//===-- TargetData.cpp - Data size & alignment routines --------------------==// // // This file defines target properties related to datatype size/offset/alignment // information. It uses lazy annotations to cache information about how // structure types are laid out and used. // // This structure should be created once, filled in if the defaults are not // correct and then passed around by const&. None of the members functions // require modification to the object. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" // Handle the Pass registration stuff neccesary to use TargetData's. namespace { // Register the default SparcV9 implementation... RegisterPass X("targetdata", "Target Data Layout"); } static inline void getTypeInfo(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment); //===----------------------------------------------------------------------===// // Support for StructLayout Annotation //===----------------------------------------------------------------------===// StructLayout::StructLayout(const StructType *ST, const TargetData &TD) : Annotation(TD.getStructLayoutAID()) { StructAlignment = 0; StructSize = 0; // Loop over each of the elements, placing them in memory... for (StructType::ElementTypes::const_iterator TI = ST->getElementTypes().begin(), TE = ST->getElementTypes().end(); TI != TE; ++TI) { const Type *Ty = *TI; unsigned char A; unsigned TyAlign; uint64_t TySize; getTypeInfo(Ty, &TD, TySize, A); TyAlign = A; // Add padding if neccesary to make the data element aligned properly... if (StructSize % TyAlign != 0) StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... // Keep track of maximum alignment constraint StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets.push_back(StructSize); StructSize += TySize; // Consume space for this data item } // Empty structures have alignment of 1 byte. if (StructAlignment == 0) StructAlignment = 1; // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. if (StructSize % StructAlignment != 0) StructSize = (StructSize/StructAlignment + 1) * StructAlignment; } Annotation *TargetData::TypeAnFactory(AnnotationID AID, const Annotable *T, void *D) { const TargetData &TD = *(const TargetData*)D; assert(AID == TD.AID && "Target data annotation ID mismatch!"); const Type *Ty = cast((const Value *)T); assert(isa(Ty) && "Can only create StructLayout annotation on structs!"); return new StructLayout((const StructType *)Ty, TD); } //===----------------------------------------------------------------------===// // TargetData Class Implementation //===----------------------------------------------------------------------===// TargetData::TargetData(const std::string &TargetName, bool isLittleEndian, unsigned char PtrSize, unsigned char PtrAl, unsigned char DoubleAl, unsigned char FloatAl, unsigned char LongAl, unsigned char IntAl, unsigned char ShortAl, unsigned char ByteAl) : AID(AnnotationManager::getID("TargetData::" + TargetName)) { AnnotationManager::registerAnnotationFactory(AID, TypeAnFactory, this); // If this assert triggers, a pass "required" TargetData information, but the // top level tool did not provide once for it. We do not want to default // construct, or else we might end up using a bad endianness or pointer size! // assert(!TargetName.empty() && "ERROR: Tool did not specify a target data to use!"); LittleEndian = isLittleEndian; PointerSize = PtrSize; PointerAlignment = PtrAl; DoubleAlignment = DoubleAl; assert(DoubleAlignment == PtrAl && "Double alignment and pointer alignment agree for now!"); FloatAlignment = FloatAl; LongAlignment = LongAl; IntAlignment = IntAl; ShortAlignment = ShortAl; ByteAlignment = ByteAl; } TargetData::TargetData(const std::string &ToolName, const Module *M) : AID(AnnotationManager::getID("TargetData::" + ToolName)) { AnnotationManager::registerAnnotationFactory(AID, TypeAnFactory, this); LittleEndian = M->isLittleEndian(); PointerSize = M->has32BitPointers() ? 4 : 8; PointerAlignment = PointerSize; DoubleAlignment = PointerSize; FloatAlignment = 4; LongAlignment = 8; IntAlignment = 4; ShortAlignment = 2; ByteAlignment = 1; } TargetData::~TargetData() { AnnotationManager::registerAnnotationFactory(AID, 0); // Deregister factory } static inline void getTypeInfo(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment) { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getPrimitiveID()) { case Type::VoidTyID: case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Size = 1; Alignment = TD->getByteAlignment(); return; case Type::UShortTyID: case Type::ShortTyID: Size = 2; Alignment = TD->getShortAlignment(); return; case Type::UIntTyID: case Type::IntTyID: Size = 4; Alignment = TD->getIntAlignment(); return; case Type::ULongTyID: case Type::LongTyID: Size = 8; Alignment = TD->getLongAlignment(); return; case Type::FloatTyID: Size = 4; Alignment = TD->getFloatAlignment(); return; case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleAlignment(); return; case Type::LabelTyID: case Type::PointerTyID: Size = TD->getPointerSize(); Alignment = TD->getPointerAlignment(); return; case Type::ArrayTyID: { const ArrayType *ATy = (const ArrayType *)Ty; getTypeInfo(ATy->getElementType(), TD, Size, Alignment); Size *= ATy->getNumElements(); return; } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = TD->getStructLayout((const StructType*)Ty); Size = Layout->StructSize; Alignment = Layout->StructAlignment; return; } case Type::TypeTyID: default: assert(0 && "Bad type for getTypeInfo!!!"); return; } } uint64_t TargetData::getTypeSize(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfo(Ty, this, Size, Align); return Size; } unsigned char TargetData::getTypeAlignment(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfo(Ty, this, Size, Align); return Align; } uint64_t TargetData::getIndexedOffset(const Type *ptrTy, const std::vector &Idx) const { const Type *Ty = ptrTy; assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; for (unsigned CurIDX = 0; CurIDX != Idx.size(); ++CurIDX) { if (Idx[CurIDX]->getType() == Type::LongTy) { // Update Ty to refer to current element Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. // Both must be known constants, or the index shd be 0; else this fails. int64_t arrayIdx = cast(Idx[CurIDX])->getValue(); Result += arrayIdx * (int64_t)getTypeSize(Ty); } else { const StructType *STy = cast(Ty); assert(Idx[CurIDX]->getType() == Type::UByteTy && "Illegal struct idx"); unsigned FieldNo = cast(Idx[CurIDX])->getValue(); // Get structure layout information... const StructLayout *Layout = getStructLayout(STy); // Add in the offset, as calculated by the structure layout info... assert(FieldNo < Layout->MemberOffsets.size() &&"FieldNo out of range!"); Result += Layout->MemberOffsets[FieldNo]; // Update Ty to refer to current element Ty = STy->getElementTypes()[FieldNo]; } } return Result; }