//===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the AArch64 scalar instructions in TableGen format. // //===----------------------------------------------------------------------===// include "AArch64InstrFormats.td" //===----------------------------------------------------------------------===// // Target-specific ISD nodes and profiles //===----------------------------------------------------------------------===// def SDT_A64ret : SDTypeProfile<0, 0, []>; def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // (ins NZCV, Condition, Dest) def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>; def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>; // (outs Result), (ins NZCV, IfTrue, IfFalse, Condition) def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>; def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>; // (outs NZCV), (ins LHS, RHS, Condition) def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>; def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>; // (outs GPR64), (ins) def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; // A64 compares don't care about the cond really (they set all flags) so a // simple binary operator is useful. def A64cmp : PatFrag<(ops node:$lhs, node:$rhs), (A64setcc node:$lhs, node:$rhs, cond)>; // When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN // instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C // and V flags can be set differently by this operation. It comes down to // whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are // then everything is fine. If not then the optimization is wrong. Thus general // comparisons are only valid if op2 != 0. // So, finally, the only LLVM-native comparisons that don't mention C and V are // SETEQ and SETNE. They're the only ones we can safely use CMN for in the // absence of information about op2. def equality_cond : PatLeaf<(cond), [{ return N->get() == ISD::SETEQ || N->get() == ISD::SETNE; }]>; def A64cmn : PatFrag<(ops node:$lhs, node:$rhs), (A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>; // There are two layers of indirection here, driven by the following // considerations. // + TableGen does not know CodeModel or Reloc so that decision should be // made for a variable/address at ISelLowering. // + The output of ISelLowering should be selectable (hence the Wrapper, // rather than a bare target opcode) def SDTAArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisSameAs<0, 4>, SDTCisPtrTy<0>]>; def A64WrapperLarge :SDNode<"AArch64ISD::WrapperLarge", SDTAArch64WrapperLarge>; def SDTAArch64WrapperSmall : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisPtrTy<0>]>; def A64WrapperSmall :SDNode<"AArch64ISD::WrapperSmall", SDTAArch64WrapperSmall>; def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad, [SDNPHasChain]>; // (A64BFI LHS, RHS, LSB, Width) def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i64>, SDTCisVT<4, i64>]>; def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>; // (A64EXTR HiReg, LoReg, LSB) def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i64>]>; def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>; // (A64[SU]BFX Field, ImmR, ImmS). // // Note that ImmR and ImmS are already encoded for the actual instructions. The // more natural LSB and Width mix together to form ImmR and ImmS, something // which TableGen can't handle. def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>; def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>; def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>; //===----------------------------------------------------------------------===// // Call sequence pseudo-instructions //===----------------------------------------------------------------------===// def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // The TLSDESCCALL node is a variant call which goes to an indirectly calculated // destination but needs a relocation against a fixed symbol. As such it has two // certain operands: the callee and the relocated variable. // // The TLS ABI only allows it to be selected to a BLR instructin (with // appropriate relocation). def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall, [SDNPInGlue, SDNPOutGlue, SDNPHasChain, SDNPVariadic]>; def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>; def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def SDT_AArch64CallSeqEnd : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>; def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AArch64CallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; // These pseudo-instructions have special semantics by virtue of being passed to // the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by // LowerCall to (in our case) tell the back-end about stack adjustments for // arguments passed on the stack. Here we select those markers to // pseudo-instructions which explicitly set the stack, and finally in the // RegisterInfo we convert them to a true stack adjustment. let Defs = [XSP], Uses = [XSP] in { def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt), [(AArch64callseq_start timm:$amt)]>; def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2), [(AArch64callseq_end timm:$amt1, timm:$amt2)]>; } //===----------------------------------------------------------------------===// // Atomic operation pseudo-instructions //===----------------------------------------------------------------------===// // These get selected from C++ code as a pretty much direct translation from the // generic DAG nodes. The one exception is the AtomicOrdering is added as an // operand so that the eventual lowering can make use of it and choose // acquire/release operations when required. let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in { multiclass AtomicSizes { def _I8 : PseudoInst<(outs GPR32:$dst), (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>; def _I16 : PseudoInst<(outs GPR32:$dst), (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>; def _I32 : PseudoInst<(outs GPR32:$dst), (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>; def _I64 : PseudoInst<(outs GPR64:$dst), (ins GPR64xsp:$ptr, GPR64:$incr, i32imm:$ordering), []>; } } defm ATOMIC_LOAD_ADD : AtomicSizes; defm ATOMIC_LOAD_SUB : AtomicSizes; defm ATOMIC_LOAD_AND : AtomicSizes; defm ATOMIC_LOAD_OR : AtomicSizes; defm ATOMIC_LOAD_XOR : AtomicSizes; defm ATOMIC_LOAD_NAND : AtomicSizes; defm ATOMIC_SWAP : AtomicSizes; let Defs = [NZCV] in { // These operations need a CMP to calculate the correct value defm ATOMIC_LOAD_MIN : AtomicSizes; defm ATOMIC_LOAD_MAX : AtomicSizes; defm ATOMIC_LOAD_UMIN : AtomicSizes; defm ATOMIC_LOAD_UMAX : AtomicSizes; } class AtomicCmpSwap : PseudoInst<(outs GPRData:$dst), (ins GPR64xsp:$ptr, GPRData:$old, GPRData:$new, i32imm:$ordering), []> { let usesCustomInserter = 1; let hasCtrlDep = 1; let mayLoad = 1; let mayStore = 1; let Defs = [NZCV]; } def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap; def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap; def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap; def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap; //===----------------------------------------------------------------------===// // Add-subtract (extended register) instructions //===----------------------------------------------------------------------===// // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP // The RHS of these operations is conceptually a sign/zero-extended // register, optionally shifted left by 1-4. The extension can be a // NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but // must be specified with one exception: // If one of the registers is sp/wsp then LSL is an alias for UXTW in // 32-bit instructions and UXTX in 64-bit versions, the shift amount // is not optional in that case (but can explicitly be 0), and the // entire suffix can be skipped (e.g. "add sp, x3, x2"). multiclass extend_operands { def _asmoperand : AsmOperandClass { let Name = PREFIX; let RenderMethod = "addRegExtendOperands"; let PredicateMethod = "isRegExtend"; let DiagnosticType = "AddSubRegExtend" # Diag; } def _operand : Operand, ImmLeaf= 0 && Imm <= 4; }]> { let PrintMethod = "printRegExtendOperand"; let DecoderMethod = "DecodeRegExtendOperand"; let ParserMatchClass = !cast(PREFIX # "_asmoperand"); } } defm UXTB : extend_operands<"UXTB", "Small">; defm UXTH : extend_operands<"UXTH", "Small">; defm UXTW : extend_operands<"UXTW", "Small">; defm UXTX : extend_operands<"UXTX", "Large">; defm SXTB : extend_operands<"SXTB", "Small">; defm SXTH : extend_operands<"SXTH", "Small">; defm SXTW : extend_operands<"SXTW", "Small">; defm SXTX : extend_operands<"SXTX", "Large">; def LSL_extasmoperand : AsmOperandClass { let Name = "RegExtendLSL"; let RenderMethod = "addRegExtendOperands"; let DiagnosticType = "AddSubRegExtendLarge"; } def LSL_extoperand : Operand { let ParserMatchClass = LSL_extasmoperand; } // The patterns for various sign-extensions are a little ugly and // non-uniform because everything has already been promoted to the // legal i64 and i32 types. We'll wrap the various variants up in a // class for use later. class extend_types { dag uxtb; dag uxth; dag uxtw; dag uxtx; dag sxtb; dag sxth; dag sxtw; dag sxtx; ValueType ty; RegisterClass GPR; } def extends_to_i64 : extend_types { let uxtb = (and (anyext i32:$Rm), 255); let uxth = (and (anyext i32:$Rm), 65535); let uxtw = (zext i32:$Rm); let uxtx = (i64 $Rm); let sxtb = (sext_inreg (anyext i32:$Rm), i8); let sxth = (sext_inreg (anyext i32:$Rm), i16); let sxtw = (sext i32:$Rm); let sxtx = (i64 $Rm); let ty = i64; let GPR = GPR64xsp; } def extends_to_i32 : extend_types { let uxtb = (and i32:$Rm, 255); let uxth = (and i32:$Rm, 65535); let uxtw = (i32 i32:$Rm); let uxtx = (i32 i32:$Rm); let sxtb = (sext_inreg i32:$Rm, i8); let sxth = (sext_inreg i32:$Rm, i16); let sxtw = (i32 i32:$Rm); let sxtx = (i32 i32:$Rm); let ty = i32; let GPR = GPR32wsp; } // Now, six of the extensions supported are easy and uniform: if the source size // is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate // those instructions in one block. // The uxtx/sxtx could potentially be merged in, but three facts dissuaded me: // + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would // be impossible. // + Patterns are very different as well. // + Passing different registers would be ugly (more fields in extend_types // would probably be the best option). multiclass addsub_exts { def w_uxtb : A64I_addsubext; def w_uxth : A64I_addsubext; def w_uxtw : A64I_addsubext; def w_sxtb : A64I_addsubext; def w_sxth : A64I_addsubext; def w_sxtw : A64I_addsubext; } // These two could be merge in with the above, but their patterns aren't really // necessary and the naming-scheme would necessarily break: multiclass addsub_xxtx { def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011, outs, (ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3), !strconcat(asmop, "$Rn, $Rm, $Imm3"), [(opfrag i64:$Rn, (shl i64:$Rm, UXTX_operand:$Imm3))], NoItinerary>; def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111, outs, (ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3), !strconcat(asmop, "$Rn, $Rm, $Imm3"), [/* No Pattern: same as uxtx */], NoItinerary>; } multiclass addsub_wxtx { def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011, outs, (ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3), !strconcat(asmop, "$Rn, $Rm, $Imm3"), [/* No pattern: probably same as uxtw */], NoItinerary>; def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111, outs, (ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3), !strconcat(asmop, "$Rn, $Rm, $Imm3"), [/* No Pattern: probably same as uxtw */], NoItinerary>; } class SetRD : PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>; class SetNZCV : PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>; defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD, (outs GPR64xsp:$Rd), extends_to_i64>, addsub_xxtx< 0b0, 0b0, "add\t$Rd, ", SetRD, (outs GPR64xsp:$Rd)>; defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD, (outs GPR32wsp:$Rd), extends_to_i32>, addsub_wxtx< 0b0, 0b0, "add\t$Rd, ", (outs GPR32wsp:$Rd)>; defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD, (outs GPR64xsp:$Rd), extends_to_i64>, addsub_xxtx< 0b1, 0b0, "sub\t$Rd, ", SetRD, (outs GPR64xsp:$Rd)>; defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD, (outs GPR32wsp:$Rd), extends_to_i32>, addsub_wxtx< 0b1, 0b0, "sub\t$Rd, ", (outs GPR32wsp:$Rd)>; let Defs = [NZCV] in { defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD, (outs GPR64:$Rd), extends_to_i64>, addsub_xxtx< 0b0, 0b1, "adds\t$Rd, ", SetRD, (outs GPR64:$Rd)>; defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD, (outs GPR32:$Rd), extends_to_i32>, addsub_wxtx< 0b0, 0b1, "adds\t$Rd, ", (outs GPR32:$Rd)>; defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD, (outs GPR64:$Rd), extends_to_i64>, addsub_xxtx< 0b1, 0b1, "subs\t$Rd, ", SetRD, (outs GPR64:$Rd)>; defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD, (outs GPR32:$Rd), extends_to_i32>, addsub_wxtx< 0b1, 0b1, "subs\t$Rd, ", (outs GPR32:$Rd)>; let Rd = 0b11111, isCompare = 1 in { defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV, (outs), extends_to_i64>, addsub_xxtx< 0b0, 0b1, "cmn\t", SetNZCV, (outs)>; defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV, (outs), extends_to_i32>, addsub_wxtx< 0b0, 0b1, "cmn\t", (outs)>; defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV, (outs), extends_to_i64>, addsub_xxtx< 0b1, 0b1, "cmp\t", SetNZCV, (outs)>; defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV, (outs), extends_to_i32>, addsub_wxtx< 0b1, 0b1, "cmp\t", (outs)>; } } // Now patterns for the operation without a shift being needed. No patterns are // created for uxtx/sxtx since they're non-uniform and it's expected that // add/sub (shifted register) will handle those cases anyway. multiclass addsubext_noshift_patterns { def : Pat<(nodeop exts.ty:$Rn, exts.uxtb), (!cast(prefix # "w_uxtb") $Rn, $Rm, 0)>; def : Pat<(nodeop exts.ty:$Rn, exts.uxth), (!cast(prefix # "w_uxth") $Rn, $Rm, 0)>; def : Pat<(nodeop exts.ty:$Rn, exts.uxtw), (!cast(prefix # "w_uxtw") $Rn, $Rm, 0)>; def : Pat<(nodeop exts.ty:$Rn, exts.sxtb), (!cast(prefix # "w_sxtb") $Rn, $Rm, 0)>; def : Pat<(nodeop exts.ty:$Rn, exts.sxth), (!cast(prefix # "w_sxth") $Rn, $Rm, 0)>; def : Pat<(nodeop exts.ty:$Rn, exts.sxtw), (!cast(prefix # "w_sxtw") $Rn, $Rm, 0)>; } defm : addsubext_noshift_patterns<"ADDxx", add, extends_to_i64>; defm : addsubext_noshift_patterns<"ADDww", add, extends_to_i32>; defm : addsubext_noshift_patterns<"SUBxx", sub, extends_to_i64>; defm : addsubext_noshift_patterns<"SUBww", sub, extends_to_i32>; defm : addsubext_noshift_patterns<"CMNx", A64cmn, extends_to_i64>; defm : addsubext_noshift_patterns<"CMNw", A64cmn, extends_to_i32>; defm : addsubext_noshift_patterns<"CMPx", A64cmp, extends_to_i64>; defm : addsubext_noshift_patterns<"CMPw", A64cmp, extends_to_i32>; // An extend of "lsl #imm" is valid if and only if one of Rn and Rd is // sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the // operation. Also permitted in this case is complete omission of the argument, // which implies "lsl #0". multiclass lsl_aliases { def : InstAlias; def : InstAlias; } defm : lsl_aliases<"add", ADDxxx_uxtx, Rxsp, GPR64xsp, GPR64>; defm : lsl_aliases<"add", ADDxxx_uxtx, GPR64xsp, Rxsp, GPR64>; defm : lsl_aliases<"add", ADDwww_uxtw, Rwsp, GPR32wsp, GPR32>; defm : lsl_aliases<"add", ADDwww_uxtw, GPR32wsp, Rwsp, GPR32>; defm : lsl_aliases<"sub", SUBxxx_uxtx, Rxsp, GPR64xsp, GPR64>; defm : lsl_aliases<"sub", SUBxxx_uxtx, GPR64xsp, Rxsp, GPR64>; defm : lsl_aliases<"sub", SUBwww_uxtw, Rwsp, GPR32wsp, GPR32>; defm : lsl_aliases<"sub", SUBwww_uxtw, GPR32wsp, Rwsp, GPR32>; // Rd cannot be sp for flag-setting variants so only half of the aliases are // needed. defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>; defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>; defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>; defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>; // CMP unfortunately has to be different because the instruction doesn't have a // dest register. multiclass cmp_lsl_aliases { def : InstAlias; def : InstAlias; } defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>; defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>; defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>; defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>; //===----------------------------------------------------------------------===// // Add-subtract (immediate) instructions //===----------------------------------------------------------------------===// // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV // These instructions accept a 12-bit unsigned immediate, optionally shifted // left by 12 bits. Official assembly format specifies a 12 bit immediate with // one of "", "LSL #0", "LSL #12" supplementary operands. // There are surprisingly few ways to make this work with TableGen, so this // implementation has separate instructions for the "LSL #0" and "LSL #12" // variants. // If the MCInst retained a single combined immediate (which could be 0x123000, // for example) then both components (imm & shift) would have to be delegated to // a single assembly operand. This would entail a separate operand parser // (because the LSL would have to live in the same AArch64Operand as the // immediate to be accessible); assembly parsing is rather complex and // error-prone C++ code. // // By splitting the immediate, we can delegate handling this optional operand to // an InstAlias. Supporting functions to generate the correct MCInst are still // required, but these are essentially trivial and parsing can remain generic. // // Rejected plans with rationale: // ------------------------------ // // In an ideal world you'de have two first class immediate operands (in // InOperandList, specifying imm12 and shift). Unfortunately this is not // selectable by any means I could discover. // // An Instruction with two MCOperands hidden behind a single entry in // InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional, // but required more C++ code to handle encoding/decoding. Parsing (the intended // main beneficiary) ended up equally complex because of the optional nature of // "LSL #0". // // Attempting to circumvent the need for a custom OperandParser above by giving // InstAliases without the "lsl #0" failed. add/sub could be accommodated but // the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands // should be parsed: there was no way to accommodate an "lsl #12". let ParserMethod = "ParseImmWithLSLOperand", RenderMethod = "addImmWithLSLOperands" in { // Derived PredicateMethod fields are different for each def addsubimm_lsl0_asmoperand : AsmOperandClass { let Name = "AddSubImmLSL0"; // If an error is reported against this operand, instruction could also be a // register variant. let DiagnosticType = "AddSubSecondSource"; } def addsubimm_lsl12_asmoperand : AsmOperandClass { let Name = "AddSubImmLSL12"; let DiagnosticType = "AddSubSecondSource"; } } def shr_12_XFORM : SDNodeXFormgetTargetConstant(N->getSExtValue() >> 12, MVT::i32); }]>; def shr_12_neg_XFORM : SDNodeXFormgetTargetConstant((-N->getSExtValue()) >> 12, MVT::i32); }]>; def neg_XFORM : SDNodeXFormgetTargetConstant(-N->getSExtValue(), MVT::i32); }]>; multiclass addsub_imm_operands { let PrintMethod = "printAddSubImmLSL0Operand", EncoderMethod = "getAddSubImmOpValue", ParserMatchClass = addsubimm_lsl0_asmoperand in { def _posimm_lsl0 : Operand, ImmLeaf= 0 && (Imm & ~0xfff) == 0; }]>; def _negimm_lsl0 : Operand, ImmLeaf; } let PrintMethod = "printAddSubImmLSL12Operand", EncoderMethod = "getAddSubImmOpValue", ParserMatchClass = addsubimm_lsl12_asmoperand in { def _posimm_lsl12 : Operand, ImmLeaf= 0 && (Imm & ~0xfff000) == 0; }], shr_12_XFORM>; def _negimm_lsl12 : Operand, ImmLeaf; } } // The add operands don't need any transformation defm addsubimm_operand_i32 : addsub_imm_operands; defm addsubimm_operand_i64 : addsub_imm_operands; multiclass addsubimm_varieties shift, string asmop, string cmpasmop, Operand imm_operand, Operand cmp_imm_operand, RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR, ValueType Ty> { // All registers for non-S variants allow SP def _s : A64I_addsubimm; // S variants can read SP but would write to ZR def _S : A64I_addsubimm { let Defs = [NZCV]; } // Note that the pattern here for ADDS is subtle. Canonically CMP // a, b becomes SUBS a, b. If b < 0 then this is equivalent to // ADDS a, (-b). This is not true in general. def _cmp : A64I_addsubimm { let Rd = 0b11111; let Defs = [NZCV]; let isCompare = 1; } } multiclass addsubimm_shifts { defm _lsl0 : addsubimm_varieties(operand # "_lsl0"), !cast(cmpoperand # "_lsl0"), GPR, GPRsp, ZR, Ty>; defm _lsl12 : addsubimm_varieties(operand # "_lsl12"), !cast(cmpoperand # "_lsl12"), GPR, GPRsp, ZR, Ty>; } defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn", "addsubimm_operand_i32_posimm", "addsubimm_operand_i32_negimm", GPR32, GPR32wsp, WZR, i32>; defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn", "addsubimm_operand_i64_posimm", "addsubimm_operand_i64_negimm", GPR64, GPR64xsp, XZR, i64>; defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp", "addsubimm_operand_i32_negimm", "addsubimm_operand_i32_posimm", GPR32, GPR32wsp, WZR, i32>; defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp", "addsubimm_operand_i64_negimm", "addsubimm_operand_i64_posimm", GPR64, GPR64xsp, XZR, i64>; multiclass MOVsp { def _fromsp : InstAlias<"mov $Rd, $Rn", (addop GPRsp:$Rd, SP:$Rn, 0), 0b1>; def _tosp : InstAlias<"mov $Rd, $Rn", (addop SP:$Rd, GPRsp:$Rn, 0), 0b1>; } // Recall Rxsp is a RegisterClass containing *just* xsp. defm MOVxx : MOVsp; defm MOVww : MOVsp; //===----------------------------------------------------------------------===// // Add-subtract (shifted register) instructions //===----------------------------------------------------------------------===// // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS //===------------------------------- // 1. The "shifed register" operands. Shared with logical insts. //===------------------------------- multiclass shift_operands { def _asmoperand_i32 : AsmOperandClass { let Name = "Shift" # form # "i32"; let RenderMethod = "addShiftOperands"; let PredicateMethod = "isShift"; let DiagnosticType = "AddSubRegShift32"; } // Note that the operand type is intentionally i64 because the DAGCombiner // puts these into a canonical form. def _i32 : Operand, ImmLeaf= 0 && Imm <= 31; }]> { let ParserMatchClass = !cast(prefix # "_asmoperand_i32"); let PrintMethod = "printShiftOperand"; let DecoderMethod = "Decode32BitShiftOperand"; } def _asmoperand_i64 : AsmOperandClass { let Name = "Shift" # form # "i64"; let RenderMethod = "addShiftOperands"; let PredicateMethod = "isShift"; let DiagnosticType = "AddSubRegShift64"; } def _i64 : Operand, ImmLeaf= 0 && Imm <= 63; }]> { let ParserMatchClass = !cast(prefix # "_asmoperand_i64"); let PrintMethod = "printShiftOperand"; } } defm lsl_operand : shift_operands<"lsl_operand", "LSL">; defm lsr_operand : shift_operands<"lsr_operand", "LSR">; defm asr_operand : shift_operands<"asr_operand", "ASR">; // Not used for add/sub, but defined here for completeness. The "logical // (shifted register)" instructions *do* have an ROR variant. defm ror_operand : shift_operands<"ror_operand", "ROR">; //===------------------------------- // 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions. //===------------------------------- // N.b. the commutable parameter is just !N. It will be first against the wall // when the revolution comes. multiclass addsub_shifts defs> { let isCommutable = commutable, Defs = defs in { def _lsl : A64I_addsubshift("lsl_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set GPR:$Rd, (opfrag ty:$Rn, (shl ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)) )], NoItinerary>; def _lsr : A64I_addsubshift("lsr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm, !cast("lsr_operand_" # ty):$Imm6)) )], NoItinerary>; def _asr : A64I_addsubshift("asr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm, !cast("asr_operand_" # ty):$Imm6)) )], NoItinerary>; } def _noshift : InstAlias(prefix # "_lsl") GPR:$Rd, GPR:$Rn, GPR:$Rm, 0)>; def : Pat<(opfrag ty:$Rn, ty:$Rm), (!cast(prefix # "_lsl") $Rn, $Rm, 0)>; } multiclass addsub_sizes defs> { defm xxx : addsub_shifts; defm www : addsub_shifts; } defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>; defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>; defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>; defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>; //===------------------------------- // 1. The NEG/NEGS aliases //===------------------------------- multiclass neg_alias { def : InstAlias<"neg $Rd, $Rm, $Imm6", (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>; def : Pat<(sub 0, (shiftop ty:$Rm, shift_operand:$Imm6)), (INST ZR, $Rm, shift_operand:$Imm6)>; } defm : neg_alias; defm : neg_alias; defm : neg_alias; def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; def : Pat<(sub 0, i32:$Rm), (SUBwww_lsl WZR, $Rm, 0)>; defm : neg_alias; defm : neg_alias; defm : neg_alias; def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; def : Pat<(sub 0, i64:$Rm), (SUBxxx_lsl XZR, $Rm, 0)>; // NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to // be involved. class negs_alias : InstAlias<"negs $Rd, $Rm, $Imm6", (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>; def : negs_alias; def : negs_alias; def : negs_alias; def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; def : negs_alias; def : negs_alias; def : negs_alias; def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; //===------------------------------- // 1. The CMP/CMN aliases //===------------------------------- multiclass cmp_shifts { let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in { def _lsl : A64I_addsubshift("lsl_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), [(set NZCV, (opfrag ty:$Rn, (shl ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)) )], NoItinerary>; def _lsr : A64I_addsubshift("lsr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), [(set NZCV, (opfrag ty:$Rn, (srl ty:$Rm, !cast("lsr_operand_" # ty):$Imm6)) )], NoItinerary>; def _asr : A64I_addsubshift("asr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), [(set NZCV, (opfrag ty:$Rn, (sra ty:$Rm, !cast("asr_operand_" # ty):$Imm6)) )], NoItinerary>; } def _noshift : InstAlias(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; def : Pat<(opfrag ty:$Rn, ty:$Rm), (!cast(prefix # "_lsl") $Rn, $Rm, 0)>; } defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, i32, GPR32>; defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, i64, GPR64>; defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, i32, GPR32>; defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, i64, GPR64>; //===----------------------------------------------------------------------===// // Add-subtract (with carry) instructions //===----------------------------------------------------------------------===// // Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS multiclass A64I_addsubcarrySizes { let Uses = [NZCV] in { def www : A64I_addsubcarry<0b0, op, s, 0b000000, (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm), !strconcat(asmop, "\t$Rd, $Rn, $Rm"), [], NoItinerary>; def xxx : A64I_addsubcarry<0b1, op, s, 0b000000, (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), !strconcat(asmop, "\t$Rd, $Rn, $Rm"), [], NoItinerary>; } } let isCommutable = 1 in { defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">; } defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">; let Defs = [NZCV] in { let isCommutable = 1 in { defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">; } defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">; } def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>; def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>; def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>; def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>; // Note that adde and sube can form a chain longer than two (e.g. for 256-bit // addition). So the flag-setting instructions are appropriate. def : Pat<(adde i32:$Rn, i32:$Rm), (ADCSwww $Rn, $Rm)>; def : Pat<(adde i64:$Rn, i64:$Rm), (ADCSxxx $Rn, $Rm)>; def : Pat<(sube i32:$Rn, i32:$Rm), (SBCSwww $Rn, $Rm)>; def : Pat<(sube i64:$Rn, i64:$Rm), (SBCSxxx $Rn, $Rm)>; //===----------------------------------------------------------------------===// // Bitfield //===----------------------------------------------------------------------===// // Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL, // UBFIZ, UBFX // Because of the rather complicated nearly-overlapping aliases, the decoding of // this range of instructions is handled manually. The architectural // instructions are BFM, SBFM and UBFM but a disassembler should never produce // these. // // In the end, the best option was to use BFM instructions for decoding under // almost all circumstances, but to create aliasing *Instructions* for each of // the canonical forms and specify a completely custom decoder which would // substitute the correct MCInst as needed. // // This also simplifies instruction selection, parsing etc because the MCInsts // have a shape that's closer to their use in code. //===------------------------------- // 1. The architectural BFM instructions //===------------------------------- def uimm5_asmoperand : AsmOperandClass { let Name = "UImm5"; let PredicateMethod = "isUImm<5>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm5"; } def uimm6_asmoperand : AsmOperandClass { let Name = "UImm6"; let PredicateMethod = "isUImm<6>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm6"; } def bitfield32_imm : Operand, ImmLeaf= 0 && Imm < 32; }]> { let ParserMatchClass = uimm5_asmoperand; let DecoderMethod = "DecodeBitfield32ImmOperand"; } def bitfield64_imm : Operand, ImmLeaf= 0 && Imm < 64; }]> { let ParserMatchClass = uimm6_asmoperand; // Default decoder works in 64-bit case: the 6-bit field can take any value. } multiclass A64I_bitfieldSizes opc, string asmop> { def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [], NoItinerary> { let DecoderMethod = "DecodeBitfieldInstruction"; } def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [], NoItinerary> { let DecoderMethod = "DecodeBitfieldInstruction"; } } defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">; defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">; // BFM instructions modify the destination register rather than defining it // completely. def BFMwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS), "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { let DecoderMethod = "DecodeBitfieldInstruction"; let Constraints = "$src = $Rd"; } def BFMxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS), "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { let DecoderMethod = "DecodeBitfieldInstruction"; let Constraints = "$src = $Rd"; } //===------------------------------- // 2. Extend aliases to 64-bit dest //===------------------------------- // Unfortunately the extensions that end up as 64-bits cannot be handled by an // instruction alias: their syntax is (for example) "SXTB x0, w0", which needs // to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is // not capable of such a map as far as I'm aware // Note that these instructions are strictly more specific than the // BFM ones (in ImmR) so they can handle their own decoding. class A64I_bf_ext opc, RegisterClass GPRDest, ValueType dty, string asmop, bits<6> imms, dag pattern> : A64I_bitfield { let ImmR = 0b000000; let ImmS = imms; } // Signed extensions def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtb", 7, (sext_inreg (anyext i32:$Rn), i8)>; def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxtb", 7, (sext_inreg i32:$Rn, i8)>; def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxth", 15, (sext_inreg (anyext i32:$Rn), i16)>; def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxth", 15, (sext_inreg i32:$Rn, i16)>; def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtw", 31, (sext i32:$Rn)>; // Unsigned extensions def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxtb", 7, (and i32:$Rn, 255)>; def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxth", 15, (and i32:$Rn, 65535)>; // The 64-bit unsigned variants are not strictly architectural but recommended // for consistency. let isAsmParserOnly = 1 in { def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxtb", 7, (and (anyext i32:$Rn), 255)>; def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxth", 15, (and (anyext i32:$Rn), 65535)>; } // Extra patterns for when the source register is actually 64-bits // too. There's no architectural difference here, it's just LLVM // shinanigans. There's no need for equivalent zero-extension patterns // because they'll already be caught by logical (immediate) matching. def : Pat<(sext_inreg i64:$Rn, i8), (SXTBxw (EXTRACT_SUBREG $Rn, sub_32))>; def : Pat<(sext_inreg i64:$Rn, i16), (SXTHxw (EXTRACT_SUBREG $Rn, sub_32))>; def : Pat<(sext_inreg i64:$Rn, i32), (SXTWxw (EXTRACT_SUBREG $Rn, sub_32))>; //===------------------------------- // 3. Aliases for ASR and LSR (the simple shifts) //===------------------------------- // These also handle their own decoding because ImmS being set makes // them take precedence over BFM. multiclass A64I_shift opc, string asmop, SDNode opnode> { def wwi : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR), !strconcat(asmop, "\t$Rd, $Rn, $ImmR"), [(set i32:$Rd, (opnode i32:$Rn, bitfield32_imm:$ImmR))], NoItinerary> { let ImmS = 31; } def xxi : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR), !strconcat(asmop, "\t$Rd, $Rn, $ImmR"), [(set i64:$Rd, (opnode i64:$Rn, bitfield64_imm:$ImmR))], NoItinerary> { let ImmS = 63; } } defm ASR : A64I_shift<0b00, "asr", sra>; defm LSR : A64I_shift<0b10, "lsr", srl>; //===------------------------------- // 4. Aliases for LSL //===------------------------------- // Unfortunately LSL and subsequent aliases are much more complicated. We need // to be able to say certain output instruction fields depend in a complex // manner on combinations of input assembly fields). // // MIOperandInfo *might* have been able to do it, but at the cost of // significantly more C++ code. // N.b. contrary to usual practice these operands store the shift rather than // the machine bits in an MCInst. The complexity overhead of consistency // outweighed the benefits in this case (custom asmparser, printer and selection // vs custom encoder). def bitfield32_lsl_imm : Operand, ImmLeaf= 0 && Imm <= 31; }]> { let ParserMatchClass = uimm5_asmoperand; let EncoderMethod = "getBitfield32LSLOpValue"; } def bitfield64_lsl_imm : Operand, ImmLeaf= 0 && Imm <= 63; }]> { let ParserMatchClass = uimm6_asmoperand; let EncoderMethod = "getBitfield64LSLOpValue"; } class A64I_bitfield_lsl : A64I_bitfield { bits<12> FullImm; let ImmR = FullImm{5-0}; let ImmS = FullImm{11-6}; // No disassembler allowed because it would overlap with BFM which does the // actual work. let isAsmParserOnly = 1; } def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, i32, bitfield32_lsl_imm>; def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, i64, bitfield64_lsl_imm>; //===------------------------------- // 5. Aliases for bitfield extract instructions //===------------------------------- def bfx32_width_asmoperand : AsmOperandClass { let Name = "BFX32Width"; let PredicateMethod = "isBitfieldWidth<32>"; let RenderMethod = "addBFXWidthOperands"; let DiagnosticType = "Width32"; } def bfx32_width : Operand, ImmLeaf { let PrintMethod = "printBFXWidthOperand"; let ParserMatchClass = bfx32_width_asmoperand; } def bfx64_width_asmoperand : AsmOperandClass { let Name = "BFX64Width"; let PredicateMethod = "isBitfieldWidth<64>"; let RenderMethod = "addBFXWidthOperands"; let DiagnosticType = "Width64"; } def bfx64_width : Operand { let PrintMethod = "printBFXWidthOperand"; let ParserMatchClass = bfx64_width_asmoperand; } multiclass A64I_bitfield_extract opc, string asmop, SDNode op> { def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [(set i32:$Rd, (op i32:$Rn, imm:$ImmR, imm:$ImmS))], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; } def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [(set i64:$Rd, (op i64:$Rn, imm:$ImmR, imm:$ImmS))], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; } } defm SBFX : A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>; defm UBFX : A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>; // Again, variants based on BFM modify Rd so need it as an input too. def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS), "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; let Constraints = "$src = $Rd"; } def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS), "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; let Constraints = "$src = $Rd"; } // SBFX instructions can do a 1-instruction sign-extension of boolean values. def : Pat<(sext_inreg i64:$Rn, i1), (SBFXxxii $Rn, 0, 0)>; def : Pat<(sext_inreg i32:$Rn, i1), (SBFXwwii $Rn, 0, 0)>; def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)), (SBFXxxii (SUBREG_TO_REG (i64 0), $Rn, sub_32), 0, 0)>; // UBFX makes sense as an implementation of a 64-bit zero-extension too. Could // use either 64-bit or 32-bit variant, but 32-bit might be more efficient. def : Pat<(zext i32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31), sub_32)>; //===------------------------------- // 6. Aliases for bitfield insert instructions //===------------------------------- def bfi32_lsb_asmoperand : AsmOperandClass { let Name = "BFI32LSB"; let PredicateMethod = "isUImm<5>"; let RenderMethod = "addBFILSBOperands<32>"; let DiagnosticType = "UImm5"; } def bfi32_lsb : Operand, ImmLeaf= 0 && Imm <= 31; }]> { let PrintMethod = "printBFILSBOperand<32>"; let ParserMatchClass = bfi32_lsb_asmoperand; } def bfi64_lsb_asmoperand : AsmOperandClass { let Name = "BFI64LSB"; let PredicateMethod = "isUImm<6>"; let RenderMethod = "addBFILSBOperands<64>"; let DiagnosticType = "UImm6"; } def bfi64_lsb : Operand, ImmLeaf= 0 && Imm <= 63; }]> { let PrintMethod = "printBFILSBOperand<64>"; let ParserMatchClass = bfi64_lsb_asmoperand; } // Width verification is performed during conversion so width operand can be // shared between 32/64-bit cases. Still needed for the print method though // because ImmR encodes "width - 1". def bfi32_width_asmoperand : AsmOperandClass { let Name = "BFI32Width"; let PredicateMethod = "isBitfieldWidth<32>"; let RenderMethod = "addBFIWidthOperands"; let DiagnosticType = "Width32"; } def bfi32_width : Operand, ImmLeaf= 1 && Imm <= 32; }]> { let PrintMethod = "printBFIWidthOperand"; let ParserMatchClass = bfi32_width_asmoperand; } def bfi64_width_asmoperand : AsmOperandClass { let Name = "BFI64Width"; let PredicateMethod = "isBitfieldWidth<64>"; let RenderMethod = "addBFIWidthOperands"; let DiagnosticType = "Width64"; } def bfi64_width : Operand, ImmLeaf= 1 && Imm <= 64; }]> { let PrintMethod = "printBFIWidthOperand"; let ParserMatchClass = bfi64_width_asmoperand; } multiclass A64I_bitfield_insert opc, string asmop> { def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), (ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; } def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), (ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS), !