//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::Legalize method. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DebugInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" using namespace llvm; //===----------------------------------------------------------------------===// /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and /// hacks on it until the target machine can handle it. This involves /// eliminating value sizes the machine cannot handle (promoting small sizes to /// large sizes or splitting up large values into small values) as well as /// eliminating operations the machine cannot handle. /// /// This code also does a small amount of optimization and recognition of idioms /// as part of its processing. For example, if a target does not support a /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this /// will attempt merge setcc and brc instructions into brcc's. /// namespace { class SelectionDAGLegalize { const TargetMachine &TM; const TargetLowering &TLI; SelectionDAG &DAG; CodeGenOpt::Level OptLevel; // Libcall insertion helpers. /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been /// legalized. We use this to ensure that calls are properly serialized /// against each other, including inserted libcalls. SDValue LastCALLSEQ_END; /// IsLegalizingCall - This member is used *only* for purposes of providing /// helpful assertions that a libcall isn't created while another call is /// being legalized (which could lead to non-serialized call sequences). bool IsLegalizingCall; enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand // Try to expand this to other ops, otherwise use a libcall. }; /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; /// LegalizedNodes - For nodes that are of legal width, and that have more /// than one use, this map indicates what regularized operand to use. This /// allows us to avoid legalizing the same thing more than once. DenseMap LegalizedNodes; void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); // Transfer SDDbgValues. DAG.TransferDbgValues(From, To); } public: SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol); /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal or we need to expand it into multiple registers of /// smaller integer type, or we need to promote it to a larger type. LegalizeAction getTypeAction(EVT VT) const { return (LegalizeAction)ValueTypeActions.getTypeAction(VT); } /// isTypeLegal - Return true if this type is legal on this target. /// bool isTypeLegal(EVT VT) const { return getTypeAction(VT) == Legal; } void LegalizeDAG(); private: /// LegalizeOp - We know that the specified value has a legal type. /// Recursively ensure that the operands have legal types, then return the /// result. SDValue LegalizeOp(SDValue O); SDValue OptimizeFloatStore(StoreSDNode *ST); /// PerformInsertVectorEltInMemory - Some target cannot handle a variable /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl); SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl); /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which /// performs the same shuffe in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, SDValue N1, SDValue N2, SmallVectorImpl &Mask) const; bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, SmallPtrSet &NodesLeadingTo); void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, DebugLoc dl); SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); std::pair ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_PPCF128); SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128); SDValue ExpandDivRemLibCall(SDNode *Node, bool isSigned, bool isDIV); SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); SDValue ExpandBUILD_VECTOR(SDNode *Node); SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); void ExpandDYNAMIC_STACKALLOC(SDNode *Node, SmallVectorImpl &Results); SDValue ExpandFCOPYSIGN(SDNode *Node); SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, DebugLoc dl); SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, DebugLoc dl); SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, DebugLoc dl); SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); SDValue ExpandExtractFromVectorThroughStack(SDValue Op); SDValue ExpandInsertToVectorThroughStack(SDValue Op); SDValue ExpandVectorBuildThroughStack(SDNode* Node); std::pair ExpandAtomic(SDNode *Node); void ExpandNode(SDNode *Node, SmallVectorImpl &Results); void PromoteNode(SDNode *Node, SmallVectorImpl &Results); }; } /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which /// performs the same shuffe in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, SDValue N1, SDValue N2, SmallVectorImpl &Mask) const { unsigned NumMaskElts = VT.getVectorNumElements(); unsigned NumDestElts = NVT.getVectorNumElements(); unsigned NumEltsGrowth = NumDestElts / NumMaskElts; assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); if (NumEltsGrowth == 1) return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); SmallVector NewMask; for (unsigned i = 0; i != NumMaskElts; ++i) { int Idx = Mask[i]; for (unsigned j = 0; j != NumEltsGrowth; ++j) { if (Idx < 0) NewMask.push_back(-1); else NewMask.push_back(Idx * NumEltsGrowth + j); } } assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); } SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, CodeGenOpt::Level ol) : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && "Too many value types for ValueTypeActions to hold!"); } void SelectionDAGLegalize::LegalizeDAG() { LastCALLSEQ_END = DAG.getEntryNode(); IsLegalizingCall = false; // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) LegalizeOp(SDValue(I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); LegalizedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); } /// FindCallEndFromCallStart - Given a chained node that is part of a call /// sequence, find the CALLSEQ_END node that terminates the call sequence. static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) { // Nested CALLSEQ_START/END constructs aren't yet legal, // but we can DTRT and handle them correctly here. if (Node->getOpcode() == ISD::CALLSEQ_START) depth++; else if (Node->getOpcode() == ISD::CALLSEQ_END) { depth--; if (depth == 0) return Node; } if (Node->use_empty()) return 0; // No CallSeqEnd // The chain is usually at the end. SDValue TheChain(Node, Node->getNumValues()-1); if (TheChain.getValueType() != MVT::Other) { // Sometimes it's at the beginning. TheChain = SDValue(Node, 0); if (TheChain.getValueType() != MVT::Other) { // Otherwise, hunt for it. for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) if (Node->getValueType(i) == MVT::Other) { TheChain = SDValue(Node, i); break; } // Otherwise, we walked into a node without a chain. if (TheChain.getValueType() != MVT::Other) return 0; } } for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { // Make sure to only follow users of our token chain. SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheChain) if (SDNode *Result = FindCallEndFromCallStart(User, depth)) return Result; } return 0; } /// FindCallStartFromCallEnd - Given a chained node that is part of a call /// sequence, find the CALLSEQ_START node that initiates the call sequence. static SDNode *FindCallStartFromCallEnd(SDNode *Node) { int nested = 0; assert(Node && "Didn't find callseq_start for a call??"); while (Node->getOpcode() != ISD::CALLSEQ_START || nested) { Node = Node->getOperand(0).getNode(); assert(Node->getOperand(0).getValueType() == MVT::Other && "Node doesn't have a token chain argument!"); switch (Node->getOpcode()) { default: break; case ISD::CALLSEQ_START: if (!nested) return Node; nested--; break; case ISD::CALLSEQ_END: nested++; break; } } return 0; } /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to /// see if any uses can reach Dest. If no dest operands can get to dest, /// legalize them, legalize ourself, and return false, otherwise, return true. /// /// Keep track of the nodes we fine that actually do lead to Dest in /// NodesLeadingTo. This avoids retraversing them exponential number of times. /// bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, SmallPtrSet &NodesLeadingTo) { if (N == Dest) return true; // N certainly leads to Dest :) // If we've already processed this node and it does lead to Dest, there is no // need to reprocess it. if (NodesLeadingTo.count(N)) return true; // If the first result of this node has been already legalized, then it cannot // reach N. if (LegalizedNodes.count(SDValue(N, 0))) return false; // Okay, this node has not already been legalized. Check and legalize all // operands. If none lead to Dest, then we can legalize this node. bool OperandsLeadToDest = false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) OperandsLeadToDest |= // If an operand leads to Dest, so do we. LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); if (OperandsLeadToDest) { NodesLeadingTo.insert(N); return true; } // Okay, this node looks safe, legalize it and return false. LegalizeOp(SDValue(N, 0)); return false; } /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or /// a load from the constant pool. static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, SelectionDAG &DAG, const TargetLowering &TLI) { bool Extend = false; DebugLoc dl = CFP->getDebugLoc(); // If a FP immediate is precise when represented as a float and if the // target can do an extending load from float to double, we put it into // the constant pool as a float, even if it's is statically typed as a // double. This shrinks FP constants and canonicalizes them for targets where // an FP extending load is the same cost as a normal load (such as on the x87 // fp stack or PPC FP unit). EVT VT = CFP->getValueType(0); ConstantFP *LLVMC = const_cast(CFP->getConstantFPValue()); if (!UseCP) { assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), (VT == MVT::f64) ? MVT::i64 : MVT::i32); } EVT OrigVT = VT; EVT SVT = VT; while (SVT != MVT::f32) { SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && // Only do this if the target has a native EXTLOAD instruction from // smaller type. TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && TLI.ShouldShrinkFPConstant(OrigVT)) { const Type *SType = SVT.getTypeForEVT(*DAG.getContext()); LLVMC = cast(ConstantExpr::getFPTrunc(LLVMC, SType)); VT = SVT; Extend = true; } } SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); if (Extend) return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), VT, false, false, Alignment); return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, Alignment); } /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. static SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, const TargetLowering &TLI) { SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDValue Val = ST->getValue(); EVT VT = Val.getValueType(); int Alignment = ST->getAlignment(); DebugLoc dl = ST->getDebugLoc(); if (ST->getMemoryVT().isFloatingPoint() || ST->getMemoryVT().isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); if (TLI.isTypeLegal(intVT)) { // Expand to a bitconvert of the value to the integer type of the // same size, then a (misaligned) int store. // FIXME: Does not handle truncating floating point stores! SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), ST->isVolatile(), ST->isNonTemporal(), Alignment); } else { // Do a (aligned) store to a stack slot, then copy from the stack slot // to the final destination using (unaligned) integer loads and stores. EVT StoredVT = ST->getMemoryVT(); EVT RegVT = TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits())); unsigned StoredBytes = StoredVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); // Perform the original store, only redirected to the stack slot. SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, MachinePointerInfo(), StoredVT, false, false, 0); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); SmallVector Stores; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the stack slot. SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo(), false, false, 0); // Store it to the final location. