlobalValueRefMap as a struct that wraps a map so that we don't // have Module.h depend on // struct GlobalValueRefMap : public std::map{ }; Module::Module() : GlobalList(this, this), FunctionList(this, this) { GVRefMap = 0; SymTab = 0; } Module::~Module() { dropAllReferences(); GlobalList.delete_all(); GlobalList.setParent(0); FunctionList.delete_all(); FunctionList.setParent(0); delete SymTab; } SymbolTable *Module::getSymbolTableSure() { if (!SymTab) SymTab = new SymbolTable(0); return SymTab; } // hasSymbolTable() - Returns true if there is a symbol table allocated to // this object AND if there is at least one name in it! // bool Module::hasSymbolTable() const { if (!SymTab) return false; for (SymbolTable::const_iterator I = SymTab->begin(), E = SymTab->end(); I != E; ++I) if (I->second.begin() != I->second.end()) return true; // Found nonempty type plane! return false; } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // Function *Module::getOrInsertFunction(const std::string &Name, const FunctionType *Ty) { SymbolTable *SymTab = getSymbolTableSure(); // See if we have a definitions for the specified function already... if (Value *V = SymTab->lookup(PointerType::get(Ty), Name)) { return cast(V); // Yup, got it } else { // Nope, add one Function *New = new Function(Ty, false, Name); FunctionList.push_back(New); return New; // Return the new prototype... } } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(const std::string &Name, const FunctionType *Ty) { SymbolTable *SymTab = getSymbolTable(); if (SymTab == 0) return 0; // No symtab, no symbols... return cast_or_null(SymTab->lookup(PointerType::get(Ty), Name)); } // addTypeName - Insert an entry in the symbol table mapping Str to Type. If // there is already an entry for this name, true is returned and the symbol // table is not modified. // bool Module::addTypeName(const std::string &Name, const Type *Ty) { SymbolTable *ST = getSymbolTableSure(); if (ST->lookup(Type::TypeTy, Name)) return true; // Already in symtab... // Not in symbol table? Set the name with the Symtab as an argument so the // type knows what to update... ((Value*)Ty)->setName(Name, ST); return false; } // getTypeName - If there is at least one entry in the symbol table for the // specified type, return it. // std::string Module::getTypeName(const Type *Ty) { const SymbolTable *ST = getSymbolTable(); if (ST == 0) return ""; // No symbol table, must not have an entry... if (ST->find(Type::TypeTy) == ST->end()) return ""; // No names for types... SymbolTable::type_const_iterator TI = ST->type_begin(Type::TypeTy); SymbolTable::type_const_iterator TE = ST->type_end(Type::TypeTy); while (TI != TE && TI->second != (const Value*)Ty) ++TI; if (TI != TE) // Must have found an entry! return TI->first; return ""; // Must not have found anything... } // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is delete'd for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void Module::dropAllReferences() { for_each(FunctionList.begin(), FunctionList.end(), std::mem_fun(&Function::dropAllReferences)); for_each(GlobalList.begin(), GlobalList.end(), std::mem_fun(&GlobalVariable::dropAllReferences)); // If there are any GlobalVariable references still out there, nuke them now. // Since all references are hereby dropped, nothing could possibly reference // them still. if (GVRefMap) { for (GlobalValueRefMap::iterator I = GVRefMap->begin(), E = GVRefMap->end(); I != E; ++I) { // Delete the ConstantPointerRef node... I->second->destroyConstant(); } // Since the table is empty, we can now delete it... delete GVRefMap; } } // Accessor for the underlying GlobalValRefMap... ConstantPointerRef *Module::getConstantPointerRef(GlobalValue *V){ // Create ref map lazily on demand... if (GVRefMap == 0) GVRefMap = new GlobalValueRefMap(); GlobalValueRefMap::iterator I = GVRefMap->find(V); if (I != GVRefMap->end()) return I->second; ConstantPointerRef *Ref = new ConstantPointerRef(V); GVRefMap->insert(std::make_pair(V, Ref)); return Ref; } void Module::mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV) { GlobalValueRefMap::iterator I = GVRefMap->find(OldGV); assert(I != GVRefMap->end() && "mutateConstantPointerRef; OldGV not in table!"); ConstantPointerRef *Ref = I->second; // Remove the old entry... GVRefMap->erase(I); // Insert the new entry... GVRefMap->insert(std::make_pair(NewGV, Ref)); }