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; } } defm SBFIZ : A64I_bitfield_insert<0b00, "sbfiz">; defm UBFIZ : A64I_bitfield_insert<0b10, "ubfiz">; def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), (ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS), "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; let Constraints = "$src = $Rd"; } def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), (ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS), "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { // As above, no disassembler allowed. let isAsmParserOnly = 1; let Constraints = "$src = $Rd"; } //===----------------------------------------------------------------------===// // Compare and branch (immediate) //===----------------------------------------------------------------------===// // Contains: CBZ, CBNZ class label_asmoperand : AsmOperandClass { let Name = "Label" # width # "_" # scale; let PredicateMethod = "isLabel<" # width # "," # scale # ">"; let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">"; let DiagnosticType = "Label"; } def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>; // All conditional immediate branches are the same really: 19 signed bits scaled // by the instruction-size (4). def bcc_target : Operand { // This label is a 19-bit offset from PC, scaled by the instruction-width: 4. let ParserMatchClass = label_wid19_scal4_asmoperand; let PrintMethod = "printLabelOperand<19, 4>"; let EncoderMethod = "getLabelOpValue"; let OperandType = "OPERAND_PCREL"; } multiclass cmpbr_sizes { let isBranch = 1, isTerminator = 1 in { def x : A64I_cmpbr<0b1, op, (outs), (ins GPR64:$Rt, bcc_target:$Label), !strconcat(asmop,"\t$Rt, $Label"), [(A64br_cc (A64cmp i64:$Rt, 0), SETOP, bb:$Label)], NoItinerary>; def w : A64I_cmpbr<0b0, op, (outs), (ins GPR32:$Rt, bcc_target:$Label), !strconcat(asmop,"\t$Rt, $Label"), [(A64br_cc (A64cmp i32:$Rt, 0), SETOP, bb:$Label)], NoItinerary>; } } defm CBZ : cmpbr_sizes<0b0, "cbz", ImmLeaf >; defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf >; //===----------------------------------------------------------------------===// // Conditional branch (immediate) instructions //===----------------------------------------------------------------------===// // Contains: B.cc def cond_code_asmoperand : AsmOperandClass { let Name = "CondCode"; let DiagnosticType = "CondCode"; } def cond_code : Operand, ImmLeaf= 0 && Imm <= 15; }]> { let PrintMethod = "printCondCodeOperand"; let ParserMatchClass = cond_code_asmoperand; } def Bcc : A64I_condbr<0b0, 0b0, (outs), (ins cond_code:$Cond, bcc_target:$Label), "b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)], NoItinerary> { let Uses = [NZCV]; let isBranch = 1; let isTerminator = 1; } //===----------------------------------------------------------------------===// // Conditional compare (immediate) instructions //===----------------------------------------------------------------------===// // Contains: CCMN, CCMP def uimm4_asmoperand : AsmOperandClass { let Name = "UImm4"; let PredicateMethod = "isUImm<4>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm4"; } def uimm4 : Operand { let ParserMatchClass = uimm4_asmoperand; } def uimm5 : Operand { let ParserMatchClass = uimm5_asmoperand; } // The only difference between this operand and the one for instructions like // B.cc is that it's parsed manually. The other get parsed implicitly as part of // the mnemonic handling. def cond_code_op_asmoperand : AsmOperandClass { let Name = "CondCodeOp"; let RenderMethod = "addCondCodeOperands"; let PredicateMethod = "isCondCode"; let ParserMethod = "ParseCondCodeOperand"; let DiagnosticType = "CondCode"; } def cond_code_op : Operand { let PrintMethod = "printCondCodeOperand"; let ParserMatchClass = cond_code_op_asmoperand; } class A64I_condcmpimmImpl : A64I_condcmpimm { let Defs = [NZCV]; } def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">; def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">; def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">; def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">; //===----------------------------------------------------------------------===// // Conditional compare (register) instructions //===----------------------------------------------------------------------===// // Contains: CCMN, CCMP class A64I_condcmpregImpl : A64I_condcmpreg { let Defs = [NZCV]; } def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">; def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">; def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">; def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">; //===----------------------------------------------------------------------===// // Conditional select instructions //===----------------------------------------------------------------------===// // Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG // Condition code which is encoded as the inversion (semantically rather than // bitwise) in the instruction. def inv_cond_code_op_asmoperand : AsmOperandClass { let Name = "InvCondCodeOp"; let RenderMethod = "addInvCondCodeOperands"; let PredicateMethod = "isCondCode"; let ParserMethod = "ParseCondCodeOperand"; let DiagnosticType = "CondCode"; } def inv_cond_code_op : Operand { let ParserMatchClass = inv_cond_code_op_asmoperand; } // Having a separate operand for the selectable use-case is debatable, but gives // consistency with cond_code. def inv_cond_XFORM : SDNodeXForm(N->getZExtValue()); return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32); }]>; def inv_cond_code : ImmLeaf= 0 && Imm <= 15; }], inv_cond_XFORM>; multiclass A64I_condselSizes op2, string asmop, SDPatternOperator select> { let Uses = [NZCV] in { def wwwc : A64I_condsel<0b0, op, 0b0, op2, (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"), [(set i32:$Rd, (select i32:$Rn, i32:$Rm))], NoItinerary>; def xxxc : A64I_condsel<0b1, op, 0b0, op2, (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"), [(set i64:$Rd, (select i64:$Rn, i64:$Rm))], NoItinerary>; } } def simple_select : PatFrag<(ops node:$lhs, node:$rhs), (A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>; class complex_select : PatFrag<(ops node:$lhs, node:$rhs), (A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>; defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>; defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc", complex_select>>; defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select>; defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select>; // Now the instruction aliases, which fit nicely into LLVM's model: def : InstAlias<"cset $Rd, $Cond", (CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>; def : InstAlias<"cset $Rd, $Cond", (CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>; def : InstAlias<"csetm $Rd, $Cond", (CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>; def : InstAlias<"csetm $Rd, $Cond", (CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>; def : InstAlias<"cinc $Rd, $Rn, $Cond", (CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; def : InstAlias<"cinc $Rd, $Rn, $Cond", (CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; def : InstAlias<"cinv $Rd, $Rn, $Cond", (CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; def : InstAlias<"cinv $Rd, $Rn, $Cond", (CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; def : InstAlias<"cneg $Rd, $Rn, $Cond", (CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; def : InstAlias<"cneg $Rd, $Rn, $Cond", (CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; // Finally some helper patterns. // For CSET (a.k.a. zero-extension of icmp) def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond), (CSINCwwwc WZR, WZR, cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond), (CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond), (CSINCxxxc XZR, XZR, cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond), (CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>; // For CSETM (a.k.a. sign-extension of icmp) def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond), (CSINVwwwc WZR, WZR, cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond), (CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond), (CSINVxxxc XZR, XZR, cond_code:$Cond)>; def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond), (CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>; // CINC, CINV and CNEG get dealt with automatically, which leaves the issue of // commutativity. The instructions are to complex for isCommutable to be used, // so we have to create the patterns manually: // No commutable pattern for CSEL since the commuted version is isomorphic. // CSINC def :Pat<(A64select_cc NZCV, (add i32:$Rm, 1), i32:$Rn, inv_cond_code:$Cond), (CSINCwwwc $Rn, $Rm, inv_cond_code:$Cond)>; def :Pat<(A64select_cc NZCV, (add i64:$Rm, 1), i64:$Rn, inv_cond_code:$Cond), (CSINCxxxc $Rn, $Rm, inv_cond_code:$Cond)>; // CSINV def :Pat<(A64select_cc NZCV, (not i32:$Rm), i32:$Rn, inv_cond_code:$Cond), (CSINVwwwc $Rn, $Rm, inv_cond_code:$Cond)>; def :Pat<(A64select_cc NZCV, (not i64:$Rm), i64:$Rn, inv_cond_code:$Cond), (CSINVxxxc $Rn, $Rm, inv_cond_code:$Cond)>; // CSNEG def :Pat<(A64select_cc NZCV, (ineg i32:$Rm), i32:$Rn, inv_cond_code:$Cond), (CSNEGwwwc $Rn, $Rm, inv_cond_code:$Cond)>; def :Pat<(A64select_cc NZCV, (ineg i64:$Rm), i64:$Rn, inv_cond_code:$Cond), (CSNEGxxxc $Rn, $Rm, inv_cond_code:$Cond)>; //===----------------------------------------------------------------------===// // Data Processing (1 source) instructions //===----------------------------------------------------------------------===// // Contains: RBIT, REV16, REV, REV32, CLZ, CLS. // We define an unary operator which always fails. We will use this to // define unary operators that cannot be matched. class A64I_dp_1src_impl opcode, string asmop, list patterns, RegisterClass GPRrc, InstrItinClass itin>: A64I_dp_1src; multiclass A64I_dp_1src opcode, string asmop> { let hasSideEffects = 0 in { def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>; def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>; } } defm RBIT : A64I_dp_1src<0b000000, "rbit">; defm CLS : A64I_dp_1src<0b000101, "cls">; defm CLZ : A64I_dp_1src<0b000100, "clz">; def : Pat<(ctlz i32:$Rn), (CLZww $Rn)>; def : Pat<(ctlz i64:$Rn), (CLZxx $Rn)>; def : Pat<(ctlz_zero_undef i32:$Rn), (CLZww $Rn)>; def : Pat<(ctlz_zero_undef i64:$Rn), (CLZxx $Rn)>; def : Pat<(cttz i32:$Rn), (CLZww (RBITww $Rn))>; def : Pat<(cttz i64:$Rn), (CLZxx (RBITxx $Rn))>; def : Pat<(cttz_zero_undef i32:$Rn), (CLZww (RBITww $Rn))>; def : Pat<(cttz_zero_undef i64:$Rn), (CLZxx (RBITxx $Rn))>; def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev", [(set i32:$Rd, (bswap i32:$Rn))], GPR32, NoItinerary>; def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev", [(set i64:$Rd, (bswap i64:$Rn))], GPR64, NoItinerary>; def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32", [(set i64:$Rd, (bswap (rotr i64:$Rn, (i64 32))))], GPR64, NoItinerary>; def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16", [(set i32:$Rd, (bswap (rotr i32:$Rn, (i64 16))))], GPR32, NoItinerary>; def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>; //===----------------------------------------------------------------------===// // Data Processing (2 sources) instructions //===----------------------------------------------------------------------===// // Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL, // LSR, ASR, ROR class dp_2src_impl opcode, string asmop, list patterns, RegisterClass GPRsp, InstrItinClass itin>: A64I_dp_2src; multiclass dp_2src_crc { def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0}, !strconcat(asmop, "b"), [], GPR32, NoItinerary>; def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1}, !strconcat(asmop, "h"), [], GPR32, NoItinerary>; def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0}, !strconcat(asmop, "w"), [], GPR32, NoItinerary>; def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0, !strconcat(asmop, "x\t$Rd, $Rn, $Rm"), (outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [], NoItinerary>; } multiclass dp_2src_zext opcode, string asmop, SDPatternOperator op> { def www : dp_2src_impl<0b0, opcode, asmop, [(set i32:$Rd, (op i32:$Rn, (i64 (zext i32:$Rm))))], GPR32, NoItinerary>; def xxx : dp_2src_impl<0b1, opcode, asmop, [(set i64:$Rd, (op i64:$Rn, i64:$Rm))], GPR64, NoItinerary>; } multiclass dp_2src opcode, string asmop, SDPatternOperator op> { def www : dp_2src_impl<0b0, opcode, asmop, [(set i32:$Rd, (op i32:$Rn, i32:$Rm))], GPR32, NoItinerary>; def xxx : dp_2src_impl<0b1, opcode, asmop, [(set i64:$Rd, (op i64:$Rn, i64:$Rm))], GPR64, NoItinerary>; } // Here we define the data processing 2 source instructions. defm CRC32 : dp_2src_crc<0b0, "crc32">; defm CRC32C : dp_2src_crc<0b1, "crc32c">; defm UDIV : dp_2src<0b000010, "udiv", udiv>; defm SDIV : dp_2src<0b000011, "sdiv", sdiv>; defm LSLV : dp_2src_zext<0b001000, "lsl", shl>; defm LSRV : dp_2src_zext<0b001001, "lsr", srl>; defm ASRV : dp_2src_zext<0b001010, "asr", sra>; defm RORV : dp_2src_zext<0b001011, "ror", rotr>; // Extra patterns for an incoming 64-bit value for a 32-bit // operation. Since the LLVM operations are undefined (as in C) if the // RHS is out of range, it's perfectly permissible to discard the high // bits of the GPR64. def : Pat<(shl i32:$Rn, i64:$Rm), (LSLVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>; def : Pat<(srl i32:$Rn, i64:$Rm), (LSRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>; def : Pat<(sra i32:$Rn, i64:$Rm), (ASRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>; def : Pat<(rotr i32:$Rn, i64:$Rm), (RORVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>; // Here we define the aliases for the data processing 2 source instructions. def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">; def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">; def ASR_menmonic : MnemonicAlias<"asrv", "asr">; def ROR_menmonic : MnemonicAlias<"rorv", "ror">; //===----------------------------------------------------------------------===// // Data Processing (3 sources) instructions //===----------------------------------------------------------------------===// // Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH // + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL class A64I_dp3_4operand opcode, RegisterClass AccReg, ValueType AccTy, RegisterClass SrcReg, string asmop, dag pattern> : A64I_dp3 { RegisterClass AccGPR = AccReg; RegisterClass SrcGPR = SrcReg; } def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, i32, GPR32, "madd", (add i32:$Ra, (mul i32:$Rn, i32:$Rm))>; def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, i64, GPR64, "madd", (add i64:$Ra, (mul i64:$Rn, i64:$Rm))>; def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, i32, GPR32, "msub", (sub i32:$Ra, (mul i32:$Rn, i32:$Rm))>; def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, i64, GPR64, "msub", (sub i64:$Ra, (mul i64:$Rn, i64:$Rm))>; def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, i64, GPR32, "smaddl", (add i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>; def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, i64, GPR32, "smsubl", (sub i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>; def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, i64, GPR32, "umaddl", (add i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>; def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, i64, GPR32, "umsubl", (sub i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>; let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in { def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), "umulh\t$Rd, $Rn, $Rm", [(set i64:$Rd, (mulhu i64:$Rn, i64:$Rm))], NoItinerary>; def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), "smulh\t$Rd, $Rn, $Rm", [(set i64:$Rd, (mulhs i64:$Rn, i64:$Rm))], NoItinerary>; } multiclass A64I_dp3_3operand { def : InstAlias; def : Pat; } defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul i32:$Rn, i32:$Rm)>; defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul i64:$Rn, i64:$Rm)>; defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR, (sub 0, (mul i32:$Rn, i32:$Rm))>; defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR, (sub 0, (mul i64:$Rn, i64:$Rm))>; defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm))>; defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR, (sub 0, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>; defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm))>; defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR, (sub 0, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>; //===----------------------------------------------------------------------===// // Exception generation //===----------------------------------------------------------------------===// // Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3 def uimm16_asmoperand : AsmOperandClass { let Name = "UImm16"; let PredicateMethod = "isUImm<16>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm16"; } def uimm16 : Operand { let ParserMatchClass = uimm16_asmoperand; } class A64I_exceptImpl opc, bits<2> ll, string asmop> : A64I_exception { let isBranch = 1; let isTerminator = 1; } def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">; def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">; def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">; def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">; def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">; def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">; def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">; def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">; // The immediate is optional for the DCPS instructions, defaulting to 0. def : InstAlias<"dcps1", (DCPS1i 0)>; def : InstAlias<"dcps2", (DCPS2i 0)>; def : InstAlias<"dcps3", (DCPS3i 0)>; //===----------------------------------------------------------------------===// // Extract (immediate) //===----------------------------------------------------------------------===// // Contains: EXTR + alias ROR def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0, (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB), "extr\t$Rd, $Rn, $Rm, $LSB", [(set i32:$Rd, (A64Extr i32:$Rn, i32:$Rm, imm:$LSB))], NoItinerary>; def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1, (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB), "extr\t$Rd, $Rn, $Rm, $LSB", [(set i64:$Rd, (A64Extr i64:$Rn, i64:$Rm, imm:$LSB))], NoItinerary>; def : InstAlias<"ror $Rd, $Rs, $LSB", (EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>; def : InstAlias<"ror $Rd, $Rs, $LSB", (EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>; def : Pat<(rotr i32:$Rn, bitfield32_imm:$LSB), (EXTRwwwi $Rn, $Rn, bitfield32_imm:$LSB)>; def : Pat<(rotr i64:$Rn, bitfield64_imm:$LSB), (EXTRxxxi $Rn, $Rn, bitfield64_imm:$LSB)>; //===----------------------------------------------------------------------===// // Floating-point compare instructions //===----------------------------------------------------------------------===// // Contains: FCMP, FCMPE def fpzero_asmoperand : AsmOperandClass { let Name = "FPZero"; let ParserMethod = "ParseFPImmOperand"; let DiagnosticType = "FPZero"; } def fpz32 : Operand, ComplexPattern { let ParserMatchClass = fpzero_asmoperand; let PrintMethod = "printFPZeroOperand"; let DecoderMethod = "DecodeFPZeroOperand"; } def fpz64 : Operand, ComplexPattern { let ParserMatchClass = fpzero_asmoperand; let PrintMethod = "printFPZeroOperand"; let DecoderMethod = "DecodeFPZeroOperand"; } multiclass A64I_fpcmpSignal type, bit imm, dag ins, dag pattern> { def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0}, (outs), ins, "fcmp\t$Rn, $Rm", [pattern], NoItinerary> { let Defs = [NZCV]; } def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0}, (outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary> { let Defs = [NZCV]; } } defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm), (set NZCV, (A64cmp f32:$Rn, f32:$Rm))>; defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm), (set NZCV, (A64cmp f64:$Rn, f64:$Rm))>; // What would be Rm should be written as 0; note that even though it's called // "$Rm" here to fit in with the InstrFormats, it's actually an immediate. defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm), (set NZCV, (A64cmp f32:$Rn, fpz32:$Rm))>; defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm), (set NZCV, (A64cmp f64:$Rn, fpz64:$Rm))>; //===----------------------------------------------------------------------===// // Floating-point conditional compare instructions //===----------------------------------------------------------------------===// // Contains: FCCMP, FCCMPE class A64I_fpccmpImpl type, bit op, RegisterClass FPR, string asmop> : A64I_fpccmp<0b0, 0b0, type, op, (outs), (ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond), !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"), [], NoItinerary> { let Defs = [NZCV]; } def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">; def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">; def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">; def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">; //===----------------------------------------------------------------------===// // Floating-point conditional select instructions //===----------------------------------------------------------------------===// // Contains: FCSEL let Uses = [NZCV] in { def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd), (ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond), "fcsel\t$Rd, $Rn, $Rm, $Cond", [(set f32:$Rd, (simple_select f32:$Rn, f32:$Rm))], NoItinerary>; def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd), (ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond), "fcsel\t$Rd, $Rn, $Rm, $Cond", [(set f64:$Rd, (simple_select f64:$Rn, f64:$Rm))], NoItinerary>; } //===----------------------------------------------------------------------===// // Floating-point data-processing (1 source) //===----------------------------------------------------------------------===// // Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI]. def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val), [{ (void)N; return false; }]>; // First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d" // syntax. Default to no pattern because most are odd enough not to have one. multiclass A64I_fpdp1sizes opcode, string asmstr, SDPatternOperator opnode = FPNoUnop> { def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn), !strconcat(asmstr, "\t$Rd, $Rn"), [(set f32:$Rd, (opnode f32:$Rn))], NoItinerary>; def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn), !strconcat(asmstr, "\t$Rd, $Rn"), [(set f64:$Rd, (opnode f64:$Rn))], NoItinerary>; } defm FMOV : A64I_fpdp1sizes<0b000000, "fmov">; defm FABS : A64I_fpdp1sizes<0b000001, "fabs", fabs>; defm FNEG : A64I_fpdp1sizes<0b000010, "fneg", fneg>; defm FSQRT : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>; defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">; defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>; defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>; defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>; defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">; defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>; defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>; // The FCVT instrucitons have different source and destination register-types, // but the fields are uniform everywhere a D-register (say) crops up. Package // this information in a Record. class FCVTRegType fld, ValueType vt> { RegisterClass Class = rc; ValueType VT = vt; bit t1 = fld{1}; bit t0 = fld{0}; } def FCVT16 : FCVTRegType; def FCVT32 : FCVTRegType; def FCVT64 : FCVTRegType; class A64I_fpdp1_fcvt : A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0}, {0,0,0,1, DestReg.t1, DestReg.t0}, (outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn), "fcvt\t$Rd, $Rn", [(set DestReg.VT:$Rd, (opnode SrcReg.VT:$Rn))], NoItinerary>; def FCVTds : A64I_fpdp1_fcvt; def FCVThs : A64I_fpdp1_fcvt; def FCVTsd : A64I_fpdp1_fcvt; def FCVThd : A64I_fpdp1_fcvt; def FCVTsh : A64I_fpdp1_fcvt; def FCVTdh : A64I_fpdp1_fcvt; //===----------------------------------------------------------------------===// // Floating-point data-processing (2 sources) instructions //===----------------------------------------------------------------------===// // Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs), [{ (void)N; return false; }]>; multiclass A64I_fpdp2sizes opcode, string asmstr, SDPatternOperator opnode> { def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn, FPR32:$Rm), !strconcat(asmstr, "\t$Rd, $Rn, $Rm"), [(set f32:$Rd, (opnode f32:$Rn, f32:$Rm))], NoItinerary>; def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn, FPR64:$Rm), !strconcat(asmstr, "\t$Rd, $Rn, $Rm"), [(set f64:$Rd, (opnode f64:$Rn, f64:$Rm))], NoItinerary>; } let isCommutable = 1 in { defm FMUL : A64I_fpdp2sizes<0b0000, "fmul", fmul>; defm FADD : A64I_fpdp2sizes<0b0010, "fadd", fadd>; // No patterns for these. defm FMAX : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>; defm FMIN : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>; defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>; defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>; defm FNMUL : A64I_fpdp2sizes<0b1000, "fnmul", PatFrag<(ops node:$lhs, node:$rhs), (fneg (fmul node:$lhs, node:$rhs))> >; } defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>; defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>; //===----------------------------------------------------------------------===// // Floating-point data-processing (3 sources) instructions //===----------------------------------------------------------------------===// // Contains: FMADD, FMSUB, FNMADD, FNMSUB def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), (fma (fneg node:$Rn), node:$Rm, node:$Ra)>; def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), (fma node:$Rn, node:$Rm, (fneg node:$Ra))>; def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), (fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra))>; class A64I_fpdp3Impl type, bit o1, bit o0, SDPatternOperator fmakind> : A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd), (ins FPR:$Rn, FPR:$Rm, FPR:$Ra), !strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"), [(set VT:$Rd, (fmakind VT:$Rn, VT:$Rm, VT:$Ra))], NoItinerary>; def FMADDssss : A64I_fpdp3Impl<"fmadd", FPR32, f32, 0b00, 0b0, 0b0, fma>; def FMSUBssss : A64I_fpdp3Impl<"fmsub", FPR32, f32, 0b00, 0b0, 0b1, fmsub>; def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>; def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>; def FMADDdddd : A64I_fpdp3Impl<"fmadd", FPR64, f64, 0b01, 0b0, 0b0, fma>; def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>; def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>; def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>; //===----------------------------------------------------------------------===// // Floating-point <-> fixed-point conversion instructions //===----------------------------------------------------------------------===// // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF // #1-#32 allowed, encoded as "64 - def fixedpos_asmoperand_i32 : AsmOperandClass { let Name = "CVTFixedPos32"; let RenderMethod = "addCVTFixedPosOperands"; let PredicateMethod = "isCVTFixedPos<32>"; let DiagnosticType = "CVTFixedPos32"; } // Also encoded as "64 - " but #1-#64 allowed. def fixedpos_asmoperand_i64 : AsmOperandClass { let Name = "CVTFixedPos64"; let RenderMethod = "addCVTFixedPosOperands"; let PredicateMethod = "isCVTFixedPos<64>"; let DiagnosticType = "CVTFixedPos64"; } // We need the cartesian product of f32/f64 i32/i64 operands for // conversions: // + Selection needs to use operands of correct floating type // + Assembly parsing and decoding depend on integer width class cvtfix_i32_op : Operand, ComplexPattern", [fpimm]> { let ParserMatchClass = fixedpos_asmoperand_i32; let DecoderMethod = "DecodeCVT32FixedPosOperand"; let PrintMethod = "printCVTFixedPosOperand"; } class cvtfix_i64_op : Operand, ComplexPattern", [fpimm]> { let ParserMatchClass = fixedpos_asmoperand_i64; let PrintMethod = "printCVTFixedPosOperand"; } // Because of the proliferation of weird operands, it's not really // worth going for a multiclass here. Oh well. class A64I_fptofix type, bits<3> opcode, RegisterClass GPR, RegisterClass FPR, ValueType DstTy, ValueType SrcTy, Operand scale_op, string asmop, SDNode cvtop> : A64I_fpfixed; def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, i32, f32, cvtfix_i32_op, "fcvtzs", fp_to_sint>; def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, i64, f32, cvtfix_i64_op, "fcvtzs", fp_to_sint>; def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, i32, f32, cvtfix_i32_op, "fcvtzu", fp_to_uint>; def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, i64, f32, cvtfix_i64_op, "fcvtzu", fp_to_uint>; def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, i32, f64, cvtfix_i32_op, "fcvtzs", fp_to_sint>; def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, i64, f64, cvtfix_i64_op, "fcvtzs", fp_to_sint>; def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, i32, f64, cvtfix_i32_op, "fcvtzu", fp_to_uint>; def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, i64, f64, cvtfix_i64_op, "fcvtzu", fp_to_uint>; class A64I_fixtofp type, bits<3> opcode, RegisterClass FPR, RegisterClass GPR, ValueType DstTy, ValueType SrcTy, Operand scale_op, string asmop, SDNode cvtop> : A64I_fpfixed; def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, f32, i32, cvtfix_i32_op, "scvtf", sint_to_fp>; def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, f32, i64, cvtfix_i64_op, "scvtf", sint_to_fp>; def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, f32, i32, cvtfix_i32_op, "ucvtf", uint_to_fp>; def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, f32, i64, cvtfix_i64_op, "ucvtf", uint_to_fp>; def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, f64, i32, cvtfix_i32_op, "scvtf", sint_to_fp>; def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, f64, i64, cvtfix_i64_op, "scvtf", sint_to_fp>; def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, f64, i32, cvtfix_i32_op, "ucvtf", uint_to_fp>; def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, f64, i64, cvtfix_i64_op, "ucvtf", uint_to_fp>; //===----------------------------------------------------------------------===// // Floating-point <-> integer conversion instructions //===----------------------------------------------------------------------===// // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF class A64I_fpintI type, bits<2> rmode, bits<3> opcode, RegisterClass DestPR, RegisterClass SrcPR, string asmop> : A64I_fpint; multiclass A64I_fptointRM rmode, bit o2, string asmop> { def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0}, GPR32, FPR32, asmop # "s">; def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0}, GPR64, FPR32, asmop # "s">; def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1}, GPR32, FPR32, asmop # "u">; def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1}, GPR64, FPR32, asmop # "u">; def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0}, GPR32, FPR64, asmop # "s">; def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0}, GPR64, FPR64, asmop # "s">; def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1}, GPR32, FPR64, asmop # "u">; def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1}, GPR64, FPR64, asmop # "u">; } defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">; defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">; defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">; defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">; defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">; def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>; def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>; def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>; def : Pat<(i64 (fp_to_uint f32:$Rn)), (FCVTZUxs $Rn)>; def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>; def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>; def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>; def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>; multiclass A64I_inttofp { def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>; def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>; def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>; def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>; } defm S : A64I_inttofp<0b0, "scvtf">; defm U : A64I_inttofp<0b1, "ucvtf">; def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>; def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>; def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>; def : Pat<(f64 (sint_to_fp i64:$Rn)), (SCVTFdx $Rn)>; def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>; def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>; def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>; def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>; def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">; def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">; def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">; def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">; def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>; def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>; def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>; def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>; def lane1_asmoperand : AsmOperandClass { let Name = "Lane1"; let RenderMethod = "addImmOperands"; let DiagnosticType = "Lane1"; } def lane1 : Operand { let ParserMatchClass = lane1_asmoperand; let PrintMethod = "printBareImmOperand"; } let DecoderMethod = "DecodeFMOVLaneInstruction" in { def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110, (outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane), "fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>; def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111, (outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane), "fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>; } def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]", (FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>; def : InstAlias<"fmov $Rd.2d[$Lane], $Rn", (FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>; //===----------------------------------------------------------------------===// // Floating-point immediate instructions //===----------------------------------------------------------------------===// // Contains: FMOV def fpimm_asmoperand : AsmOperandClass { let Name = "FMOVImm"; let ParserMethod = "ParseFPImmOperand"; let DiagnosticType = "FPImm"; } // The MCOperand for these instructions are the encoded 8-bit values. def SDXF_fpimm : SDNodeXFormgetValueAPF(), Imm8); return CurDAG->getTargetConstant(Imm8, MVT::i32); }]>; class fmov_operand : Operand, PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }], SDXF_fpimm> { let PrintMethod = "printFPImmOperand"; let ParserMatchClass = fpimm_asmoperand; } def fmov32_operand : fmov_operand; def fmov64_operand : fmov_operand; class A64I_fpimm_impl type, RegisterClass Reg, ValueType VT, Operand fmov_operand> : A64I_fpimm<0b0, 0b0, type, 0b00000, (outs Reg:$Rd), (ins fmov_operand:$Imm8), "fmov\t$Rd, $Imm8", [(set VT:$Rd, fmov_operand:$Imm8)], NoItinerary>; def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>; def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>; //===----------------------------------------------------------------------===// // Load-register (literal) instructions //===----------------------------------------------------------------------===// // Contains: LDR, LDRSW, PRFM def ldrlit_label_asmoperand : AsmOperandClass { let Name = "LoadLitLabel"; let RenderMethod = "addLabelOperands<19, 4>"; let DiagnosticType = "Label"; } def ldrlit_label : Operand { let EncoderMethod = "getLoadLitLabelOpValue"; // This label is a 19-bit offset from PC, scaled by the instruction-width: 4. let PrintMethod = "printLabelOperand<19, 4>"; let ParserMatchClass = ldrlit_label_asmoperand; let OperandType = "OPERAND_PCREL"; } // Various instructions take an immediate value (which can always be used), // where some numbers have a symbolic name to make things easier. These operands // and the associated functions abstract away the differences. multiclass namedimm { def _asmoperand : AsmOperandClass { let Name = "NamedImm" # prefix; let PredicateMethod = "isUImm"; let RenderMethod = "addImmOperands"; let ParserMethod = "ParseNamedImmOperand<" # mapper # ">"; let DiagnosticType = "NamedImm_" # prefix; } def _op : Operand { let ParserMatchClass = !cast(prefix # "_asmoperand"); let PrintMethod = "printNamedImmOperand<" # mapper # ">"; let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">"; } } defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">; class A64I_LDRlitSimple opc, bit v, RegisterClass OutReg, list patterns = []> : A64I_LDRlit; let mayLoad = 1 in { def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>; def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>; } def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>; def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>; let mayLoad = 1 in { def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>; def LDRSWx_lit : A64I_LDRlit<0b10, 0b0, (outs GPR64:$Rt), (ins ldrlit_label:$Imm19), "ldrsw\t$Rt, $Imm19", [], NoItinerary>; def PRFM_lit : A64I_LDRlit<0b11, 0b0, (outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19), "prfm\t$Rt, $Imm19", [], NoItinerary>; } //===----------------------------------------------------------------------===// // Load-store exclusive instructions //===----------------------------------------------------------------------===// // Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB, // STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB, // STLRH, STLR, LDARB, LDARH, LDAR // Since these instructions have the undefined register bits set to 1 in // their canonical form, we need a post encoder method to set those bits // to 1 when encoding these instructions. We do this using the // fixLoadStoreExclusive function. This function has template parameters: // // fixLoadStoreExclusive // // hasRs indicates that the instruction uses the Rs field, so we won't set // it to 1 (and the same for Rt2). We don't need template parameters for // the other register fiels since Rt and Rn are always used. // This operand parses a GPR64xsp register, followed by an optional immediate // #0. def GPR64xsp0_asmoperand : AsmOperandClass { let Name = "GPR64xsp0"; let PredicateMethod = "isWrappedReg"; let RenderMethod = "addRegOperands"; let ParserMethod = "ParseLSXAddressOperand"; // Diagnostics are provided by ParserMethod } def GPR64xsp0 : RegisterOperand { let ParserMatchClass = GPR64xsp0_asmoperand; } //===---------------------------------- // Store-exclusive (releasing & normal) //===---------------------------------- class A64I_SRexs_impl size, bits<3> opcode, string asm, dag outs, dag ins, list pat, InstrItinClass itin> : A64I_LDSTex_stn { let mayStore = 1; let PostEncoderMethod = "fixLoadStoreExclusive<1,0>"; } multiclass A64I_SRex opcode, string prefix> { def _byte: A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"), (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [], NoItinerary>; def _hword: A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"), (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [],NoItinerary>; def _word: A64I_SRexs_impl<0b10, opcode, asmstr, (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [], NoItinerary>; def _dword: A64I_SRexs_impl<0b11, opcode, asmstr, (outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn), [], NoItinerary>; } defm STXR : A64I_SRex<"stxr", 0b000, "STXR">; defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">; //===---------------------------------- // Loads //===---------------------------------- class A64I_LRexs_impl size, bits<3> opcode, string asm, dag outs, dag ins, list pat, InstrItinClass itin> : A64I_LDSTex_tn { let mayLoad = 1; let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; } multiclass A64I_LRex opcode> { def _byte: A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"), (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), [], NoItinerary>; def _hword: A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"), (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), [], NoItinerary>; def _word: A64I_LRexs_impl<0b10, opcode, asmstr, (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), [], NoItinerary>; def _dword: A64I_LRexs_impl<0b11, opcode, asmstr, (outs GPR64:$Rt), (ins GPR64xsp0:$Rn), [], NoItinerary>; } defm LDXR : A64I_LRex<"ldxr", 0b000>; defm LDAXR : A64I_LRex<"ldaxr", 0b001>; defm LDAR : A64I_LRex<"ldar", 0b101>; class acquiring_load : PatFrag<(ops node:$ptr), (base node:$ptr), [{ AtomicOrdering Ordering = cast(N)->getOrdering(); return Ordering == Acquire || Ordering == SequentiallyConsistent; }]>; def atomic_load_acquire_8 : acquiring_load; def atomic_load_acquire_16 : acquiring_load; def atomic_load_acquire_32 : acquiring_load; def atomic_load_acquire_64 : acquiring_load; def : Pat<(atomic_load_acquire_8 i64:$Rn), (LDAR_byte $Rn)>; def : Pat<(atomic_load_acquire_16 i64:$Rn), (LDAR_hword $Rn)>; def : Pat<(atomic_load_acquire_32 i64:$Rn), (LDAR_word $Rn)>; def : Pat<(atomic_load_acquire_64 i64:$Rn), (LDAR_dword $Rn)>; //===---------------------------------- // Store-release (no exclusivity) //===---------------------------------- class A64I_SLexs_impl size, bits<3> opcode, string asm, dag outs, dag ins, list pat, InstrItinClass itin> : A64I_LDSTex_tn { let mayStore = 1; let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; } class releasing_store : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ AtomicOrdering Ordering = cast(N)->getOrdering(); return Ordering == Release || Ordering == SequentiallyConsistent; }]>; def atomic_store_release_8 : releasing_store; def atomic_store_release_16 : releasing_store; def atomic_store_release_32 : releasing_store; def atomic_store_release_64 : releasing_store; multiclass A64I_SLex opcode, string prefix> { def _byte: A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"), (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [(atomic_store_release_8 i64:$Rn, i32:$Rt)], NoItinerary>; def _hword: A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"), (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [(atomic_store_release_16 i64:$Rn, i32:$Rt)], NoItinerary>; def _word: A64I_SLexs_impl<0b10, opcode, asmstr, (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), [(atomic_store_release_32 i64:$Rn, i32:$Rt)], NoItinerary>; def _dword: A64I_SLexs_impl<0b11, opcode, asmstr, (outs), (ins GPR64:$Rt, GPR64xsp0:$Rn), [(atomic_store_release_64 i64:$Rn, i64:$Rt)], NoItinerary>; } defm STLR : A64I_SLex<"stlr", 0b101, "STLR">; //===---------------------------------- // Store-exclusive pair (releasing & normal) //===---------------------------------- class A64I_SPexs_impl size, bits<3> opcode, string asm, dag outs, dag ins, list pat, InstrItinClass itin> : A64I_LDSTex_stt2n { let mayStore = 1; } multiclass A64I_SPex opcode> { def _word: A64I_SPexs_impl<0b10, opcode, asmstr, (outs), (ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2, GPR64xsp0:$Rn), [], NoItinerary>; def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs), (ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2, GPR64xsp0:$Rn), [], NoItinerary>; } defm STXP : A64I_SPex<"stxp", 0b010>; defm STLXP : A64I_SPex<"stlxp", 0b011>; //===---------------------------------- // Load-exclusive pair (acquiring & normal) //===---------------------------------- class A64I_LPexs_impl size, bits<3> opcode, string asm, dag outs, dag ins, list pat, InstrItinClass itin> : A64I_LDSTex_tt2n { let mayLoad = 1; let DecoderMethod = "DecodeLoadPairExclusiveInstruction"; let PostEncoderMethod = "fixLoadStoreExclusive<0,1>"; } multiclass A64I_LPex opcode> { def _word: A64I_LPexs_impl<0b10, opcode, asmstr, (outs GPR32:$Rt, GPR32:$Rt2), (ins GPR64xsp0:$Rn), [], NoItinerary>; def _dword: A64I_LPexs_impl<0b11, opcode, asmstr, (outs GPR64:$Rt, GPR64:$Rt2), (ins GPR64xsp0:$Rn), [], NoItinerary>; } defm LDXP : A64I_LPex<"ldxp", 0b010>; defm LDAXP : A64I_LPex<"ldaxp", 0b011>; //===----------------------------------------------------------------------===// // Load-store register (unscaled immediate) instructions //===----------------------------------------------------------------------===// // Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM // // and // //===----------------------------------------------------------------------===// // Load-store register (register offset) instructions //===----------------------------------------------------------------------===// // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM // // and // //===----------------------------------------------------------------------===// // Load-store register (unsigned immediate) instructions //===----------------------------------------------------------------------===// // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM // // and // //===----------------------------------------------------------------------===// // Load-store register (immediate post-indexed) instructions //===----------------------------------------------------------------------===// // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW // // and // //===----------------------------------------------------------------------===// // Load-store register (immediate pre-indexed) instructions //===----------------------------------------------------------------------===// // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW // Note that patterns are much later on in a completely separate section (they // need ADRPxi to be defined). //===------------------------------- // 1. Various operands needed //===------------------------------- //===------------------------------- // 1.1 Unsigned 12-bit immediate operands //===------------------------------- // The addressing mode for these instructions consists of an unsigned 12-bit // immediate which is scaled by the size of the memory access. // // We represent this in the MC layer by two operands: // 1. A base register. // 2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]" // would have '1' in this field. // This means that separate functions are needed for converting representations // which *are* aware of the intended access size. // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to // know the access size via some means. An isolated operand does not have this // information unless told from here, which means we need separate tablegen // Operands for each access size. This multiclass takes care of instantiating // the correct template functions in the rest of the backend. //===------------------------------- // 1.1 Unsigned 12-bit immediate operands //===------------------------------- multiclass offsets_uimm12 { def uimm12_asmoperand : AsmOperandClass { let Name = "OffsetUImm12_" # MemSize; let PredicateMethod = "isOffsetUImm12<" # MemSize # ">"; let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">"; let DiagnosticType = "LoadStoreUImm12_" # MemSize; } // Pattern is really no more than an ImmLeaf, but predicated on MemSize which // complicates things beyond TableGen's ken. def uimm12 : Operand, ComplexPattern"> { let ParserMatchClass = !cast(prefix # uimm12_asmoperand); let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">"; let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">"; } } defm byte_ : offsets_uimm12<1, "byte_">; defm hword_ : offsets_uimm12<2, "hword_">; defm word_ : offsets_uimm12<4, "word_">; defm dword_ : offsets_uimm12<8, "dword_">; defm qword_ : offsets_uimm12<16, "qword_">; //===------------------------------- // 1.1 Signed 9-bit immediate operands //===------------------------------- // The MCInst is expected to store the bit-wise encoding of the value, // which amounts to lopping off the extended sign bits. def SDXF_simm9 : SDNodeXFormgetTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32); }]>; def simm9_asmoperand : AsmOperandClass { let Name = "SImm9"; let PredicateMethod = "isSImm<9>"; let RenderMethod = "addSImmOperands<9>"; let DiagnosticType = "LoadStoreSImm9"; } def simm9 : Operand, ImmLeaf= -0x100 && Imm <= 0xff; }], SDXF_simm9> { let PrintMethod = "printOffsetSImm9Operand"; let ParserMatchClass = simm9_asmoperand; } //===------------------------------- // 1.3 Register offset extensions //===------------------------------- // The assembly-syntax for these addressing-modes is: // [, {, {}}] // // The essential semantics are: // + is a shift: # or #0 // + can be W or X. // + If is W, can be UXTW or SXTW // + If is X, can be LSL or SXTX // // The trickiest of those constraints is that Rm can be either GPR32 or GPR64, // which will need separate instructions for LLVM type-consistency. We'll also // need separate operands, of course. multiclass regexts { def regext_asmoperand : AsmOperandClass { let Name = "AddrRegExtend_" # MemSize # "_" # Rm; let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">"; let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">"; let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize; } def regext : Operand { let PrintMethod = "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">"; let DecoderMethod = "DecodeAddrRegExtendOperand"; let ParserMatchClass = !cast(prefix # regext_asmoperand); } } multiclass regexts_wx { // Rm is an X-register if LSL or SXTX are specified as the shift. defm Xm_ : regexts; // Rm is a W-register if UXTW or SXTW are specified as the shift. defm Wm_ : regexts; } defm byte_ : regexts_wx<1, "byte_">; defm hword_ : regexts_wx<2, "hword_">; defm word_ : regexts_wx<4, "word_">; defm dword_ : regexts_wx<8, "dword_">; defm qword_ : regexts_wx<16, "qword_">; //===------------------------------ // 2. The instructions themselves. //===------------------------------ // We have the following instructions to implement: // | | B | H | W | X | // |-----------------+-------+-------+-------+--------| // | unsigned str | STRB | STRH | STR | STR | // | unsigned ldr | LDRB | LDRH | LDR | LDR | // | signed ldr to W | LDRSB | LDRSH | - | - | // | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) | // This will instantiate the LDR/STR instructions you'd expect to use for an // unsigned datatype (first two rows above) or floating-point register, which is // reasonably uniform across all access sizes. //===------------------------------ // 2.1 Regular instructions //===------------------------------ // This class covers the basic unsigned or irrelevantly-signed loads and stores, // to general-purpose and floating-point registers. class AddrParams { Operand uimm12 = !cast(prefix # "_uimm12"); Operand regextWm = !cast(prefix # "_Wm_regext"); Operand regextXm = !cast(prefix # "_Xm_regext"); } def byte_addrparams : AddrParams<"byte">; def hword_addrparams : AddrParams<"hword">; def word_addrparams : AddrParams<"word">; def dword_addrparams : AddrParams<"dword">; def qword_addrparams : AddrParams<"qword">; multiclass A64I_LDRSTR_unsigned size, bit v, bit high_opc, string asmsuffix, RegisterClass GPR, AddrParams params> { // Unsigned immediate def _STR : A64I_LSunsigimm { let mayStore = 1; } def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>; def _LDR : A64I_LSunsigimm { let mayLoad = 1; } def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>; // Register offset (four of these: load/store and Wm/Xm). let mayLoad = 1 in { def _Wm_RegOffset_LDR : A64I_LSregoff; def _Xm_RegOffset_LDR : A64I_LSregoff; } def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]", (!cast(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; let mayStore = 1 in { def _Wm_RegOffset_STR : A64I_LSregoff; def _Xm_RegOffset_STR : A64I_LSregoff; } def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]", (!cast(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; // Unaligned immediate def _STUR : A64I_LSunalimm { let mayStore = 1; } def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>; def _LDUR : A64I_LSunalimm { let mayLoad = 1; } def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>; // Post-indexed def _PostInd_STR : A64I_LSpostind { let Constraints = "$Rn = $Rn_wb"; let mayStore = 1; // Decoder only needed for unpredictability checking (FIXME). let DecoderMethod = "DecodeSingleIndexedInstruction"; } def _PostInd_LDR : A64I_LSpostind { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } // Pre-indexed def _PreInd_STR : A64I_LSpreind { let Constraints = "$Rn = $Rn_wb"; let mayStore = 1; // Decoder only needed for unpredictability checking (FIXME). let DecoderMethod = "DecodeSingleIndexedInstruction"; } def _PreInd_LDR : A64I_LSpreind { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } } // STRB/LDRB: First define the instructions defm LS8 : A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>; // STRH/LDRH defm LS16 : A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>; // STR/LDR to/from a W register defm LS32 : A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>; // STR/LDR to/from an X register defm LS64 : A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>; // STR/LDR to/from a B register defm LSFP8 : A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>; // STR/LDR to/from an H register defm LSFP16 : A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>; // STR/LDR to/from an S register defm LSFP32 : A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>; // STR/LDR to/from a D register defm LSFP64 : A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>; // STR/LDR to/from a Q register defm LSFP128 : A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128, qword_addrparams>; //===------------------------------ // 2.3 Signed loads //===------------------------------ // Byte and half-word signed loads can both go into either an X or a W register, // so it's worth factoring out. Signed word loads don't fit because there is no // W version. multiclass A64I_LDR_signed size, string asmopcode, AddrParams params, string prefix> { // Unsigned offset def w : A64I_LSunsigimm { let mayLoad = 1; } def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]", (!cast(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>; def x : A64I_LSunsigimm { let mayLoad = 1; } def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]", (!cast(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>; // Register offset let mayLoad = 1 in { def w_Wm_RegOffset : A64I_LSregoff; def w_Xm_RegOffset : A64I_LSregoff; def x_Wm_RegOffset : A64I_LSregoff; def x_Xm_RegOffset : A64I_LSregoff; } def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]", (!cast(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]", (!cast(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; let mayLoad = 1 in { // Unaligned offset def w_U : A64I_LSunalimm; def x_U : A64I_LSunalimm; // Post-indexed def w_PostInd : A64I_LSpostind { let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } def x_PostInd : A64I_LSpostind { let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } // Pre-indexed def w_PreInd : A64I_LSpreind { let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } def x_PreInd : A64I_LSpreind { let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } } // let mayLoad = 1 } // LDRSB defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">; // LDRSH defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">; // LDRSW: load a 32-bit register, sign-extending to 64-bits. def LDRSWx : A64I_LSunsigimm<0b10, 0b0, 0b10, (outs GPR64:$Rt), (ins GPR64xsp:$Rn, word_uimm12:$UImm12), "ldrsw\t$Rt, [$Rn, $UImm12]", [], NoItinerary> { let mayLoad = 1; } def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; let mayLoad = 1 in { def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0, (outs GPR64:$Rt), (ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext), "ldrsw\t$Rt, [$Rn, $Rm, $Ext]", [], NoItinerary>; def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1, (outs GPR64:$Rt), (ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext), "ldrsw\t$Rt, [$Rn, $Rm, $Ext]", [], NoItinerary>; } def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]", (LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; def LDURSWx : A64I_LSunalimm<0b10, 0b0, 0b10, (outs GPR64:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9), "ldursw\t$Rt, [$Rn, $SImm9]", [], NoItinerary> { let mayLoad = 1; } def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; def LDRSWx_PostInd : A64I_LSpostind<0b10, 0b0, 0b10, (outs GPR64:$Rt, GPR64xsp:$Rn_wb), (ins GPR64xsp:$Rn, simm9:$SImm9), "ldrsw\t$Rt, [$Rn], $SImm9", [], NoItinerary> { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10, (outs GPR64:$Rt, GPR64xsp:$Rn_wb), (ins GPR64xsp:$Rn, simm9:$SImm9), "ldrsw\t$Rt, [$Rn, $SImm9]!", [], NoItinerary> { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeSingleIndexedInstruction"; } //===------------------------------ // 2.4 Prefetch operations //===------------------------------ def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs), (ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12), "prfm\t$Rt, [$Rn, $UImm12]", [], NoItinerary> { let mayLoad = 1; } def : InstAlias<"prfm $Rt, [$Rn]", (PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>; let mayLoad = 1 in { def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs), (ins prefetch_op:$Rt, GPR64xsp:$Rn, GPR32:$Rm, dword_Wm_regext:$Ext), "prfm\t$Rt, [$Rn, $Rm, $Ext]", [], NoItinerary>; def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs), (ins prefetch_op:$Rt, GPR64xsp:$Rn, GPR64:$Rm, dword_Xm_regext:$Ext), "prfm\t$Rt, [$Rn, $Rm, $Ext]", [], NoItinerary>; } def : InstAlias<"prfm $Rt, [$Rn, $Rm]", (PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs), (ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9), "prfum\t$Rt, [$Rn, $SImm9]", [], NoItinerary> { let mayLoad = 1; } def : InstAlias<"prfum $Rt, [$Rn]", (PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>; //===----------------------------------------------------------------------===// // Load-store register (unprivileged) instructions //===----------------------------------------------------------------------===// // Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH // These instructions very much mirror the "unscaled immediate" loads, but since // there are no floating-point variants we need to split them out into their own // section to avoid instantiation of "ldtr d0, [sp]" etc. multiclass A64I_LDTRSTTR size, string asmsuffix, RegisterClass GPR, string prefix> { def _UnPriv_STR : A64I_LSunpriv { let mayStore = 1; } def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>; def _UnPriv_LDR : A64I_LSunpriv { let mayLoad = 1; } def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]", (!cast(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>; } // STTRB/LDTRB: First define the instructions defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">; // STTRH/LDTRH defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">; // STTR/LDTR to/from a W register defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">; // STTR/LDTR to/from an X register defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">; // Now a class for the signed instructions that can go to either 32 or 64 // bits... multiclass A64I_LDTR_signed size, string asmopcode, string prefix> { let mayLoad = 1 in { def w : A64I_LSunpriv; def x : A64I_LSunpriv; } def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]", (!cast(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>; def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]", (!cast(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>; } // LDTRSB defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">; // LDTRSH defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">; // And finally LDTRSW which only goes to 64 bits. def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10, (outs GPR64:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9), "ldtrsw\t$Rt, [$Rn, $SImm9]", [], NoItinerary> { let mayLoad = 1; } def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; //===----------------------------------------------------------------------===// // Load-store register pair (offset) instructions //===----------------------------------------------------------------------===// // // and // //===----------------------------------------------------------------------===// // Load-store register pair (post-indexed) instructions //===----------------------------------------------------------------------===// // Contains: STP, LDP, LDPSW // // and // //===----------------------------------------------------------------------===// // Load-store register pair (pre-indexed) instructions //===----------------------------------------------------------------------===// // Contains: STP, LDP, LDPSW // // and // //===----------------------------------------------------------------------===// // Load-store non-temporal register pair (offset) instructions //===----------------------------------------------------------------------===// // Contains: STNP, LDNP // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to // know the access size via some means. An isolated operand does not have this // information unless told from here, which means we need separate tablegen // Operands for each access size. This multiclass takes care of instantiating // the correct template functions in the rest of the backend. multiclass offsets_simm7 { // The bare signed 7-bit immediate is used in post-indexed instructions, but // because of the scaling performed a generic "simm7" operand isn't // appropriate here either. def simm7_asmoperand : AsmOperandClass { let Name = "SImm7_Scaled" # MemSize; let PredicateMethod = "isSImm7Scaled<" # MemSize # ">"; let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">"; let DiagnosticType = "LoadStoreSImm7_" # MemSize; } def simm7 : Operand { let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">"; let ParserMatchClass = !cast(prefix # "simm7_asmoperand"); } } defm word_ : offsets_simm7<"4", "word_">; defm dword_ : offsets_simm7<"8", "dword_">; defm qword_ : offsets_simm7<"16", "qword_">; multiclass A64I_LSPsimple opc, bit v, RegisterClass SomeReg, Operand simm7, string prefix> { def _STR : A64I_LSPoffset { let mayStore = 1; let DecoderMethod = "DecodeLDSTPairInstruction"; } def : InstAlias<"stp $Rt, $Rt2, [$Rn]", (!cast(prefix # "_STR") SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; def _LDR : A64I_LSPoffset { let mayLoad = 1; let DecoderMethod = "DecodeLDSTPairInstruction"; } def : InstAlias<"ldp $Rt, $Rt2, [$Rn]", (!cast(prefix # "_LDR") SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; def _PostInd_STR : A64I_LSPpostind { let mayStore = 1; let Constraints = "$Rn = $Rn_wb"; // Decoder only needed for unpredictability checking (FIXME). let DecoderMethod = "DecodeLDSTPairInstruction"; } def _PostInd_LDR : A64I_LSPpostind { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeLDSTPairInstruction"; } def _PreInd_STR : A64I_LSPpreind { let mayStore = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeLDSTPairInstruction"; } def _PreInd_LDR : A64I_LSPpreind { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeLDSTPairInstruction"; } def _NonTemp_STR : A64I_LSPnontemp { let mayStore = 1; let DecoderMethod = "DecodeLDSTPairInstruction"; } def : InstAlias<"stnp $Rt, $Rt2, [$Rn]", (!cast(prefix # "_NonTemp_STR") SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; def _NonTemp_LDR : A64I_LSPnontemp { let mayLoad = 1; let DecoderMethod = "DecodeLDSTPairInstruction"; } def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]", (!cast(prefix # "_NonTemp_LDR") SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; } defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">; defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">; defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">; defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">; defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7, "LSFPPair128">; def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1, (outs GPR64:$Rt, GPR64:$Rt2), (ins GPR64xsp:$Rn, word_simm7:$SImm7), "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { let mayLoad = 1; let DecoderMethod = "DecodeLDSTPairInstruction"; } def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]", (LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>; def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1, (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb), (ins GPR64xsp:$Rn, word_simm7:$SImm7), "ldpsw\t$Rt, $Rt2, [$Rn], $SImm7", [], NoItinerary> { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeLDSTPairInstruction"; } def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1, (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb), (ins GPR64xsp:$Rn, word_simm7:$SImm7), "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!", [], NoItinerary> { let mayLoad = 1; let Constraints = "$Rn = $Rn_wb"; let DecoderMethod = "DecodeLDSTPairInstruction"; } //===----------------------------------------------------------------------===// // Logical (immediate) instructions //===----------------------------------------------------------------------===// // Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV multiclass logical_imm_operands { def _asmoperand : AsmOperandClass { let Name = "LogicalImm" # note # size; let PredicateMethod = "isLogicalImm" # note # "<" # size # ">"; let RenderMethod = "addLogicalImmOperands<" # size # ">"; let DiagnosticType = "LogicalSecondSource"; } def _operand : Operand, ComplexPattern { let ParserMatchClass = !cast(prefix # "_asmoperand"); let PrintMethod = "printLogicalImmOperand<" # size # ">"; let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">"; } } defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>; defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>; // The mov versions only differ in assembly parsing, where they // exclude values representable with either MOVZ or MOVN. defm logical_imm32_mov : logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>; defm logical_imm64_mov : logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>; multiclass A64I_logimmSizes opc, string asmop, SDNode opnode> { def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd), (ins GPR32:$Rn, logical_imm32_operand:$Imm), !strconcat(asmop, "\t$Rd, $Rn, $Imm"), [(set i32:$Rd, (opnode i32:$Rn, logical_imm32_operand:$Imm))], NoItinerary>; def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd), (ins GPR64:$Rn, logical_imm64_operand:$Imm), !strconcat(asmop, "\t$Rd, $Rn, $Imm"), [(set i64:$Rd, (opnode i64:$Rn, logical_imm64_operand:$Imm))], NoItinerary>; } defm AND : A64I_logimmSizes<0b00, "and", and>; defm ORR : A64I_logimmSizes<0b01, "orr", or>; defm EOR : A64I_logimmSizes<0b10, "eor", xor>; let Defs = [NZCV] in { def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd), (ins GPR32:$Rn, logical_imm32_operand:$Imm), "ands\t$Rd, $Rn, $Imm", [], NoItinerary>; def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd), (ins GPR64:$Rn, logical_imm64_operand:$Imm), "ands\t$Rd, $Rn, $Imm", [], NoItinerary>; } def : InstAlias<"tst $Rn, $Imm", (ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>; def : InstAlias<"tst $Rn, $Imm", (ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>; def : InstAlias<"mov $Rd, $Imm", (ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>; def : InstAlias<"mov $Rd, $Imm", (ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>; //===----------------------------------------------------------------------===// // Logical (shifted register) instructions //===----------------------------------------------------------------------===// // Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV // Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS" // behaves differently for unsigned comparisons, so we defensively only allow // signed or n/a as the operand. In practice "unsigned greater than 0" is "not // equal to 0" and LLVM gives us this. def signed_cond : PatLeaf<(cond), [{ return !isUnsignedIntSetCC(N->get()); }]>; // These instructions share their "shift" operands with add/sub (shifted // register instructions). They are defined there. // N.b. the commutable parameter is just !N. It will be first against the wall // when the revolution comes. multiclass logical_shifts opc, bit N, bit commutable, string asmop, SDPatternOperator opfrag, ValueType ty, RegisterClass GPR, list defs> { let isCommutable = commutable, Defs = defs in { def _lsl : A64I_logicalshift("lsl_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (shl ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)) )], NoItinerary>; def _lsr : A64I_logicalshift("lsr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm, !cast("lsr_operand_" # ty):$Imm6)) )], NoItinerary>; def _asr : A64I_logicalshift("asr_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm, !cast("asr_operand_" # ty):$Imm6)) )], NoItinerary>; def _ror : A64I_logicalshift("ror_operand_" # ty):$Imm6), !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), [(set ty:$Rd, (opfrag ty:$Rn, (rotr ty:$Rm, !cast("ror_operand_" # ty):$Imm6)) )], NoItinerary>; } def _noshift : InstAlias(prefix # "_lsl") GPR:$Rd, GPR:$Rn, GPR:$Rm, 0)>; def : Pat<(opfrag ty:$Rn, ty:$Rm), (!cast(prefix # "_lsl") $Rn, $Rm, 0)>; } multiclass logical_sizes opc, bit N, bit commutable, string asmop, SDPatternOperator opfrag, list defs> { defm xxx : logical_shifts; defm www : logical_shifts; } defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>; defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>; defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>; defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands", PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ (void)N; return false; }]>, [NZCV]>; defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic", PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, (not node:$rhs))>, []>; defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn", PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, (not node:$rhs))>, []>; defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon", PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, (not node:$rhs))>, []>; defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics", PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, (not node:$rhs)), [{ (void)N; return false; }]>, [NZCV]>; multiclass tst_shifts { let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in { def _lsl : A64I_logicalshift("lsl_operand_" # ty):$Imm6), "tst\t$Rn, $Rm, $Imm6", [(set NZCV, (A64setcc (and ty:$Rn, (shl ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)), 0, signed_cond))], NoItinerary>; def _lsr : A64I_logicalshift("lsr_operand_" # ty):$Imm6), "tst\t$Rn, $Rm, $Imm6", [(set NZCV, (A64setcc (and ty:$Rn, (srl ty:$Rm, !cast("lsr_operand_" # ty):$Imm6)), 0, signed_cond))], NoItinerary>; def _asr : A64I_logicalshift("asr_operand_" # ty):$Imm6), "tst\t$Rn, $Rm, $Imm6", [(set NZCV, (A64setcc (and ty:$Rn, (sra ty:$Rm, !cast("asr_operand_" # ty):$Imm6)), 0, signed_cond))], NoItinerary>; def _ror : A64I_logicalshift("ror_operand_" # ty):$Imm6), "tst\t$Rn, $Rm, $Imm6", [(set NZCV, (A64setcc (and ty:$Rn, (rotr ty:$Rm, !cast("ror_operand_" # ty):$Imm6)), 0, signed_cond))], NoItinerary>; } def _noshift : InstAlias<"tst $Rn, $Rm", (!cast(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; def : Pat<(A64setcc (and ty:$Rn, ty:$Rm), 0, signed_cond), (!cast(prefix # "_lsl") $Rn, $Rm, 0)>; } defm TSTxx : tst_shifts<"TSTxx", 0b1, i64, GPR64>; defm TSTww : tst_shifts<"TSTww", 0b0, i32, GPR32>; multiclass mvn_shifts { let isCommutable = 0, Rn = 0b11111 in { def _lsl : A64I_logicalshift("lsl_operand_" # ty):$Imm6), "mvn\t$Rd, $Rm, $Imm6", [(set ty:$Rd, (not (shl ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)))], NoItinerary>; def _lsr : A64I_logicalshift("lsr_operand_" # ty):$Imm6), "mvn\t$Rd, $Rm, $Imm6", [(set ty:$Rd, (not (srl