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo().getWithOffset(Offset), ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset))); // Increment the pointers. Offset += RegBytes; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, Increment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); } // The last store may be partial. Do a truncating store. On big-endian // machines this requires an extending load from the stack slot to ensure // that the bits are in the right place. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); // Load from the stack slot. SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, MachinePointerInfo(), MemVT, false, false, 0); Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo() .getWithOffset(Offset), MemVT, ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset))); // The order of the stores doesn't matter - say it with a TokenFactor. return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], Stores.size()); } } assert(ST->getMemoryVT().isInteger() && !ST->getMemoryVT().isVector() && "Unaligned store of unknown type."); // Get the half-size VT EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); int NumBits = NewStoredVT.getSizeInBits(); int IncrementSize = NumBits / 8; // Divide the stored value in two parts. SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy(Val.getValueType())); SDValue Lo = Val; SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); // Store the two parts SDValue Store1, Store2; Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, ST->getPointerInfo(), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Alignment = MinAlign(Alignment, IncrementSize); Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); } /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. static SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, const TargetLowering &TLI) { SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); EVT VT = LD->getValueType(0); EVT LoadedVT = LD->getMemoryVT(); DebugLoc dl = LD->getDebugLoc(); if (VT.isFloatingPoint() || VT.isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); if (TLI.isTypeLegal(intVT)) { // Expand to a (misaligned) integer load of the same size, // then bitconvert to floating point or vector. SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); if (VT.isFloatingPoint() && LoadedVT != VT) Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); SDValue Ops[] = { Result, Chain }; return DAG.getMergeValues(Ops, 2, dl); } // Copy the value to a (aligned) stack slot using (unaligned) integer // loads and stores, then do a (aligned) load from the stack slot. EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); SmallVector Stores; SDValue StackPtr = StackBase; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the original location. SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), LD->isVolatile(), LD->isNonTemporal(), MinAlign(LD->getAlignment(), Offset)); // Follow the load with a store to the stack slot. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), false, false, 0)); // Increment the pointers. Offset += RegBytes; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, Increment); } // The last copy may be partial. Do an extending load. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset)); SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->isVolatile(), LD->isNonTemporal(), MinAlign(LD->getAlignment(), Offset)); // Follow the load with a store to the stack slot. Remember the store. // On big-endian machines this requires a truncating store to ensure // that the bits end up in the right place. Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), MemVT, false, false, 0)); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], Stores.size()); // Finally, perform the original load only redirected to the stack slot. Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, MachinePointerInfo(), LoadedVT, false, false, 0); // Callers expect a MERGE_VALUES node. SDValue Ops[] = { Load, TF }; return DAG.getMergeValues(Ops, 2, dl); } assert(LoadedVT.isInteger() && !LoadedVT.isVector() && "Unaligned load of unsupported type."); // Compute the new VT that is half the size of the old one. This is an // integer MVT. unsigned NumBits = LoadedVT.getSizeInBits(); EVT NewLoadedVT; NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); NumBits >>= 1; unsigned Alignment = LD->getAlignment(); unsigned IncrementSize = NumBits / 8; ISD::LoadExtType HiExtType = LD->getExtensionType(); // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. if (HiExtType == ISD::NON_EXTLOAD) HiExtType = ISD::ZEXTLOAD; // Load the value in two parts SDValue Lo, Hi; if (TLI.isLittleEndian()) { Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); } else { Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); } // aggregate the two parts SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy(Hi.getValueType())); SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); SDValue Ops[] = { Result, TF }; return DAG.getMergeValues(Ops, 2, dl); } /// PerformInsertVectorEltInMemory - Some target cannot handle a variable /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue SelectionDAGLegalize:: PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { SDValue Tmp1 = Vec; SDValue Tmp2 = Val; SDValue Tmp3 = Idx; // If the target doesn't support this, we have to spill the input vector // to a temporary stack slot, update the element, then reload it. This is // badness. We could also load the value into a vector register (either // with a "move to register" or "extload into register" instruction, then // permute it into place, if the idx is a constant and if the idx is // supported by the target. EVT VT = Tmp1.getValueType(); EVT EltVT = VT.getVectorElementType(); EVT IdxVT = Tmp3.getValueType(); EVT PtrVT = TLI.getPointerTy(); SDValue StackPtr = DAG.CreateStackTemporary(VT); int SPFI = cast(StackPtr.getNode())->getIndex(); // Store the vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, 0); // Truncate or zero extend offset to target pointer type. unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); // Add the offset to the index. unsigned EltSize = EltVT.getSizeInBits()/8; Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); // Store the scalar value. Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, false, false, 0); // Load the updated vector. return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, 0); } SDValue SelectionDAGLegalize:: ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { if (ConstantSDNode *InsertPos = dyn_cast(Idx)) { // SCALAR_TO_VECTOR requires that the type of the value being inserted // match the element type of the vector being created, except for // integers in which case the inserted value can be over width. EVT EltVT = Vec.getValueType().getVectorElementType(); if (Val.getValueType() == EltVT || (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Vec.getValueType(), Val); unsigned NumElts = Vec.getValueType().getVectorNumElements(); // We generate a shuffle of InVec and ScVec, so the shuffle mask // should be 0,1,2,3,4,5... with the appropriate element replaced with // elt 0 of the RHS. SmallVector ShufOps; for (unsigned i = 0; i != NumElts; ++i) ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, &ShufOps[0]); } } return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); } SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' // FIXME: We shouldn't do this for TargetConstantFP's. // FIXME: move this to the DAG Combiner! Note that we can't regress due // to phase ordering between legalized code and the dag combiner. This // probably means that we need to integrate dag combiner and legalizer // together. // We generally can't do this one for long doubles. SDValue Tmp1 = ST->getChain(); SDValue Tmp2 = ST->getBasePtr(); SDValue Tmp3; unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); DebugLoc dl = ST->getDebugLoc(); if (ConstantFPSDNode *CFP = dyn_cast(ST->getValue())) { if (CFP->getValueType(0) == MVT::f32 && getTypeAction(MVT::i32) == Legal) { Tmp3 = DAG.getConstant(CFP->getValueAPF(). bitcastToAPInt().zextOrTrunc(32), MVT::i32); return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment); } if (CFP->getValueType(0) == MVT::f64) { // If this target supports 64-bit registers, do a single 64-bit store. if (getTypeAction(MVT::i64) == Legal) { Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). zextOrTrunc(64), MVT::i64); return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment); } if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { // Otherwise, if the target supports 32-bit registers, use 2 32-bit // stores. If the target supports neither 32- nor 64-bits, this // xform is certainly not worth it. const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment); Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(4)); Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo().getWithOffset(4), isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } } } return SDValue(0, 0); } /// LegalizeOp - We know that the specified value has a legal type, and /// that its operands are legal. Now ensure that the operation itself /// is legal, recursively ensuring that the operands' operations remain /// legal. SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. return Op; SDNode *Node = Op.getNode(); DebugLoc dl = Node->getDebugLoc(); for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) assert(getTypeAction(Node->getValueType(i)) == Legal && "Unexpected illegal type!"); for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) assert((isTypeLegal(Node->getOperand(i).getValueType()) || Node->getOperand(i).getOpcode() == ISD::TargetConstant) && "Unexpected illegal type!"); // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDValue Tmp1, Tmp2, Tmp3, Tmp4; SDValue Result = Op; bool isCustom = false; // Figure out the correct action; the way to query this varies by opcode TargetLowering::LegalizeAction Action = TargetLowering::Legal; bool SimpleFinishLegalizing = true; switch (Node->getOpcode()) { case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: case ISD::VAARG: case ISD::STACKSAVE: Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::EXTRACT_VECTOR_ELT: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType()); break; case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: { EVT InnerType = cast(Node->getOperand(1))->getVT(); Action = TLI.getOperationAction(Node->getOpcode(), InnerType); break; } case ISD::SELECT_CC: case ISD::SETCC: case ISD::BR_CC: { unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : Node->getOpcode() == ISD::SETCC ? 