//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" namespace { struct PNE : public MachineFunctionPass { bool runOnMachineFunction(MachineFunction &Fn) { bool Changed = false; // Eliminate PHI instructions by inserting copies into predecessor blocks. // for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= EliminatePHINodes(Fn, *I); //std::cerr << "AFTER PHI NODE ELIM:\n"; //Fn.dump(); return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. /// bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); }; RegisterPass X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); } const PassInfo *PHIEliminationID = X.getPassInfo(); /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. /// bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || MBB.front()->getOpcode() != TargetInstrInfo::PHI) return false; // Quick exit for normal case... LiveVariables *LV = getAnalysisToUpdate(); const TargetInstrInfo &MII = MF.getTarget().getInstrInfo(); const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); while (MBB.front()->getOpcode() == TargetInstrInfo::PHI) { MachineInstr *MI = MBB.front(); // Unlink the PHI node from the basic block... but don't delete the PHI yet MBB.erase(MBB.begin()); assert(MI->getOperand(0).isVirtualRegister() && "PHI node doesn't write virt reg?"); unsigned DestReg = MI->getOperand(0).getAllocatedRegNum(); // Create a new register for the incoming PHI arguments const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); // Insert a register to register copy in the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. // MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); if (AfterPHIsIt != MBB.end()) while ((*AfterPHIsIt)->getOpcode() == TargetInstrInfo::PHI) ++AfterPHIsIt; RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC); // Update live variable information if there is any... if (LV) { MachineInstr *PHICopy = *(AfterPHIsIt-1); // Add information to LiveVariables to know that the incoming value is // dead. This says that the register is dead, not killed, because we // cannot use the live variable information to indicate that the variable // is defined in multiple entry blocks. Instead, we pretend that this // instruction defined it and killed it at the same time. // LV->addVirtualRegisterDead(IncomingReg, PHICopy); // Since we are going to be deleting the PHI node, if it is the last use // of any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted... // std::pair RKs = LV->killed_range(MI); if (RKs.first != RKs.second) { for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I) LV->addVirtualRegisterKilled(I->second, PHICopy); LV->removeVirtualRegistersKilled(RKs.first, RKs.second); } RKs = LV->dead_range(MI); if (RKs.first != RKs.second) { for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I) LV->addVirtualRegisterDead(I->second, PHICopy); LV->removeVirtualRegistersDead(RKs.first, RKs.second); } } // Now loop over all of the incoming arguments, changing them to copy into // the IncomingReg register in the corresponding predecessor basic block. // for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { MachineOperand &opVal = MI->getOperand(i-1); // Get the MachineBasicBlock equivalent of the BasicBlock that is the // source path the PHI. MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock(); // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the // same basic block. It doesn't matter which entry we use though, because // all incoming values are guaranteed to be the same for a particular bb. // // Note that this is N^2 in the number of phi node entries, but since the // # of entries is usually small, this is not a problem. FIXME: this // should just check to see if there is already a copy in the bottom of // this basic block! // bool HaveNotEmitted = true; for (int op = MI->getNumOperands() - 1; op != i; op -= 2) if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) { HaveNotEmitted = false; break; } if (HaveNotEmitted) { MachineBasicBlock::iterator I = opBlock.end(); if (I != opBlock.begin()) { // Handle empty blocks --I; // must backtrack over ALL the branches in the previous block while (MII.isTerminatorInstr((*I)->getOpcode()) && I != opBlock.begin()) --I; // move back to the first branch instruction so new instructions // are inserted right in front of it and not in front of a non-branch if (!MII.isTerminatorInstr((*I)->getOpcode())) ++I; } assert(opVal.isVirtualRegister() && "Machine PHI Operands must all be virtual registers!"); RegInfo->copyRegToReg(opBlock, I, IncomingReg, opVal.getReg(), RC); } } // really delete the PHI instruction now! delete MI; } return true; }