ty:$Rm, !cast("lsr_operand_" # ty):$Imm6)))], NoItinerary>; def _asr : A64I_logicalshift("asr_operand_" # ty):$Imm6), "mvn\t$Rd, $Rm, $Imm6", [(set ty:$Rd, (not (sra ty:$Rm, !cast("asr_operand_" # ty):$Imm6)))], NoItinerary>; def _ror : A64I_logicalshift("ror_operand_" # ty):$Imm6), "mvn\t$Rd, $Rm, $Imm6", [(set ty:$Rd, (not (rotr ty:$Rm, !cast("lsl_operand_" # ty):$Imm6)))], NoItinerary>; } def _noshift : InstAlias<"mvn $Rn, $Rm", (!cast(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; def : Pat<(not ty:$Rm), (!cast(prefix # "_lsl") $Rm, 0)>; } defm MVNxx : mvn_shifts<"MVNxx", 0b1, i64, GPR64>; defm MVNww : mvn_shifts<"MVNww", 0b0, i32, GPR32>; def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; //===----------------------------------------------------------------------===// // Move wide (immediate) instructions //===----------------------------------------------------------------------===// // Contains: MOVN, MOVZ, MOVK + MOV aliases // A wide variety of different relocations are needed for variants of these // instructions, so it turns out that we need a different operand for all of // them. multiclass movw_operands { def _imm_asmoperand : AsmOperandClass { let Name = instname # width # "Shifted" # shift; let PredicateMethod = "is" # instname # width # "Imm"; let RenderMethod = "addMoveWideImmOperands"; let ParserMethod = "ParseImmWithLSLOperand"; let DiagnosticType = "MOVWUImm16"; } def _imm : Operand { let ParserMatchClass = !cast(prefix # "_imm_asmoperand"); let PrintMethod = "printMoveWideImmOperand"; let EncoderMethod = "getMoveWideImmOpValue"; let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">"; let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift); } } defm movn32 : movw_operands<"movn32", "MOVN", 32>; defm movn64 : movw_operands<"movn64", "MOVN", 64>; defm movz32 : movw_operands<"movz32", "MOVZ", 32>; defm movz64 : movw_operands<"movz64", "MOVZ", 64>; defm movk32 : movw_operands<"movk32", "MOVK", 32>; defm movk64 : movw_operands<"movk64", "MOVK", 64>; multiclass A64I_movwSizes opc, string asmop, dag ins32bit, dag ins64bit> { def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit, !strconcat(asmop, "\t$Rd, $FullImm"), [], NoItinerary> { bits<18> FullImm; let UImm16 = FullImm{15-0}; let Shift = FullImm{17-16}; } def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit, !strconcat(asmop, "\t$Rd, $FullImm"), [], NoItinerary> { bits<18> FullImm; let UImm16 = FullImm{15-0}; let Shift = FullImm{17-16}; } } let isMoveImm = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, hasSideEffects = 0 in { defm MOVN : A64I_movwSizes<0b00, "movn", (ins movn32_imm:$FullImm), (ins movn64_imm:$FullImm)>; // Some relocations are able to convert between a MOVZ and a MOVN. If these // are applied the instruction must be emitted with the corresponding bits as // 0, which means a MOVZ needs to override that bit from the default. let PostEncoderMethod = "fixMOVZ" in defm MOVZ : A64I_movwSizes<0b10, "movz", (ins movz32_imm:$FullImm), (ins movz64_imm:$FullImm)>; } let Constraints = "$src = $Rd" in defm MOVK : A64I_movwSizes<0b11, "movk", (ins GPR32:$src, movk32_imm:$FullImm), (ins GPR64:$src, movk64_imm:$FullImm)>; // And now the "MOV" aliases. These also need their own operands because what // they accept is completely different to what the base instructions accept. multiclass movalias_operand { def _asmoperand : AsmOperandClass { let Name = basename # width # "MovAlias"; let PredicateMethod = "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">"; let RenderMethod = "addMoveWideMovAliasOperands<" # width # ", " # "A64Imms::" # immpredicate # ">"; } def _movimm : Operand { let ParserMatchClass = !cast(prefix # "_asmoperand"); let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift); } } defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>; defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>; defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>; defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>; // FIXME: these are officially canonical aliases, but TableGen is too limited to // print them at the moment. I believe in this case an "AliasPredicate" method // will need to be implemented. to allow it, as well as the more generally // useful handling of non-register, non-constant operands. class movalias : InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>; def : movalias; def : movalias; def : movalias; def : movalias; def movw_addressref_g0 : ComplexPattern">; def movw_addressref_g1 : ComplexPattern">; def movw_addressref_g2 : ComplexPattern">; def movw_addressref_g3 : ComplexPattern">; def : Pat<(A64WrapperLarge movw_addressref_g3:$G3, movw_addressref_g2:$G2, movw_addressref_g1:$G1, movw_addressref_g0:$G0), (MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref_g3:$G3), movw_addressref_g2:$G2), movw_addressref_g1:$G1), movw_addressref_g0:$G0)>; //===----------------------------------------------------------------------===// // PC-relative addressing instructions //===----------------------------------------------------------------------===// // Contains: ADR, ADRP def adr_label : Operand { let EncoderMethod = "getLabelOpValue"; // This label is a 21-bit offset from PC, unscaled let PrintMethod = "printLabelOperand<21, 1>"; let ParserMatchClass = label_asmoperand<21, 1>; let OperandType = "OPERAND_PCREL"; } def adrp_label_asmoperand : AsmOperandClass { let Name = "AdrpLabel"; let RenderMethod = "addLabelOperands<21, 4096>"; let DiagnosticType = "Label"; } def adrp_label : Operand { let EncoderMethod = "getAdrpLabelOpValue"; // This label is a 21-bit offset from PC, scaled by the page-size: 4096. let PrintMethod = "printLabelOperand<21, 4096>"; let ParserMatchClass = adrp_label_asmoperand; let OperandType = "OPERAND_PCREL"; } let hasSideEffects = 0 in { def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label), "adr\t$Rd, $Label", [], NoItinerary>; def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label), "adrp\t$Rd, $Label", [], NoItinerary>; } //===----------------------------------------------------------------------===// // System instructions //===----------------------------------------------------------------------===// // Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS // + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL // Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values. def uimm3_asmoperand : AsmOperandClass { let Name = "UImm3"; let PredicateMethod = "isUImm<3>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm3"; } def uimm3 : Operand { let ParserMatchClass = uimm3_asmoperand; } // The HINT alias can accept a simple unsigned 7-bit immediate. def uimm7_asmoperand : AsmOperandClass { let Name = "UImm7"; let PredicateMethod = "isUImm<7>"; let RenderMethod = "addImmOperands"; let DiagnosticType = "UImm7"; } def uimm7 : Operand { let ParserMatchClass = uimm7_asmoperand; } // Multiclass namedimm is defined with the prefetch operands. Most of these fit // into the NamedImmMapper scheme well: they either accept a named operand or // any immediate under a particular value (which may be 0, implying no immediate // is allowed). defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">; defm isb : namedimm<"isb", "A64ISB::ISBMapper">; defm ic : namedimm<"ic", "A64IC::ICMapper">; defm dc : namedimm<"dc", "A64DC::DCMapper">; defm at : namedimm<"at", "A64AT::ATMapper">; defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">; // However, MRS and MSR are more complicated for a few reasons: // * There are ~1000 generic names S3____ which have an // implementation-defined effect // * Most registers are shared, but some are read-only or write-only. // * There is a variant of MSR which accepts the same register name (SPSel), // but which would have a different encoding. // In principle these could be resolved in with more complicated subclasses of // NamedImmMapper, however that imposes an overhead on other "named // immediates". Both in concrete terms with virtual tables and in unnecessary // abstraction. // The solution adopted here is to take the MRS/MSR Mappers out of the usual // hierarchy (they're not derived from NamedImmMapper) and to add logic for // their special situation. def mrs_asmoperand : AsmOperandClass { let Name = "MRS"; let ParserMethod = "ParseSysRegOperand"; let DiagnosticType = "MRS"; } def mrs_op : Operand { let ParserMatchClass = mrs_asmoperand; let PrintMethod = "printMRSOperand"; let DecoderMethod = "DecodeMRSOperand"; } def msr_asmoperand : AsmOperandClass { let Name = "MSRWithReg"; // Note that SPSel is valid for both this and the pstate operands, but with // different immediate encodings. This is why these operands provide a string // AArch64Operand rather than an immediate. The overlap is small enough that // it could be resolved with hackery now, but who can say in future? let ParserMethod = "ParseSysRegOperand"; let DiagnosticType = "MSR"; } def msr_op : Operand { let ParserMatchClass = msr_asmoperand; let PrintMethod = "printMSROperand"; let DecoderMethod = "DecodeMSROperand"; } def pstate_asmoperand : AsmOperandClass { let Name = "MSRPState"; // See comment above about parser. let ParserMethod = "ParseSysRegOperand"; let DiagnosticType = "MSR"; } def pstate_op : Operand { let ParserMatchClass = pstate_asmoperand; let PrintMethod = "printNamedImmOperand"; let DecoderMethod = "DecodeNamedImmOperand"; } // When is specified, an assembler should accept something like "C4", not // the usual "#4" immediate. def CRx_asmoperand : AsmOperandClass { let Name = "CRx"; let PredicateMethod = "isUImm<4>"; let RenderMethod = "addImmOperands"; let ParserMethod = "ParseCRxOperand"; // Diagnostics are handled in all cases by ParseCRxOperand. } def CRx : Operand { let ParserMatchClass = CRx_asmoperand; let PrintMethod = "printCRxOperand"; } // Finally, we can start defining the instructions. // HINT is straightforward, with a few aliases. def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7", [], NoItinerary> { bits<7> UImm7; let CRm = UImm7{6-3}; let Op2 = UImm7{2-0}; let Op0 = 0b00; let Op1 = 0b011; let CRn = 0b0010; let Rt = 0b11111; } def : InstAlias<"nop", (HINTi 0)>; def : InstAlias<"yield", (HINTi 1)>; def : InstAlias<"wfe", (HINTi 2)>; def : InstAlias<"wfi", (HINTi 3)>; def : InstAlias<"sev", (HINTi 4)>; def : InstAlias<"sevl", (HINTi 5)>; // Quite a few instructions then follow a similar pattern of fixing common // fields in the bitpattern, we'll define a helper-class for them. class simple_sys op0, bits<3> op1, bits<4> crn, bits<3> op2, Operand operand, string asmop> : A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"), [], NoItinerary> { let Op0 = op0; let Op1 = op1; let CRn = crn; let Op2 = op2; let Rt = 0b11111; } def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">; def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">; def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">; def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">; def : InstAlias<"clrex", (CLREXi 0b1111)>; def : InstAlias<"isb", (ISBi 0b1111)>; // (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP // configurations at least. def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>; // Any SYS bitpattern can be represented with a complex and opaque "SYS" // instruction. def SYSiccix : A64I_system<0b0, (outs), (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, GPR64:$Rt), "sys\t$Op1, $CRn, $CRm, $Op2, $Rt", [], NoItinerary> { let Op0 = 0b01; } // You can skip the Xt argument whether it makes sense or not for the generic // SYS instruction. def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2", (SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>; // But many have aliases, which obviously don't fit into class SYSalias : A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> { let isAsmParserOnly = 1; bits<14> SysOp; let Op0 = 0b01; let Op1 = SysOp{13-11}; let CRn = SysOp{10-7}; let CRm = SysOp{6-3}; let Op2 = SysOp{2-0}; } def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">; def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> { let Rt = 0b11111; } def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">; def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">; def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">; def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> { let Rt = 0b11111; } def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt), (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2), "sysl\t$Rt, $Op1, $CRn, $CRm, $Op2", [], NoItinerary> { let Op0 = 0b01; } // The instructions themselves are rather simple for MSR and MRS. def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt), "msr\t$SysReg, $Rt", [], NoItinerary> { bits<16> SysReg; let Op0 = SysReg{15-14}; let Op1 = SysReg{13-11}; let CRn = SysReg{10-7}; let CRm = SysReg{6-3}; let Op2 = SysReg{2-0}; } def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg), "mrs\t$Rt, $SysReg", [], NoItinerary> { bits<16> SysReg; let Op0 = SysReg{15-14}; let Op1 = SysReg{13-11}; let CRn = SysReg{10-7}; let CRm = SysReg{6-3}; let Op2 = SysReg{2-0}; } def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm), "msr\t$PState, $CRm", [], NoItinerary> { bits<6> PState; let Op0 = 0b00; let Op1 = PState{5-3}; let CRn = 0b0100; let Op2 = PState{2-0}; let Rt = 0b11111; } //===----------------------------------------------------------------------===// // Test & branch (immediate) instructions //===----------------------------------------------------------------------===// // Contains: TBZ, TBNZ // The bit to test is a simple unsigned 6-bit immediate in the X-register // versions. def uimm6 : Operand { let ParserMatchClass = uimm6_asmoperand; } def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>; def tbimm_target : Operand { let EncoderMethod = "getLabelOpValue"; // This label is a 14-bit offset from PC, scaled by the instruction-width: 4. let PrintMethod = "printLabelOperand<14, 4>"; let ParserMatchClass = label_wid14_scal4_asmoperand; let OperandType = "OPERAND_PCREL"; } def A64eq : ImmLeaf; def A64ne : ImmLeaf; // These instructions correspond to patterns involving "and" with a power of // two, which we need to be able to select. def tstb64_pat : ComplexPattern">; def tstb32_pat : ComplexPattern">; let isBranch = 1, isTerminator = 1 in { def TBZxii : A64I_TBimm<0b0, (outs), (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label), "tbz\t$Rt, $Imm, $Label", [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0), A64eq, bb:$Label)], NoItinerary>; def TBNZxii : A64I_TBimm<0b1, (outs), (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label), "tbnz\t$Rt, $Imm, $Label", [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0), A64ne, bb:$Label)], NoItinerary>; // Note, these instructions overlap with the above 64-bit patterns. This is // intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both // do the same thing and are both permitted assembly. They also both have // sensible DAG patterns. def TBZwii : A64I_TBimm<0b0, (outs), (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label), "tbz\t$Rt, $Imm, $Label", [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0), A64eq, bb:$Label)], NoItinerary> { let Imm{5} = 0b0; } def TBNZwii : A64I_TBimm<0b1, (outs), (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label), "tbnz\t$Rt, $Imm, $Label", [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0), A64ne, bb:$Label)], NoItinerary> { let Imm{5} = 0b0; } } //===----------------------------------------------------------------------===// // Unconditional branch (immediate) instructions //===----------------------------------------------------------------------===// // Contains: B, BL def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>; def bimm_target : Operand { let EncoderMethod = "getLabelOpValue"; // This label is a 26-bit offset from PC, scaled by the instruction-width: 4. let PrintMethod = "printLabelOperand<26, 4>"; let ParserMatchClass = label_wid26_scal4_asmoperand; let OperandType = "OPERAND_PCREL"; } def blimm_target : Operand { let EncoderMethod = "getLabelOpValue"; // This label is a 26-bit offset from PC, scaled by the instruction-width: 4. let PrintMethod = "printLabelOperand<26, 4>"; let ParserMatchClass = label_wid26_scal4_asmoperand; let OperandType = "OPERAND_PCREL"; } class A64I_BimmImpl patterns, Operand lbl_type> : A64I_Bimm; let isBranch = 1 in { def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> { let isTerminator = 1; let isBarrier = 1; } def BLimm : A64I_BimmImpl<0b1, "bl", [(AArch64Call tglobaladdr:$Label)], blimm_target> { let isCall = 1; let Defs = [X30]; } } def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>; //===----------------------------------------------------------------------===// // Unconditional branch (register) instructions //===----------------------------------------------------------------------===// // Contains: BR, BLR, RET, ERET, DRP. // Most of the notional opcode fields in the A64I_Breg format are fixed in A64 // at the moment. class A64I_BregImpl opc, dag outs, dag ins, string asmstr, list patterns, InstrItinClass itin = NoItinerary> : A64I_Breg { let isBranch = 1; let isIndirectBranch = 1; } // Note that these are not marked isCall or isReturn because as far as LLVM is // concerned they're not. "ret" is just another jump unless it has been selected // by LLVM as the function's return. let isBranch = 1 in { def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn), "br\t$Rn", [(brind i64:$Rn)]> { let isBarrier = 1; let isTerminator = 1; } def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn), "blr\t$Rn", [(AArch64Call i64:$Rn)]> { let isBarrier = 0; let isCall = 1; let Defs = [X30]; } def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn), "ret\t$Rn", []> { let isBarrier = 1; let isTerminator = 1; let isReturn = 1; } // Create a separate pseudo-instruction for codegen to use so that we don't // flag x30 as used in every function. It'll be restored before the RET by the // epilogue if it's legitimately used. def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; } def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> { let Rn = 0b11111; let isBarrier = 1; let isTerminator = 1; let isReturn = 1; } def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> { let Rn = 0b11111; let isBarrier = 1; } } def RETAlias : InstAlias<"ret", (RETx X30)>; //===----------------------------------------------------------------------===// // Address generation patterns //===----------------------------------------------------------------------===// // Primary method of address generation for the small/absolute memory model is // an ADRP/ADR