2 : 1; unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; EVT OpVT = Node->getOperand(CompareOperand).getValueType(); ISD::CondCode CCCode = cast(Node->getOperand(CCOperand))->get(); Action = TLI.getCondCodeAction(CCCode, OpVT); if (Action == TargetLowering::Legal) { if (Node->getOpcode() == ISD::SELECT_CC) Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); else Action = TLI.getOperationAction(Node->getOpcode(), OpVT); } break; } case ISD::LOAD: case ISD::STORE: // FIXME: Model these properly. LOAD and STORE are complicated, and // STORE expects the unlegalized operand in some cases. SimpleFinishLegalizing = false; break; case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: // FIXME: This shouldn't be necessary. These nodes have special properties // dealing with the recursive nature of legalization. Removing this // special case should be done as part of making LegalizeDAG non-recursive. SimpleFinishLegalizing = false; break; case ISD::EXTRACT_ELEMENT: case ISD::FLT_ROUNDS_: case ISD::SADDO: case ISD::SSUBO: case ISD::UADDO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: case ISD::FPOWI: case ISD::MERGE_VALUES: case ISD::EH_RETURN: case ISD::FRAME_TO_ARGS_OFFSET: case ISD::EH_SJLJ_SETJMP: case ISD::EH_SJLJ_LONGJMP: case ISD::EH_SJLJ_DISPATCHSETUP: // These operations lie about being legal: when they claim to be legal, // they should actually be expanded. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Expand; break; case ISD::TRAMPOLINE: case ISD::FRAMEADDR: case ISD::RETURNADDR: // These operations lie about being legal: when they claim to be legal, // they should actually be custom-lowered. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Custom; break; case ISD::BUILD_VECTOR: // A weird case: legalization for BUILD_VECTOR never legalizes the // operands! // FIXME: This really sucks... changing it isn't semantically incorrect, // but it massively pessimizes the code for floating-point BUILD_VECTORs // because ConstantFP operands get legalized into constant pool loads // before the BUILD_VECTOR code can see them. It doesn't usually bite, // though, because BUILD_VECTORS usually get lowered into other nodes // which get legalized properly. SimpleFinishLegalizing = false; break; default: if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { Action = TargetLowering::Legal; } else { Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); } break; } if (SimpleFinishLegalizing) { SmallVector Ops, ResultVals; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); switch (Node->getOpcode()) { default: break; case ISD::BR: case ISD::BRIND: case ISD::BR_JT: case ISD::BR_CC: case ISD::BRCOND: // Branches tweak the chain to include LastCALLSEQ_END Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], LastCALLSEQ_END); Ops[0] = LegalizeOp(Ops[0]); LastCALLSEQ_END = DAG.getEntryNode(); break; case ISD::SHL: case ISD::SRL: case ISD::SRA: case ISD::ROTL: case ISD::ROTR: // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. if (!Ops[1].getValueType().isVector()) Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1])); break; case ISD::SRL_PARTS: case ISD::SRA_PARTS: case ISD::SHL_PARTS: // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. if (!Ops[2].getValueType().isVector()) Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2])); break; } Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(), Ops.size()), 0); switch (Action) { case TargetLowering::Legal: for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) ResultVals.push_back(Result.getValue(i)); break; case TargetLowering::Custom: // FIXME: The handling for custom lowering with multiple results is // a complete mess. Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) { for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { if (e == 1) ResultVals.push_back(Tmp1); else ResultVals.push_back(Tmp1.getValue(i)); } break; } // FALL THROUGH case TargetLowering::Expand: ExpandNode(Result.getNode(), ResultVals); break; case TargetLowering::Promote: PromoteNode(Result.getNode(), ResultVals); break; } if (!ResultVals.empty()) { for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { if (ResultVals[i] != SDValue(Node, i)) ResultVals[i] = LegalizeOp(ResultVals[i]); AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); } return ResultVals[Op.getResNo()]; } } switch (Node->getOpcode()) { default: #ifndef NDEBUG dbgs() << "NODE: "; Node->dump( &DAG); dbgs() << "\n"; #endif assert(0 && "Do not know how to legalize this operator!"); case ISD::BUILD_VECTOR: switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Result = Tmp3; break; } // FALLTHROUGH case TargetLowering::Expand: Result = ExpandBUILD_VECTOR(Result.getNode()); break; } break; case ISD::CALLSEQ_START: { SDNode *CallEnd = FindCallEndFromCallStart(Node); // Recursively Legalize all of the inputs of the call end that do not lead // to this call start. This ensures that any libcalls that need be inserted // are inserted *before* the CALLSEQ_START. {SmallPtrSet NodesLeadingTo; for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, NodesLeadingTo); } // Now that we have legalized all of the inputs (which may have inserted // libcalls), create the new CALLSEQ_START node. Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Merge in the last call to ensure that this call starts after the last // call ended. if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); } // Do not try to legalize the target-specific arguments (#1+). if (Tmp1 != Node->getOperand(0)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], Ops.size()), Result.getResNo()); } // Remember that the CALLSEQ_START is legalized. AddLegalizedOperand(Op.getValue(0), Result); if (Node->getNumValues() == 2) // If this has a flag result, remember it. AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); // Now that the callseq_start and all of the non-call nodes above this call // sequence have been legalized, legalize the call itself. During this // process, no libcalls can/will be inserted, guaranteeing that no calls // can overlap. assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); // Note that we are selecting this call! LastCALLSEQ_END = SDValue(CallEnd, 0); IsLegalizingCall = true; // Legalize the call, starting from the CALLSEQ_END. LegalizeOp(LastCALLSEQ_END); assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); return Result; } case ISD::CALLSEQ_END: // If the CALLSEQ_START node hasn't been legalized first, legalize it. This // will cause this node to be legalized as well as handling libcalls right. if (LastCALLSEQ_END.getNode() != Node) { LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); DenseMap::iterator I = LegalizedNodes.find(Op); assert(I != LegalizedNodes.end() && "Legalizing the call start should have legalized this node!"); return I->second; } // Otherwise, the call start has been legalized and everything is going // according to plan. Just legalize ourselves normally here. Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Do not try to legalize the target-specific arguments (#1+), except for // an optional flag input. if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){ if (Tmp1 != Node->getOperand(0)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], Ops.size()), Result.getResNo()); } } else { Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Ops.back() = Tmp2; Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], Ops.size()), Result.getResNo()); } } assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); // This finishes up call legalization. IsLegalizingCall = false; // If the CALLSEQ_END node has a flag, remember that we legalized it. AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); if (Node->getNumValues() == 2) AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); case ISD::LOAD: { LoadSDNode *LD = cast(Node); Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) { EVT VT = Node->getValueType(0); Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Tmp1, Tmp2, LD->getOffset()), Result.getResNo()); Tmp3 = Result.getValue(0); Tmp4 = Result.getValue(1); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); if (LD->getAlignment() < ABIAlignment){ Result = ExpandUnalignedLoad(cast(Result.getNode()), DAG, TLI); Tmp3 = Result.getOperand(0); Tmp4 = Result.getOperand(1); Tmp3 = LegalizeOp(Tmp3); Tmp4 = LegalizeOp(Tmp4); } } break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Tmp3, DAG); if (Tmp1.getNode()) { Tmp3 = LegalizeOp(Tmp1); Tmp4 = LegalizeOp(Tmp1.getValue(1)); } break; case TargetLowering::Promote: { // Only promote a load of vector type to another. assert(VT.isVector() && "Cannot promote this load!"); // Change base type to a different vector type. EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1)); Tmp4 = LegalizeOp(Tmp1.getValue(1)); break; } } // Since loads produce two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp3); AddLegalizedOperand(SDValue(Node, 1), Tmp4); return Op.getResNo() ? Tmp4 : Tmp3; } EVT SrcVT = LD->getMemoryVT(); unsigned SrcWidth = SrcVT.getSizeInBits(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); bool isNonTemporal = LD->isNonTemporal(); if (SrcWidth != SrcVT.getStoreSizeInBits() && // Some targets pretend to have an i1 loading operation, and actually // load an i8. This trick is correct for ZEXTLOAD because the top 7 // bits are guaranteed to be zero; it helps the optimizers understand // that these bits are zero. It is also useful for EXTLOAD, since it // tells the optimizers that those bits are undefined. It would be // nice to have an effective generic way of getting these benefits... // Until such a way is found, don't insist on promoting i1 here. (SrcVT != MVT::i1 || TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { // Promote to a byte-sized load if not loading an integral number of // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. unsigned NewWidth = SrcVT.getStoreSizeInBits(); EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); SDValue Ch; // The extra bits are guaranteed to be zero, since we stored them that // way. A zext load from NVT thus automatically gives zext from SrcVT. ISD::LoadExtType NewExtType = ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo(), NVT, isVolatile, isNonTemporal, Alignment); Ch = Result.getValue(1); // The chain. if (ExtType == ISD::SEXTLOAD) // Having the top bits zero doesn't help when sign extending. Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) // All the top bits are guaranteed to be zero - inform the optimizers. Result = DAG.getNode(ISD::AssertZext, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Ch); } else if (SrcWidth & (SrcWidth - 1)) { // If not loading a power-of-2 number of bits, expand as two loads. assert(!SrcVT.isVector() && "Unsupported extload!"); unsigned RoundWidth = 1 << Log2_32(SrcWidth); assert(RoundWidth < SrcWidth); unsigned ExtraWidth = SrcWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Load size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi, Ch; unsigned IncrementSize; if (TLI.isLittleEndian()) { // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) // Load the bottom RoundWidth bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy(Hi.getValueType()))); // Join the hi and lo parts. Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } else { // Big endian - avoid unaligned loads. // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 // Load the top RoundWidth bits. Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy(Hi.getValueType()))); // Join the hi and lo parts. Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Ch); } else { switch (TLI.getLoadExtAction(ExtType, SrcVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Tmp1, Tmp2, LD->getOffset()), Result.getResNo()); Tmp1 = Result.getValue(0); Tmp2 = Result.getValue(1); if (isCustom) { Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Tmp1 = LegalizeOp(Tmp3); Tmp2 = LegalizeOp(Tmp3.getValue(1)); } } else { // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); if (LD->getAlignment() < ABIAlignment){ Result = ExpandUnalignedLoad(cast(Result.getNode()), DAG, TLI); Tmp1 = Result.getOperand(0); Tmp2 = Result.getOperand(1); Tmp1 = LegalizeOp(Tmp1); Tmp2 = LegalizeOp(Tmp2); } } } break; case TargetLowering::Expand: if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) { SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); unsigned ExtendOp; switch (ExtType) { case ISD::EXTLOAD: ExtendOp = (SrcVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND); break; case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; default: llvm_unreachable("Unexpected extend load type!"); } Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); Tmp1 = LegalizeOp(Result); // Relegalize new nodes. Tmp2 = LegalizeOp(Load.getValue(1)); break; } // FIXME: This does not work for vectors on most targets. Sign- and // zero-extend operations are currently folded into extending loads, // whether they are legal or not, and then we end up here without any // support for legalizing them. assert(ExtType != ISD::EXTLOAD && "EXTLOAD should always be supported!"); // Turn the unsupported load into an EXTLOAD followed by an explicit // zero/sign extend inreg. Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); SDValue ValRes; if (ExtType == ISD::SEXTLOAD) ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. break; } } // Since loads produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp1); AddLegalizedOperand(SDValue(Node, 1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; } case ISD::STORE: { StoreSDNode *ST = cast(Node); Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); if (!ST->isTruncatingStore()) { if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { Result = SDValue(OptStore, 0); break; } { Tmp3 = LegalizeOp(ST->getValue()); Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Tmp1, Tmp3, Tmp2, ST->getOffset()), Result.getResNo()); EVT VT = Tmp3.getValueType(); switch (TLI.getOperationAction(ISD::STORE, VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); if (ST->getAlignment() < ABIAlignment) Result = ExpandUnalignedStore(cast(Result.getNode()), DAG, TLI); } break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Promote: assert(VT.isVector() && "Unknown legal promote case!"); Tmp3 = DAG.getNode(ISD::BITCAST, dl, TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment); break; } break; } } else { Tmp3 = LegalizeOp(ST->getValue()); EVT StVT = ST->getMemoryVT(); unsigned StWidth = StVT.getSizeInBits(); if (StWidth != StVT.getStoreSizeInBits()) { // Promote to a byte-sized store with upper bits zero if not // storing an integral number of bytes. For example, promote // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits()); Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), NVT, isVolatile, isNonTemporal, Alignment); } else if (StWidth & (StWidth - 1)) { // If not storing a power-of-2 number of bits, expand as two stores. assert(!StVT.isVector() && "Unsupported truncstore!"); unsigned RoundWidth = 1 << Log2_32(StWidth); assert(RoundWidth < StWidth); unsigned ExtraWidth = StWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Store size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi; unsigned IncrementSize; if (TLI.isLittleEndian()) { // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) // Store the bottom RoundWidth bits. Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy(Tmp3.getValueType()))); Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize)); } else { // Big endian - avoid unaligned stores. // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X // Store the top RoundWidth bits. Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy(Tmp3.getValueType()))); Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize)); } // The order of the stores doesn't matter. Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } else { if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || Tmp2 != ST->getBasePtr()) Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Tmp1, Tmp3, Tmp2, ST->getOffset()), Result.getResNo()); switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); if (ST->getAlignment() < ABIAlignment) Result = ExpandUnalignedStore(cast(Result.getNode()), DAG, TLI); } break; case TargetLowering::Custom: Result = TLI.LowerOperation(Result, DAG); break; case Expand: // TRUNCSTORE:i16 i32 -> STORE i16 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment); break; } } } break; } } assert(Result.getValueType() == Op.getValueType() && "Bad legalization!"); // Make sure that the generated code is itself legal. if (Result != Op) Result = LegalizeOp(Result); // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); // Store the value to a temporary stack slot, then LOAD the returned part. SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo(), false, false, 0); // Add the offset to the index. unsigned EltSize = Vec.getValueType().getVectorElementType().getSizeInBits()/8; Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, DAG.getConstant(EltSize, Idx.getValueType())); if (Idx.getValueType().bitsGT(TLI.getPointerTy())) Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); else Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); if (Op.getValueType().isVector()) return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), false, false, 0); return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(), Vec.getValueType().getVectorElementType(), false, false, 0); } SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); SDValue Vec = Op.getOperand(0); SDValue Part = Op.getOperand(1); SDValue Idx = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); // Store the value to a temporary stack slot, then LOAD the returned part. SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); int FI = cast(StackPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); // First store the whole vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, false, false, 0); // Then store the inserted part. // Add the offset to the index. unsigned EltSize = Vec.getValueType().getVectorElementType().getSizeInBits()/8; Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, DAG.getConstant(EltSize, Idx.getValueType())); if (Idx.getValueType().bitsGT(TLI.getPointerTy())) Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); else Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); // Store the subvector. Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, MachinePointerInfo(), false, false, 0); // Finally, load the updated vector. return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, false, false, 0); } SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { // We can't handle this case efficiently. Allocate a sufficiently // aligned object on the stack, store each element into it, then load // the result as a vector. // Create the stack frame object. EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); DebugLoc dl = Node->getDebugLoc(); SDValue FIPtr = DAG.CreateStackTemporary(VT); int FI = cast(FIPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); // Emit a store of each element to the stack slot. SmallVector Stores; unsigned TypeByteSize = EltVT.getSizeInBits() / 8; // Store (in the right endianness) the elements to memory. for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { // Ignore undef elements. if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; unsigned Offset = TypeByteSize*i; SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); // If the destination vector element type is narrower than the source // element type, only store the bits necessary. if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset), EltVT, false, false, 0)); } else Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset), false, false, 0)); } SDValue StoreChain; if (!Stores.empty()) // Not all undef elements? StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], Stores.size()); else StoreChain = DAG.getEntryNode(); // Result is a load from the stack slot. return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0); } SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { DebugLoc dl = Node->getDebugLoc(); SDValue Tmp1 = Node->getOperand(0); SDValue Tmp2 = Node->getOperand(1); // Get the sign bit of the RHS. First obtain a value that has the same // sign as the sign bit, i.e. negative if and only if the sign bit is 1. SDValue SignBit; EVT FloatVT = Tmp2.getValueType(); EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); if (isTypeLegal(IVT)) { // Convert to an integer with the same sign bit. SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); } else { // Store the float to memory, then load the sign part out as an integer. MVT LoadTy = TLI.getPointerTy(); // First create a temporary that is aligned for both the load and store. SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); // Then store the float to it. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), false, false, 0); if (TLI.isBigEndian()) { assert(FloatVT.isByteSized() && "Unsupported floating point type!"); // Load out a legal integer with the same sign bit as the float. SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), false, false, 0); } else { // Little endian SDValue LoadPtr = StackPtr; // The float may be wider than the integer we are going to load. Advance // the pointer so that the loaded integer will contain the sign bit. unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), LoadPtr, DAG.getIntPtrConstant(ByteOffset)); // Load a legal integer containing the sign bit. SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), false, false, 0); // Move the sign bit to the top bit of the loaded integer. unsigned BitShift = LoadTy.getSizeInBits() - (FloatVT.getSizeInBits() - 8 * ByteOffset); assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); if (BitShift) SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, DAG.getConstant(BitShift, TLI.getShiftAmountTy(SignBit.getValueType()))); } } // Now get the sign bit proper, by seeing whether the value is negative. SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), SignBit, DAG.getConstant(0, SignBit.getValueType()), ISD::SETLT); // Get the absolute value of the result. SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); // Select between the nabs and abs value based on the sign bit of // the input. return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), AbsVal); } void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, SmallVectorImpl &Results) { unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); DebugLoc dl = Node->getDebugLoc(); EVT VT = Node->getValueType(0); SDValue Tmp1 = SDValue(Node, 0); SDValue Tmp2 = SDValue(Node, 1); SDValue Tmp3 = Node->getOperand(2); SDValue Chain = Tmp1.getOperand(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); unsigned Align = cast(Tmp3)->getZExtValue(); unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); if (Align > StackAlign) SP = DAG.getNode(ISD::AND, dl, VT, SP, DAG.getConstant(-(uint64_t)Align, VT)); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), DAG.getIntPtrConstant(0, true), SDValue()); Results.push_back(Tmp1); Results.push_back(Tmp2); } /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and /// condition code CC on the current target. This routine expands SETCC with /// illegal condition code into AND / OR of multiple SETCC values. void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, DebugLoc dl) { EVT OpVT = LHS.getValueType(); ISD::CondCode CCCode = cast(CC)->get(); switch (TLI.getCondCodeAction(CCCode, OpVT)) { default: assert(0 && "Unknown condition code action!"); case TargetLowering::Legal: // Nothing to do. break; case TargetLowering::Expand: { ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; unsigned Opc = 0; switch (CCCode) { default: assert(0 && "Don't know how to expand this condition!"); case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; // FIXME: Implement more expansions. } SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); RHS = SDValue(); CC = SDValue(); break; } } } /// EmitStackConvert - Emit a store/load combination to the stack. This stores /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does /// a load from the stack slot to DestVT, extending it if needed. /// The resultant code need not be legal. SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl) { // Create the stack frame object. unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). getTypeForEVT(*DAG.getContext())); SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); FrameIndexSDNode *StackPtrFI = cast(FIPtr); int SPFI = StackPtrFI->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); unsigned SlotSize = SlotVT.getSizeInBits(); unsigned DestSize = DestVT.getSizeInBits(); const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); // Emit a store to the stack slot. Use a truncstore if the input value is // later than DestVT. SDValue Store; if (SrcSize > SlotSize) Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SlotVT, false, false, SrcAlign); else { assert(SrcSize == SlotSize && "Invalid store"); Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, false, false, SrcAlign); } // Result is a load from the stack slot. if (SlotSize == DestSize) return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, false, false, DestAlign); assert(SlotSize < DestSize && "Unknown extension!"); return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, false, false, DestAlign); } SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { DebugLoc dl = Node->getDebugLoc(); // Create a vector sized/aligned stack slot, store the value to element #0, // then load the whole vector back out. SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); FrameIndexSDNode *StackPtrFI = cast(StackPtr); int SPFI = StackPtrFI->getIndex(); SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, MachinePointerInfo::getFixedStack(SPFI), Node->getValueType(0).getVectorElementType(), false, false, 0); return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, 0); } /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't /// support the operation, but do support the resultant vector type. SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { unsigned NumElems = Node->getNumOperands(); SDValue Value1, Value2; DebugLoc dl = Node->getDebugLoc(); EVT VT = Node->getValueType(0); EVT OpVT = Node->getOperand(0).getValueType(); EVT EltVT = VT.getVectorElementType(); // If the only non-undef value is the low element, turn this into a // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. bool isOnlyLowElement = true; bool MoreThanTwoValues = false; bool isConstant = true; for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; if (!Value1.getNode()) { Value1 = V; } else if (!Value2.getNode()) { if (V != Value1) Value2 = V; } else if (V != Value1 && V != Value2) { MoreThanTwoValues = true; } } if (!Value1.getNode()) return DAG.getUNDEF(VT); if (isOnlyLowElement) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); // If all elements are constants, create a load from the constant pool. if (isConstant) { std::vector CV; for (unsigned i = 0, e = NumElems; i != e; ++i) { if (ConstantFPSDNode *V = dyn_cast(Node->getOperand(i))) { CV.push_back(const_cast(V->getConstantFPValue())); } else if (ConstantSDNode *V = dyn_cast(Node->getOperand(i))) { if (OpVT==EltVT) CV.push_back(const_cast(V->getConstantIntValue())); else { // If OpVT and EltVT don't match, EltVT is not legal and the // element values have been promoted/truncated earlier. Undo this; // we don't want a v16i8 to become a v16i32 for example. const ConstantInt *CI = V->getConstantIntValue(); CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), CI->getZExtValue())); } } else { assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); CV.push_back(UndefValue::get(OpNTy)); } } Constant *CP = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, Alignment); } if (!MoreThanTwoValues) { SmallVector ShuffleVec(NumElems, -1); for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; ShuffleVec[i] = V == Value1 ? 0 : NumElems; } if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { // Get the splatted value into the low element of a vector register. SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); SDValue Vec2; if (Value2.getNode()) Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); else Vec2 = DAG.getUNDEF(VT); // Return shuffle(LowValVec, undef, <0,0,0,0>) return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); } } // Otherwise, we can't handle this case efficiently. return ExpandVectorBuildThroughStack(Node); } // ExpandLibCall - Expand a node into a call to a libcall. If the result value // does not fit into a register, return the lo part and set the hi part to the // by-reg argument. If it does fit into a single register, return the result // and leave the Hi part unset. SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned) { assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); // Splice the libcall in wherever FindInputOutputChains tells us to. const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); // isTailCall may be true since the callee does not reference caller stack // frame. Check if it's in the right position. bool isTailCall = isInTailCallPosition(DAG, Node, TLI); std::pair CallInfo = TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 0, TLI.getLibcallCallingConv(LC), isTailCall, /*isReturnValueUsed=*/true, Callee, Args, DAG, Node->getDebugLoc()); if (!CallInfo.second.getNode()) // It's a tailcall, return the chain (which is the DAG root). return DAG.getRoot(); // Legalize the call sequence, starting with the chain. This will advance // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that // was added by LowerCallTo (guaranteeing proper serialization of calls). LegalizeOp(CallInfo.second); return CallInfo.first; } // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to // ExpandLibCall except that the first operand is the in-chain. std::pair SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned) { assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); SDValue InChain = Node->getOperand(0); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); // Splice the libcall in wherever FindInputOutputChains tells us to. const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); std::pair CallInfo = TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, /*isReturnValueUsed=*/true, Callee, Args, DAG, Node->getDebugLoc()); // Legalize the call sequence, starting with the chain. This will advance // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that // was added by LowerCallTo (guaranteeing proper serialization of calls). LegalizeOp(CallInfo.second); return CallInfo; } SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_PPCF128) { RTLIB::Libcall LC; switch (Node->getValueType(0).getSimpleVT().SimpleTy) { default: assert(0 && "Unexpected request for libcall!"); case MVT::f32: LC = Call_F32; break; case MVT::f64: LC = Call_F64; break; case MVT::f80: LC = Call_F80; break; case MVT::ppcf128: LC = Call_PPCF128; break; } return ExpandLibCall(LC, Node, false); } SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128) { RTLIB::Libcall LC; switch (Node->getValueType(0).getSimpleVT().SimpleTy) { default: assert(0 && "Unexpected request for libcall!"); case MVT::i8: LC = Call_I8; break; case MVT::i16: LC = Call_I16; break; case MVT::i32: LC = Call_I32; break; case MVT::i64: LC = Call_I64; break; case MVT::i128: LC = Call_I128; break; } return ExpandLibCall(LC, Node, isSigned); } /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem /// pairs. SDValue SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, bool isSigned, bool isDIV) { RTLIB::Libcall LC; switch (Node->getValueType(0).getSimpleVT().SimpleTy) { default: assert(0 && "Unexpected request for libcall!"); case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; } if (!TLI.getLibcallName(LC)) return SDValue(); // Only issue divrem libcall if both quotient and remainder are needed. unsigned OtherOpcode = 0; if (isSigned) { OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; } else { OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; } SDNode *OtherNode = 0; SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), UE = Op0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == Node) continue; if (User->getOpcode() == OtherOpcode && User->getOperand(0) == Op0 && User->getOperand(1) == Op1) { OtherNode = User; break; } } if (!OtherNode) return SDValue(); // If the libcall is already generated, no need to issue it again. DenseMap::iterator I = LegalizedNodes.find(SDValue(OtherNode,0)); if (I != LegalizedNodes.end()) { OtherNode = I->second.getNode(); SDNode *Chain = OtherNode->getOperand(0).getNode(); for (SDNode::use_iterator UI = Chain->use_begin(), UE = Chain->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == OtherNode) continue; if (isDIV) { assert(User->getOpcode() == ISD::CopyFromReg); } else { assert(User->getOpcode() == ISD::LOAD); } return SDValue(User, 0); } } // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); EVT RetVT = Node->getValueType(0); const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } // Also pass the return address of the remainder. SDValue FIPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = FIPtr; Entry.Ty = RetTy->getPointerTo(); Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); // Splice the libcall in wherever FindInputOutputChains tells us to. DebugLoc dl = Node->getDebugLoc(); std::pair CallInfo = TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); // Legalize the call sequence, starting with the chain. This will advance // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that // was added by LowerCallTo (guaranteeing proper serialization of calls). LegalizeOp(CallInfo.second); // Remainder is loaded back from the stack frame. SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr, MachinePointerInfo(), false, false, 0); return isDIV ? CallInfo.first : Rem; } /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a /// INT_TO_FP operation of the specified operand when the target requests that /// we expand it. At this point, we know that the result and operand types are /// legal for the target. SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, DebugLoc dl) { if (Op0.getValueType() == MVT::i32) { // simple 32-bit [signed|unsigned] integer to float/double expansion // Get the stack frame index of a 8 byte