//===-- llvm/MC/MCObjectWriter.h - Object File Writer Interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCOBJECTWRITER_H #define LLVM_MC_MCOBJECTWRITER_H #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { class MCAsmLayout; class MCAssembler; class MCFixup; class MCFragment; class MCSymbolData; class MCSymbolRefExpr; class MCValue; /// MCObjectWriter - Defines the object file and target independent interfaces /// used by the assembler backend to write native file format object files. /// /// The object writer contains a few callbacks used by the assembler to allow /// the object writer to modify the assembler data structures at appropriate /// points. Once assembly is complete, the object writer is given the /// MCAssembler instance, which contains all the symbol and section data which /// should be emitted as part of WriteObject(). /// /// The object writer also contains a number of helper methods for writing /// binary data to the output stream. class MCObjectWriter { MCObjectWriter(const MCObjectWriter &) = delete; void operator=(const MCObjectWriter &) = delete; protected: raw_ostream &OS; unsigned IsLittleEndian : 1; protected: // Can only create subclasses. MCObjectWriter(raw_ostream &OS, bool IsLittleEndian) : OS(OS), IsLittleEndian(IsLittleEndian) {} public: virtual ~MCObjectWriter(); /// lifetime management virtual void reset() { } bool isLittleEndian() const { return IsLittleEndian; } raw_ostream &getStream() { return OS; } /// @name High-Level API /// @{ /// \brief Perform any late binding of symbols (for example, to assign symbol /// indices for use when generating relocations). /// /// This routine is called by the assembler after layout and relaxation is /// complete. virtual void ExecutePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) = 0; /// \brief Record a relocation entry. /// /// This routine is called by the assembler after layout and relaxation, and /// post layout binding. The implementation is responsible for storing /// information about the relocation so that it can be emitted during /// WriteObject(). virtual void RecordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) = 0; /// \brief Check whether the difference (A - B) between two symbol /// references is fully resolved. /// /// Clients are not required to answer precisely and may conservatively return /// false, even when a difference is fully resolved. bool IsSymbolRefDifferenceFullyResolved(const MCAssembler &Asm, const MCSymbolRefExpr *A, const MCSymbolRefExpr *B, bool InSet) const; virtual bool IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, const MCSymbolData &DataA, const MCSymbolData *DataB, const MCFragment &FB, bool InSet, bool IsPCRel) const; /// \brief True if this symbol (which is a variable) is weak. This is not /// just STB_WEAK, but more generally whether or not we can evaluate /// past it. virtual bool isWeak(const MCSymbolData &SD) const; /// \brief Write the object file. /// /// This routine is called by the assembler after layout and relaxation is /// complete, fixups have been evaluated and applied, and relocations /// generated. virtual void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) = 0; /// @} /// @name Binary Output /// @{ void Write8(uint8_t Value) { OS << char(Value); } void WriteLE16(uint16_t Value) { Write8(uint8_t(Value >> 0)); Write8(uint8_t(Value >> 8)); } void WriteLE32(uint32_t Value) { WriteLE16(uint16_t(Value >> 0)); WriteLE16(uint16_t(Value >> 16)); } void WriteLE64(uint64_t Value) { WriteLE32(uint32_t(Value >> 0)); WriteLE32(uint32_t(Value >> 32)); } void WriteBE16(uint16_t Value) { Write8(uint8_t(Value >> 8)); Write8(uint8_t(Value >> 0)); } void WriteBE32(uint32_t Value) { WriteBE16(uint16_t(Value >> 16)); WriteBE16(uint16_t(Value >> 0)); } void WriteBE64(uint64_t Value) { WriteBE32(uint32_t(Value >> 32)); WriteBE32(uint32_t(Value >> 0)); } void Write16(uint16_t Value) { if (IsLittleEndian) WriteLE16(Value); else WriteBE16(Value); } void Write32(uint32_t Value) { if (IsLittleEndian) WriteLE32(Value); else WriteBE32(Value); } void Write64(uint64_t Value) { if (IsLittleEndian) WriteLE64(Value); else WriteBE64(Value); } void WriteZeros(unsigned N) { const char Zeros[16] = { 0 }; for (unsigned i = 0, e = N / 16; i != e; ++i) OS << StringRef(Zeros, 16); OS << StringRef(Zeros, N % 16); } void WriteBytes(const SmallVectorImpl &ByteVec, unsigned ZeroFillSize = 0) { WriteBytes(StringRef(ByteVec.data(), ByteVec.size()), ZeroFillSize); } void WriteBytes(StringRef Str, unsigned ZeroFillSize = 0) { // TODO: this version may need to go away once all fragment contents are // converted to SmallVector assert((ZeroFillSize == 0 || Str.size () <= ZeroFillSize) && "data size greater than fill size, unexpected large write will occur"); OS << Str; if (ZeroFillSize) WriteZeros(ZeroFillSize - Str.size()); } /// @} }; } // End llvm namespace #endif