pair: // ADRP x0, some_variable // ADD x0, x0, #:lo12:some_variable // // The load/store elision of the ADD is accomplished when selecting // addressing-modes. This just mops up the cases where that doesn't work and we // really need an address in some register. // This wrapper applies a LO12 modifier to the address. Otherwise we could just // use the same address. class ADRP_ADD : Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)), (ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>; def : ADRP_ADD; def : ADRP_ADD; def : ADRP_ADD; def : ADRP_ADD; def : ADRP_ADD; //===----------------------------------------------------------------------===// // GOT access patterns //===----------------------------------------------------------------------===// class GOTLoadSmall : Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)), (LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>; def : GOTLoadSmall; def : GOTLoadSmall; def : GOTLoadSmall; //===----------------------------------------------------------------------===// // Tail call handling //===----------------------------------------------------------------------===// let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in { def TC_RETURNdi : PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff), [(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>; def TC_RETURNxi : PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), [(AArch64tcret i64:$dst, (i32 timm:$FPDiff))]>; } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in { def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [], (Bimm bimm_target:$Label)>; def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [], (BRx GPR64:$Rd)>; } def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), (TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>; //===----------------------------------------------------------------------===// // Thread local storage //===----------------------------------------------------------------------===// // This is a pseudo-instruction representing the ".tlsdesccall" directive in // assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the // current location. It should always be immediately followed by a BLR // instruction, and is intended solely for relaxation by the linker. def : Pat<(A64threadpointer), (MRSxi 0xde82)>; def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> { let hasSideEffects = 1; } def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var), [(A64tlsdesc_blr i64:$Rn, tglobaltlsaddr:$Var)]> { let isCall = 1; let Defs = [X30]; } def : Pat<(A64tlsdesc_blr i64:$Rn, texternalsym:$Var), (TLSDESC_BLRx $Rn, texternalsym:$Var)>; //===----------------------------------------------------------------------===// // Bitfield patterns //===----------------------------------------------------------------------===// def bfi32_lsb_to_immr : SDNodeXFormgetTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64); }]>; def bfi64_lsb_to_immr : SDNodeXFormgetTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64); }]>; def bfi_width_to_imms : SDNodeXFormgetTargetConstant(N->getZExtValue() - 1, MVT::i64); }]>; // The simpler patterns deal with cases where no AND mask is actually needed // (either all bits are used or the low 32 bits are used). let AddedComplexity = 10 in { def : Pat<(A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS), (BFIxxii $src, $Rn, (bfi64_lsb_to_immr (i64 imm:$ImmR)), (bfi_width_to_imms (i64 imm:$ImmS)))>; def : Pat<(A64Bfi i32:$src, i32:$Rn, imm:$ImmR, imm:$ImmS), (BFIwwii $src, $Rn, (bfi32_lsb_to_immr (i64 imm:$ImmR)), (bfi_width_to_imms (i64 imm:$ImmS)))>; def : Pat<(and (A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS), (i64 4294967295)), (SUBREG_TO_REG (i64 0), (BFIwwii (EXTRACT_SUBREG $src, sub_32), (EXTRACT_SUBREG $Rn, sub_32), (bfi32_lsb_to_immr (i64 imm:$ImmR)), (bfi_width_to_imms (i64 imm:$ImmS))), sub_32)>; } //===----------------------------------------------------------------------===// // Miscellaneous patterns //===----------------------------------------------------------------------===// // Truncation from 64 to 32-bits just involves renaming your register. def : Pat<(i32 (trunc i64:$val)), (EXTRACT_SUBREG $val, sub_32)>; // Similarly, extension where we don't care about the high bits is // just a rename. def : Pat<(i64 (anyext i32:$val)), (INSERT_SUBREG (IMPLICIT_DEF), $val, sub_32)>; // SELECT instructions providing f128 types need to be handled by a // pseudo-instruction since the eventual code will need to introduce basic // blocks and control flow. def F128CSEL : PseudoInst<(outs FPR128:$Rd), (ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond), [(set f128:$Rd, (simple_select f128:$Rn, f128:$Rm))]> { let Uses = [NZCV]; let usesCustomInserter = 1; } //===----------------------------------------------------------------------===// // Load/store patterns //===----------------------------------------------------------------------===// // There are lots of patterns here, because we need to allow at least three // parameters to vary independently. // 1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ... // 2. LLVM source: zextloadi8, anyextloadi8, ... // 3. Address-generation: A64Wrapper, (add BASE, OFFSET), ... // // The biggest problem turns out to be the address-generation variable. At the // point of instantiation we need to produce two DAGs, one for the pattern and // one for the instruction. Doing this at the lowest level of classes doesn't // work. // // Consider the simple uimm12 addressing mode, and the desire to match both (add // GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the // instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or // "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this // operation, and PatFrags are for selection not output. // // As a result, the address-generation patterns are the final // instantiations. However, we do still need to vary the operand for the address // further down (At the point we're deciding A64WrapperSmall, we don't know // the memory width of the operation). //===------------------------------ // 1. Basic infrastructural defs //===------------------------------ // First, some simple classes for !foreach and !subst to use: class Decls { dag pattern; } def decls : Decls; def ALIGN; def INST; def OFFSET; def SHIFT; // You can't use !subst on an actual immediate, but you *can* use it on an // operand record that happens to match a single immediate. So we do. def imm_eq0 : ImmLeaf; def imm_eq1 : ImmLeaf; def imm_eq2 : ImmLeaf; def imm_eq3 : ImmLeaf; def imm_eq4 : ImmLeaf; // If the low bits of a pointer are known to be 0 then an "or" is just as good // as addition for computing an offset. This fragment forwards that check for // TableGen's use. def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs), [{ return CurDAG->isBaseWithConstantOffset(SDValue(N, 0)); }]>; // Load/store (unsigned immediate) operations with relocations against global // symbols (for lo12) are only valid if those symbols have correct alignment // (since the immediate offset is divided by the access scale, it can't have a // remainder). // // The guaranteed alignment is provided as part of the WrapperSmall // operation, and checked against one of these. def any_align : ImmLeaf; def min_align2 : ImmLeaf= 2; }]>; def min_align4 : ImmLeaf= 4; }]>; def min_align8 : ImmLeaf= 8; }]>; def min_align16 : ImmLeaf= 16; }]>; // "Normal" load/store instructions can be used on atomic operations, provided // the ordering parameter is at most "monotonic". Anything above that needs // special handling with acquire/release instructions. class simple_load : PatFrag<(ops node:$ptr), (base node:$ptr), [{ return cast(N)->getOrdering() <= Monotonic; }]>; def atomic_load_simple_i8 : simple_load; def atomic_load_simple_i16 : simple_load; def atomic_load_simple_i32 : simple_load; def atomic_load_simple_i64 : simple_load; class simple_store : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ return cast(N)->getOrdering() <= Monotonic; }]>; def atomic_store_simple_i8 : simple_store; def atomic_store_simple_i16 : simple_store; def atomic_store_simple_i32 : simple_store; def atomic_store_simple_i64 : simple_store; //===------------------------------ // 2. UImm12 and SImm9 //===------------------------------ // These instructions have two operands providing the address so they can be // treated similarly for most purposes. //===------------------------------ // 2.1 Base patterns covering extend/truncate semantics //===------------------------------ // Atomic patterns can be shared between integer operations of all sizes, a // quick multiclass here allows reuse. multiclass ls_atomic_pats { def : Pat<(!cast("atomic_load_simple_" # sty) address), (LOAD Base, Offset)>; def : Pat<(!cast("atomic_store_simple_" # sty) address, transty:$Rt), (STORE $Rt, Base, Offset)>; } // Instructions accessing a memory chunk smaller than a register (or, in a // pinch, the same size) have a characteristic set of patterns they want to // match: extending loads and truncating stores. This class deals with the // sign-neutral version of those patterns. // // It will be instantiated across multiple addressing-modes. multiclass ls_small_pats : ls_atomic_pats { def : Pat<(!cast(zextload # sty) address), (LOAD Base, Offset)>; def : Pat<(!cast(extload # sty) address), (LOAD Base, Offset)>; // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit // register was actually set. def : Pat<(i64 (!cast(zextload # sty) address)), (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>; def : Pat<(i64 (!cast(extload # sty) address)), (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>; def : Pat<(!cast(truncstore # sty) i32:$Rt, address), (STORE $Rt, Base, Offset)>; // For truncating store from 64-bits, we have to manually tell LLVM to // ignore the high bits of the x register. def : Pat<(!cast(truncstore # sty) i64:$Rt, address), (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>; } // Next come patterns for sign-extending loads. multiclass load_signed_pats { def : Pat<(i32 (!cast("sextload" # sty) address)), (!cast("LDRS" # T # "w" # U) Base, Offset)>; def : Pat<(i64 (!cast("sextload" # sty) address)), (!cast("LDRS" # T # "x" # U) Base, Offset)>; } // and finally "natural-width" loads and stores come next. multiclass ls_neutral_pats { def : Pat<(sty (load address)), (LOAD Base, Offset)>; def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset)>; } // Integer operations also get atomic instructions to select for. multiclass ls_int_neutral_pats : ls_neutral_pats, ls_atomic_pats; //===------------------------------ // 2.2. Addressing-mode instantiations //===------------------------------ multiclass uimm12_pats { defm : ls_small_pats; defm : ls_small_pats; defm : ls_small_pats; defm : ls_int_neutral_pats; defm : ls_int_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; defm : load_signed_pats<"B", "", Base, !foreach(decls.pattern, Offset, !subst(OFFSET, byte_uimm12, decls.pattern)), !foreach(decls.pattern, address, !subst(OFFSET, byte_uimm12, !subst(ALIGN, any_align, decls.pattern))), i8>; defm : load_signed_pats<"H", "", Base, !foreach(decls.pattern, Offset, !subst(OFFSET, hword_uimm12, decls.pattern)), !foreach(decls.pattern, address, !subst(OFFSET, hword_uimm12, !subst(ALIGN, min_align2, decls.pattern))), i16>; def : Pat<(sextloadi32 !foreach(decls.pattern, address, !subst(OFFSET, word_uimm12, !subst(ALIGN, min_align4, decls.pattern)))), (LDRSWx Base, !foreach(decls.pattern, Offset, !subst(OFFSET, word_uimm12, decls.pattern)))>; } // Straightforward patterns of last resort: a pointer with or without an // appropriate offset. defm : uimm12_pats<(i64 i64:$Rn), (i64 i64:$Rn), (i64 0)>; defm : uimm12_pats<(add i64:$Rn, OFFSET:$UImm12), (i64 i64:$Rn), (i64 OFFSET:$UImm12)>; // The offset could be hidden behind an "or", of course: defm : uimm12_pats<(add_like_or i64:$Rn, OFFSET:$UImm12), (i64 i64:$Rn), (i64 OFFSET:$UImm12)>; // Global addresses under the small-absolute model should use these // instructions. There are ELF relocations specifically for it. defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN), (ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>; defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12, ALIGN), (ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>; // External symbols that make it this far should also get standard relocations. defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12, ALIGN), (ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>; defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN), (ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>; // We also want to use uimm12 instructions for local variables at the moment. def tframeindex_XFORM : SDNodeXForm(N)->getIndex(); return CurDAG->getTargetFrameIndex(FI, MVT::i64); }]>; defm : uimm12_pats<(i64 frameindex:$Rn), (tframeindex_XFORM tframeindex:$Rn), (i64 0)>; // These can be much simpler than uimm12 because we don't to change the operand // type (e.g. LDURB and LDURH take the same operands). multiclass simm9_pats { defm : ls_small_pats; defm : ls_small_pats; defm : ls_int_neutral_pats; defm : ls_int_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; defm : ls_neutral_pats; def : Pat<(i64 (zextloadi32 address)), (SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>; def : Pat<(truncstorei32 i64:$Rt, address), (LS32_STUR (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>; defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>; defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>; def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>; } defm : simm9_pats<(add i64:$Rn, simm9:$SImm9), (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>; defm : simm9_pats<(add_like_or i64:$Rn, simm9:$SImm9), (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>; //===------------------------------ // 3. Register offset patterns //===------------------------------ // Atomic patterns can be shared between integer operations of all sizes, a // quick multiclass here allows reuse. multiclass ro_atomic_pats { def : Pat<(!cast("atomic_load_simple_" # sty) address), (LOAD Base, Offset, Extend)>; def : Pat<(!cast("atomic_store_simple_" # sty) address, transty:$Rt), (STORE $Rt, Base, Offset, Extend)>; } // The register offset instructions take three operands giving the instruction, // and have an annoying split between instructions where Rm is 32-bit and // 64-bit. So we need a special hierarchy to describe them. Other than that the // same operations should be supported as for simm9 and uimm12 addressing. multiclass ro_small_pats : ro_atomic_pats { def : Pat<(!cast(zextload # sty) address), (LOAD Base, Offset, Extend)>; def : Pat<(!cast(extload # sty) address), (LOAD Base, Offset, Extend)>; // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit // register was actually set. def : Pat<(i64 (!cast(zextload # sty) address)), (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>; def : Pat<(i64 (!cast(extload # sty) address)), (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>; def : Pat<(!cast(truncstore # sty) i32:$Rt, address), (STORE $Rt, Base, Offset, Extend)>; // For truncating store from 64-bits, we have to manually tell LLVM to // ignore the high bits of the x register. def : Pat<(!cast(truncstore # sty) i64:$Rt, address), (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset, Extend)>; } // Next come patterns for sign-extending loads. multiclass ro_signed_pats { def : Pat<(i32 (!cast("sextload" # sty) address)), (!cast("LDRS" # T # "w_" # Rm # "_RegOffset") Base, Offset, Extend)>; def : Pat<(i64 (!cast("sextload" # sty) address)), (!cast("LDRS" # T # "x_" # Rm # "_RegOffset") Base, Offset, Extend)>; } // and finally "natural-width" loads and stores come next. multiclass ro_neutral_pats { def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>; def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset, Extend)>; } multiclass ro_int_neutral_pats : ro_neutral_pats, ro_atomic_pats; multiclass regoff_pats { defm : ro_small_pats("LS8_" # Rm # "_RegOffset_LDR"), !cast("LS8_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq0, decls.pattern)), i8>; defm : ro_small_pats("LS16_" # Rm # "_RegOffset_LDR"), !cast("LS16_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq1, decls.pattern)), i16>; defm : ro_small_pats("LS32_" # Rm # "_RegOffset_LDR"), !cast("LS32_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq2, decls.pattern)), i32>; defm : ro_int_neutral_pats< !cast("LS32_" # Rm # "_RegOffset_LDR"), !cast("LS32_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq2, decls.pattern)), i32>; defm : ro_int_neutral_pats< !cast("LS64_" # Rm # "_RegOffset_LDR"), !cast("LS64_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq3, decls.pattern)), i64>; defm : ro_neutral_pats("LSFP16_" # Rm # "_RegOffset_LDR"), !cast("LSFP16_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq1, decls.pattern)), f16>; defm : ro_neutral_pats("LSFP32_" # Rm # "_RegOffset_LDR"), !cast("LSFP32_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq2, decls.pattern)), f32>; defm : ro_neutral_pats("LSFP64_" # Rm # "_RegOffset_LDR"), !cast("LSFP64_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq3, decls.pattern)), f64>; defm : ro_neutral_pats("LSFP128_" # Rm # "_RegOffset_LDR"), !cast("LSFP128_" # Rm # "_RegOffset_STR"), Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq4, decls.pattern)), f128>; defm : ro_signed_pats<"B", Rm, Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq0, decls.pattern)), i8>; defm : ro_signed_pats<"H", Rm, Base, Offset, Extend, !foreach(decls.pattern, address, !subst(SHIFT, imm_eq1, decls.pattern)), i16>; def : Pat<(sextloadi32 !foreach(decls.pattern, address, !subst(SHIFT, imm_eq2, decls.pattern))), (!cast("LDRSWx_" # Rm # "_RegOffset") Base, Offset, Extend)>; } // Finally we're in a position to tell LLVM exactly what addresses are reachable // using register-offset instructions. Essentially a base plus a possibly // extended, possibly shifted (by access size) offset. defm : regoff_pats<"Wm", (add i64:$Rn, (sext i32:$Rm)), (i64 i64:$Rn), (i32 i32:$Rm), (i64 6)>; defm : regoff_pats<"Wm", (add i64:$Rn, (shl (sext i32:$Rm), SHIFT)), (i64 i64:$Rn), (i32 i32:$Rm), (i64 7)>; defm : regoff_pats<"Wm", (add i64:$Rn, (zext i32:$Rm)), (i64 i64:$Rn), (i32 i32:$Rm), (i64 2)>; defm : regoff_pats<"Wm", (add i64:$Rn, (shl (zext i32:$Rm), SHIFT)), (i64 i64:$Rn), (i32 i32:$Rm), (i64 3)>; defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm), (i64 i64:$Rn), (i64 i64:$Rm), (i64 2)>; defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)), (i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;