buffer. SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); // word offset constant for Hi/Lo address computation SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); // set up Hi and Lo (into buffer) address based on endian SDValue Hi = StackSlot; SDValue Lo = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), StackSlot, WordOff); if (TLI.isLittleEndian()) std::swap(Hi, Lo); // if signed map to unsigned space SDValue Op0Mapped; if (isSigned) { // constant used to invert sign bit (signed to unsigned mapping) SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); } else { Op0Mapped = Op0; } // store the lo of the constructed double - based on integer input SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, MachinePointerInfo(), false, false, 0); // initial hi portion of constructed double SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); // store the hi of the constructed double - biased exponent SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo(), false, false, 0); // load the constructed double SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo(), false, false, 0); // FP constant to bias correct the final result SDValue Bias = DAG.getConstantFP(isSigned ? BitsToDouble(0x4330000080000000ULL) : BitsToDouble(0x4330000000000000ULL), MVT::f64); // subtract the bias SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); // final result SDValue Result; // handle final rounding if (DestVT == MVT::f64) { // do nothing Result = Sub; } else if (DestVT.bitsLT(MVT::f64)) { Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0)); } else if (DestVT.bitsGT(MVT::f64)) { Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); } return Result; } assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); // Code below here assumes !isSigned without checking again. // Implementation of unsigned i64 to f64 following the algorithm in // __floatundidf in compiler_rt. This implementation has the advantage // of performing rounding correctly, both in the default rounding mode // and in all alternate rounding modes. // TODO: Generalize this for use with other types. if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, DAG.getConstant(32, MVT::i64)); SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52); return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); } // Implementation of unsigned i64 to f32. // TODO: Generalize this for use with other types. if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { // For unsigned conversions, convert them to signed conversions using the // algorithm from the x86_64 __floatundidf in compiler_rt. if (!isSigned) { SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); SDValue AndConst = DAG.getConstant(1, MVT::i64); SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); // TODO: This really should be implemented using a branch rather than a // select. We happen to get lucky and machinesink does the right // thing most of the time. This would be a good candidate for a //pseudo-op, or, even better, for whole-function isel. SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); } // Otherwise, implement the fully general conversion. SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, DAG.getConstant(UINT64_C(0x800), MVT::i64)); SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), ISD::SETUGE); SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, DAG.getConstant(32, SHVT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); SDValue TwoP32 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, DAG.getIntPtrConstant(0)); } SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), Op0, DAG.getConstant(0, Op0.getValueType()), ISD::SETLT); SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, Four, Zero); // If the sign bit of the integer is set, the large number will be treated // as a negative number. To counteract this, the dynamic code adds an // offset depending on the data type. uint64_t FF; switch (Op0.getValueType().getSimpleVT().SimpleTy) { default: assert(0 && "Unsupported integer type!"); case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) } if (TLI.isLittleEndian()) FF <<= 32; Constant *FudgeFactor = ConstantInt::get( Type::getInt64Ty(*DAG.getContext()), FF); SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); Alignment = std::min(Alignment, 4u); SDValue FudgeInReg; if (DestVT == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, Alignment); else { FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), MVT::f32, false, false, Alignment)); } return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); } /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a /// *INT_TO_FP operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP /// operation that takes a larger input. SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, DebugLoc dl) { // First step, figure out the appropriate *INT_TO_FP operation to use. EVT NewInTy = LegalOp.getValueType(); unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); assert(NewInTy.isInteger() && "Ran out of possibilities!"); // If the target supports SINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { OpToUse = ISD::SINT_TO_FP; break; } if (isSigned) continue; // If the target supports UINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { OpToUse = ISD::UINT_TO_FP; break; } // Otherwise, try a larger type. } // Okay, we found the operation and type to use. Zero extend our input to the // desired type then run the operation on it. return DAG.getNode(OpToUse, dl, DestVT, DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NewInTy, LegalOp)); } /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a /// FP_TO_*INT operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT /// operation that returns a larger result. SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, DebugLoc dl) { // First step, figure out the appropriate FP_TO*INT operation to use. EVT NewOutTy = DestVT; unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); assert(NewOutTy.isInteger() && "Ran out of possibilities!"); if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { OpToUse = ISD::FP_TO_SINT; break; } if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { OpToUse = ISD::FP_TO_UINT; break; } // Otherwise, try a larger type. } // Okay, we found the operation and type to use. SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); // Truncate the result of the extended FP_TO_*INT operation to the desired // size. return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); } /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. /// SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { EVT VT = Op.getValueType(); EVT SHVT = TLI.getShiftAmountTy(VT); SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; switch (VT.getSimpleVT().SimpleTy) { default: assert(0 && "Unhandled Expand type in BSWAP!"); case MVT::i16: Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); case MVT::i32: Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); case MVT::i64: Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); } } /// SplatByte - Distribute ByteVal over NumBits bits. // FIXME: Move this helper to a common place. static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { APInt Val = APInt(NumBits, ByteVal); unsigned Shift = 8; for (unsigned i = NumBits; i > 8; i >>= 1) { Val = (Val << Shift) | Val; Shift <<= 1; } return Val; } /// ExpandBitCount - Expand the specified bitcount instruction into operations. /// SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl) { switch (Opc) { default: assert(0 && "Cannot expand this yet!"); case ISD::CTPOP: { EVT VT = Op.getValueType(); EVT ShVT = TLI.getShiftAmountTy(VT); unsigned Len = VT.getSizeInBits(); assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && "CTPOP not implemented for this type."); // This is the "best" algorithm from // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); // v = v - ((v >> 1) & 0x55555555...) Op = DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(1, ShVT)), Mask55)); // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(2, ShVT)), Mask33)); // v = (v + (v >> 4)) & 0x0F0F0F0F... Op = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(4, ShVT))), Mask0F); // v = (v * 0x01010101...) >> (Len - 8) Op = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), DAG.getConstant(Len - 8, ShVT)); return Op; } case ISD::CTLZ: { // for now, we do this: // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // return popcount(~x); // // but see also: http://www.hackersdelight.org/HDcode/nlz.cc EVT VT = Op.getValueType(); EVT ShVT = TLI.getShiftAmountTy(VT); unsigned len = VT.getSizeInBits(); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); Op = DAG.getNode(ISD::OR, dl, VT, Op, DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); } Op = DAG.getNOT(dl, Op, VT); return DAG.getNode(ISD::CTPOP, dl, VT, Op); } case ISD::CTTZ: { // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // see also http://www.hackersdelight.org/HDcode/ntz.cc EVT VT = Op.getValueType(); SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, VT))); // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(VT.getSizeInBits(), VT), DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); } } } std::pair SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { unsigned Opc = Node->getOpcode(); MVT VT = cast(Node)->getMemoryVT().getSimpleVT(); RTLIB::Libcall LC; switch (Opc) { default: llvm_unreachable("Unhandled atomic intrinsic Expand!"); break; case ISD::ATOMIC_SWAP: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; } break; case ISD::ATOMIC_CMP_SWAP: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; } break; case ISD::ATOMIC_LOAD_ADD: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; } break; case ISD::ATOMIC_LOAD_SUB: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; } break; case ISD::ATOMIC_LOAD_AND: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; } break; case ISD::ATOMIC_LOAD_OR: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; } break; case ISD::ATOMIC_LOAD_XOR: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; } break; case ISD::ATOMIC_LOAD_NAND: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; } break; } return ExpandChainLibCall(LC, Node, false); } void SelectionDAGLegalize::ExpandNode(SDNode *Node, SmallVectorImpl &Results) { DebugLoc dl = Node->getDebugLoc(); SDValue Tmp1, Tmp2, Tmp3, Tmp4; switch (Node->getOpcode()) { case ISD::CTPOP: case ISD::CTLZ: case ISD::CTTZ: Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); Results.push_back(Tmp1); break; case ISD::BSWAP: Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); break; case ISD::FRAMEADDR: case ISD::RETURNADDR: case ISD::FRAME_TO_ARGS_OFFSET: Results.push_back(DAG.getConstant(0, Node->getValueType(0))); break; case ISD::FLT_ROUNDS_: Results.push_back(DAG.getConstant(1, Node->getValueType(0))); break; case ISD::EH_RETURN: case ISD::EH_LABEL: case ISD::PREFETCH: case ISD::VAEND: case ISD::EH_SJLJ_LONGJMP: case ISD::EH_SJLJ_DISPATCHSETUP: // If the target didn't expand these, there's nothing to do, so just // preserve the chain and be done. Results.push_back(Node->getOperand(0)); break; case ISD::EH_SJLJ_SETJMP: // If the target didn't expand this, just return 'zero' and preserve the // chain. Results.push_back(DAG.getConstant(0, MVT::i32)); Results.push_back(Node->getOperand(0)); break; case ISD::MEMBARRIER: { // If the target didn't lower this, lower it to '__sync_synchronize()' call TargetLowering::ArgListTy Args; std::pair CallResult = TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__sync_synchronize", TLI.getPointerTy()), Args, DAG, dl); Results.push_back(CallResult.second); break; } // By default, atomic intrinsics are marked Legal and lowered. Targets // which don't support them directly, however, may want libcalls, in which // case they mark them Expand, and we get here. case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_CMP_SWAP: { std::pair Tmp = ExpandAtomic(Node); Results.push_back(Tmp.first); Results.push_back(Tmp.second); break; } case ISD::DYNAMIC_STACKALLOC: ExpandDYNAMIC_STACKALLOC(Node, Results); break; case ISD::MERGE_VALUES: for (unsigned i = 0; i < Node->getNumValues(); i++) Results.push_back(Node->getOperand(i)); break; case ISD::UNDEF: { EVT VT = Node->getValueType(0); if (VT.isInteger()) Results.push_back(DAG.getConstant(0, VT)); else { assert(VT.isFloatingPoint() && "Unknown value type!"); Results.push_back(DAG.getConstantFP(0, VT)); } break; } case ISD::TRAP: { // If this operation is not supported, lower it to 'abort()' call TargetLowering::ArgListTy Args; std::pair CallResult = TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("abort", TLI.getPointerTy()), Args, DAG, dl); Results.push_back(CallResult.second); break; } case ISD::FP_ROUND: case ISD::BITCAST: Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::FP_EXTEND: Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getOperand(0).getValueType(), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::SIGN_EXTEND_INREG: { // NOTE: we could fall back on load/store here too for targets without // SAR. However, it is doubtful that any exist. EVT ExtraVT = cast(Node->getOperand(1))->getVT(); EVT VT = Node->getValueType(0); EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); if (VT.isVector()) ShiftAmountTy = VT; unsigned BitsDiff = VT.getScalarType().getSizeInBits() - ExtraVT.getScalarType().getSizeInBits(); SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), Node->getOperand(0), ShiftCst); Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); Results.push_back(Tmp1); break; } case ISD::FP_ROUND_INREG: { // The only way we can lower this is to turn it into a TRUNCSTORE, // EXTLOAD pair, targetting a temporary location (a stack slot). // NOTE: there is a choice here between constantly creating new stack // slots and always reusing the same one. We currently always create // new ones, as reuse may inhibit scheduling. EVT ExtraVT = cast(Node->getOperand(1))->getVT(); Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, Node->getValueType(0), dl); Results.push_back(Tmp1); break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, Node->getOperand(0), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::FP_TO_UINT: { SDValue True, False; EVT VT = Node->getOperand(0).getValueType(); EVT NVT = Node->getValueType(0); APFloat apf(APInt::getNullValue(VT.getSizeInBits())); APInt x = APInt::getSignBit(NVT.getSizeInBits()); (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); Tmp1 = DAG.getConstantFP(apf, VT); Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), Node->getOperand(0), Tmp1, ISD::SETLT); True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, DAG.getNode(ISD::FSUB, dl, VT, Node->getOperand(0), Tmp1)); False = DAG.getNode(ISD::XOR, dl, NVT, False, DAG.getConstant(x, NVT)); Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); Results.push_back(Tmp1); break; } case ISD::VAARG: { const Value *V = cast(Node->getOperand(2))->getValue(); EVT VT = Node->getValueType(0); Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); unsigned Align = Node->getConstantOperandVal(3); SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, MachinePointerInfo(V), false, false, 0); SDValue VAList = VAListLoad; if (Align > TLI.getMinStackArgumentAlignment()) { assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, DAG.getConstant(Align - 1, TLI.getPointerTy())); VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, DAG.getConstant(-(int64_t)Align, TLI.getPointerTy())); } // Increment the pointer, VAList, to the next vaarg Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, DAG.getConstant(TLI.getTargetData()-> getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), TLI.getPointerTy())); // Store the incremented VAList to the legalized pointer Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, MachinePointerInfo(V), false, false, 0); // Load the actual argument out of the pointer VAList Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), false, false, 0)); Results.push_back(Results[0].getValue(1)); break; } case ISD::VACOPY: { // This defaults to loading a pointer from the input and storing it to the // output, returning the chain. const Value *VD = cast(Node->getOperand(3))->getValue(); const Value *VS = cast(Node->getOperand(4))->getValue(); Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), Node->getOperand(2), MachinePointerInfo(VS), false, false, 0); Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), MachinePointerInfo(VD), false, false, 0); Results.push_back(Tmp1); break; } case ISD::EXTRACT_VECTOR_ELT: if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) // This must be an access of the only element. Return it. Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Node->getOperand(0)); else Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); Results.push_back(Tmp1); break; case ISD::EXTRACT_SUBVECTOR: Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); break; case ISD::INSERT_SUBVECTOR: Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); break; case ISD::CONCAT_VECTORS: { Results.push_back(ExpandVectorBuildThroughStack(Node)); break; } case ISD::SCALAR_TO_VECTOR: Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); break; case ISD::INSERT_VECTOR_ELT: Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), dl)); break; case ISD::VECTOR_SHUFFLE: { SmallVector Mask; cast(Node)->getMask(Mask); EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); if (getTypeAction(EltVT) == Promote) EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); unsigned NumElems = VT.getVectorNumElements(); SmallVector Ops; for (unsigned i = 0; i != NumElems; ++i) { if (Mask[i] < 0) { Ops.push_back(DAG.getUNDEF(EltVT)); continue; } unsigned Idx = Mask[i]; if (Idx < NumElems) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Node->getOperand(0), DAG.getIntPtrConstant(Idx))); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Node->getOperand(1), DAG.getIntPtrConstant(Idx - NumElems))); } Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); Results.push_back(Tmp1); break; } case ISD::EXTRACT_ELEMENT: { EVT OpTy = Node->getOperand(0).getValueType(); if (cast(Node->getOperand(1))->getZExtValue()) { // 1 -> Hi Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), DAG.getConstant(OpTy.getSizeInBits()/2, TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); } else { // 0 -> Lo Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Node->getOperand(0)); } Results.push_back(Tmp1); break; } case ISD::STACKSAVE: // Expand to CopyFromReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, Node->getValueType(0))); Results.push_back(Results[0].getValue(1)); } else { Results.push_back(DAG.getUNDEF(Node->getValueType(0))); Results.push_back(Node->getOperand(0)); } break; case ISD::STACKRESTORE: // Expand to CopyToReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, Node->getOperand(1))); } else { Results.push_back(Node->getOperand(0)); } break; case ISD::FCOPYSIGN: Results.push_back(ExpandFCOPYSIGN(Node)); break; case ISD::FNEG: // Expand Y = FNEG(X) -> Y = SUB -0.0, X Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, Node->getOperand(0)); Results.push_back(Tmp1); break; case ISD::FABS: { // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). EVT VT = Node->getValueType(0); Tmp1 = Node->getOperand(0); Tmp2 = DAG.getConstantFP(0.0, VT); Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, ISD::SETUGT); Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); Results.push_back(Tmp1); break; } case ISD::FSQRT: Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); break; case ISD::FSIN: Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); break; case ISD::FCOS: Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_PPCF128)); break; case ISD::FLOG: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); break; case ISD::FLOG2: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); break; case ISD::FLOG10: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); break; case ISD::FEXP: Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); break; case ISD::FEXP2: Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); break; case ISD::FTRUNC: Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); break; case ISD::FFLOOR: Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); break; case ISD::FCEIL: Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); break; case ISD::FRINT: Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); break; case ISD::FNEARBYINT: Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128)); break; case ISD::FPOWI: Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); break; case ISD::FPOW: Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_PPCF128)); break; case ISD::FDIV: Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); break; case ISD::FREM: Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_PPCF128)); break; case ISD::FP16_TO_FP32: Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); break; case ISD::FP32_TO_FP16: Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); break; case ISD::ConstantFP: { ConstantFPSDNode *CFP = cast(Node); // Check to see if this FP immediate is already legal. // If this is a legal constant, turn it into a TargetConstantFP node. if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) Results.push_back(SDValue(Node, 0)); else Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); break; } case ISD::EHSELECTION: { unsigned Reg = TLI.getExceptionSelectorRegister(); assert(Reg && "Can't expand to unknown register!"); Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, Node->getValueType(0))); Results.push_back(Results[0].getValue(1)); break; } case ISD::EXCEPTIONADDR: { unsigned Reg = TLI.getExceptionAddressRegister(); assert(Reg && "Can't expand to unknown register!"); Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, Node->getValueType(0))); Results.push_back(Results[0].getValue(1)); break; } case ISD::SUB: { EVT VT = Node->getValueType(0); assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && TLI.isOperationLegalOrCustom(ISD::XOR, VT) && "Don't know how to expand this subtraction!"); Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); break; } case ISD::UREM: case ISD::SREM: { EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); bool isSigned = Node->getOpcode() == ISD::SREM; unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; Tmp2 = Node->getOperand(0); Tmp3 = Node->getOperand(1); if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { // X % Y -> X-X/Y*Y Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); } else if (isSigned) { Tmp1 = ExpandDivRemLibCall(Node, true, false); if (!Tmp1.getNode()) Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, RTLIB::SREM_I64, RTLIB::SREM_I128); } else { Tmp1 = ExpandDivRemLibCall(Node, false, false); if (!Tmp1.getNode()) Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, RTLIB::UREM_I64, RTLIB::UREM_I128); } Results.push_back(Tmp1); break; } case ISD::UDIV: case ISD::SDIV: { bool isSigned = Node->getOpcode() == ISD::SDIV; unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), Node->getOperand(1)); else if (isSigned) { Tmp1 = ExpandDivRemLibCall(Node, true, true); if (!Tmp1.getNode()) { Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, RTLIB::SDIV_I64, RTLIB::SDIV_I128); } } else { Tmp1 = ExpandDivRemLibCall(Node, false, true); if (!Tmp1.getNode()) { Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, RTLIB::UDIV_I64, RTLIB::UDIV_I128); } } Results.push_back(Tmp1); break; } case ISD::MULHU: case ISD::MULHS: { unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && "If this wasn't legal, it shouldn't have been created!"); Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), Node->getOperand(1)); Results.push_back(Tmp1.getValue(1)); break; } case ISD::MUL: { EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); // See if multiply or divide can be lowered using two-result operations. // We just need the low half of the multiply; try both the signed // and unsigned forms. If the target supports both SMUL_LOHI and // UMUL_LOHI, form a preference by checking which forms of plain // MULH it supports. bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); unsigned OpToUse = 0; if (HasSMUL_LOHI && !HasMULHS) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI && !HasMULHU) { OpToUse = ISD::UMUL_LOHI; } else if (HasSMUL_LOHI) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI) { OpToUse = ISD::UMUL_LOHI; } if (OpToUse) { Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), Node->getOperand(1))); break; } Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, RTLIB::MUL_I64, RTLIB::MUL_I128); Results.push_back(Tmp1); break; } case ISD::SADDO: case ISD::SSUBO: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); Results.push_back(Sum); EVT OType = Node->getValueType(1); SDValue Zero = DAG.getConstant(0, LHS.getValueType()); // LHSSign -> LHS >= 0 // RHSSign -> RHS >= 0 // SumSign -> Sum >= 0 // // Add: // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) // Sub: // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) // SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, Node->getOpcode() == ISD::SADDO ? ISD::SETEQ : ISD::SETNE); SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); Results.push_back(Cmp); break; } case ISD::UADDO: case ISD::USUBO: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); Results.push_back(Sum); Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, Node->getOpcode () == ISD::UADDO ? ISD::SETULT : ISD::SETUGT)); break; } case ISD::UMULO: case ISD::SMULO: { EVT VT = Node->getValueType(0); SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue BottomHalf; SDValue TopHalf; static const unsigned Ops[2][3] = { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; bool isSigned = Node->getOpcode() == ISD::SMULO; if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, RHS); TopHalf = BottomHalf.getValue(1); } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) { EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, DAG.getIntPtrConstant(0)); TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, DAG.getIntPtrConstant(1)); } else { // We can fall back to a libcall with an illegal type for the MUL if we // have a libcall big enough. // Also, we can fall back to a division in some cases, but that's a big // performance hit in the general case. EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (WideVT == MVT::i16) LC = RTLIB::MUL_I16; else if (WideVT == MVT::i32) LC = RTLIB::MUL_I32; else if (WideVT == MVT::i64) LC = RTLIB::MUL_I64; else if (WideVT == MVT::i128) LC = RTLIB::MUL_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); SDValue Ret = ExpandLibCall(LC, Node, isSigned); BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Ret); TopHalf = DAG.getNode(ISD::SRL, dl, Ret.getValueType(), Ret, DAG.getConstant(VT.getSizeInBits(), TLI.getPointerTy())); TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, TopHalf); } if (isSigned) { Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy(BottomHalf.getValueType())); Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, ISD::SETNE); } else { TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, DAG.getConstant(0, VT), ISD::SETNE); } Results.push_back(BottomHalf); Results.push_back(TopHalf); break; } case ISD::BUILD_PAIR: { EVT PairTy = Node->getValueType(0); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, DAG.getConstant(PairTy.getSizeInBits()/2, TLI.getShiftAmountTy(PairTy))); Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); break; } case ISD::SELECT: Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); if (Tmp1.getOpcode() == ISD::SETCC) { Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), Tmp2, Tmp3, cast(Tmp1.getOperand(2))->get()); } else { Tmp1 = DAG.getSelectCC(dl, Tmp1, DAG.getConstant(0, Tmp1.getValueType()), Tmp2, Tmp3, ISD::SETNE); } Results.push_back(Tmp1); break; case ISD::BR_JT: { SDValue Chain = Node->getOperand(0); SDValue Table = Node->getOperand(1); SDValue Index = Node->getOperand(2); EVT PTy = TLI.getPointerTy(); const TargetData &TD = *TLI.getTargetData(); unsigned EntrySize = DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(EntrySize, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, MachinePointerInfo::getJumpTable(), MemVT, false, false, 0); Addr = LD; if (TM.getRelocationModel() == Reloc::PIC_) { // For PIC, the sequence is: // BRIND(load(Jumptable + index) + RelocBase) // RelocBase can be JumpTable, GOT or some sort of global base. Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, TLI.getPICJumpTableRelocBase(Table, DAG)); } Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); Results.push_back(Tmp1); break; } case ISD::BRCOND: // Expand brcond's setcc into its constituent parts and create a BR_CC // Node. Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); if (Tmp2.getOpcode() == ISD::SETCC) { Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), Tmp2.getOperand(0), Tmp2.getOperand(1), Node->getOperand(2)); } else { Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, DAG.getCondCode(ISD::SETNE), Tmp2, DAG.getConstant(0, Tmp2.getValueType()), Node->getOperand(2)); } Results.push_back(Tmp1); break; case ISD::SETCC: { Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); // If we expanded the SETCC into an AND/OR, return the new node if (Tmp2.getNode() == 0) { Results.push_back(Tmp1); break; } // Otherwise, SETCC for the given comparison type must be completely // illegal; expand it into a SELECT_CC. EVT VT = Node->getValueType(0); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); Results.push_back(Tmp1); break; } case ISD::SELECT_CC: { Tmp1 = Node->getOperand(0); // LHS Tmp2 = Node->getOperand(1); // RHS Tmp3 = Node->getOperand(2); // True Tmp4 = Node->getOperand(3); // False SDValue CC = Node->getOperand(4); LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, dl); assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); CC = DAG.getCondCode(ISD::SETNE); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Tmp4, CC); Results.push_back(Tmp1); break; } case ISD::BR_CC: { Tmp1 = Node->getOperand(0); // Chain Tmp2 = Node->getOperand(2); // LHS Tmp3 = Node->getOperand(3); // RHS Tmp4 = Node->getOperand(1); // CC LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, dl); LastCALLSEQ_END = DAG.getEntryNode(); assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); Tmp4 = DAG.getCondCode(ISD::SETNE); Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); Results.push_back(Tmp1); break; } case ISD::GLOBAL_OFFSET_TABLE: case ISD::GlobalAddress: case ISD::GlobalTLSAddress: case ISD::ExternalSymbol: case ISD::ConstantPool: case ISD::JumpTable: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: // FIXME: Custom lowering for these operations shouldn't return null! for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) Results.push_back(SDValue(Node, i)); break; } } void SelectionDAGLegalize::PromoteNode(SDNode *Node, SmallVectorImpl &Results) { EVT OVT = Node->getValueType(0); if (Node->getOpcode() == ISD::UINT_TO_FP || Node->getOpcode() == ISD::SINT_TO_FP || Node->getOpcode() == ISD::SETCC) { OVT = Node->getOperand(0).getValueType(); } EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); DebugLoc dl = Node->getDebugLoc(); SDValue Tmp1, Tmp2, Tmp3; switch (Node->getOpcode()) { case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: // Zero extend the argument. Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); // Perform the larger operation. Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); if (Node->getOpcode() == ISD::CTTZ) { //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), ISD::SETEQ); Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); } else if (Node->getOpcode() == ISD::CTLZ) { // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), NVT)); } Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); break; case ISD::BSWAP: { unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); Results.push_back(Tmp1); break; } case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), Node->getOpcode() == ISD::FP_TO_SINT, dl); Results.push_back(Tmp1); break; case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), Node->getOpcode() == ISD::SINT_TO_FP, dl); Results.push_back(Tmp1); break; case ISD::AND: case ISD::OR: case ISD::XOR: { unsigned ExtOp, TruncOp; if (OVT.isVector()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else { assert(OVT.isInteger() && "Cannot promote logic operation"); ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } // Promote each of the values to the new type. Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); // Perform the larger operation, then convert back Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); break; } case ISD::SELECT: { unsigned ExtOp, TruncOp; if (Node->getValueType(0).isVector()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else if (Node->getValueType(0).isInteger()) { ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } else { ExtOp = ISD::FP_EXTEND; TruncOp = ISD::FP_ROUND; } Tmp1 = Node->getOperand(0); // Promote each of the values to the new type. Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); // Perform the larger operation, then round down. Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); if (TruncOp != ISD::FP_ROUND) Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); else Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, DAG.getIntPtrConstant(0)); Results.push_back(Tmp1); break; } case ISD::VECTOR_SHUFFLE: { SmallVector Mask; cast(Node)->getMask(Mask); // Cast the two input vectors. Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); // Convert the shuffle mask to the right # elements. Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); Results.push_back(Tmp1); break; } case ISD::SETCC: { unsigned ExtOp = ISD::FP_EXTEND; if (NVT.isInteger()) { ISD::CondCode CCCode = cast(Node->getOperand(2))->get(); ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; } Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2))); break; } } } // SelectionDAG::Legalize - This is the entry point for the file. // void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) { /// run - This is the main entry point to this class. /// SelectionDAGLegalize(*this, OptLevel).LegalizeDAG(); }