//===-- Scalar.h - Scalar Transformations -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines prototypes for accessor functions that expose passes // in the Scalar transformations library. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_SCALAR_H #define LLVM_TRANSFORMS_SCALAR_H namespace llvm { class Pass; class FunctionPass; class GetElementPtrInst; class PassInfo; class TerminatorInst; //===----------------------------------------------------------------------===// // // RaisePointerReferences - Try to eliminate as many pointer arithmetic // expressions as possible, by converting expressions to use getelementptr and // friends. // Pass *createRaisePointerReferencesPass(); //===----------------------------------------------------------------------===// // // Constant Propagation Pass - A worklist driven constant propagation pass // Pass *createConstantPropagationPass(); //===----------------------------------------------------------------------===// // // Sparse Conditional Constant Propagation Pass // Pass *createSCCPPass(); //===----------------------------------------------------------------------===// // // DeadInstElimination - This pass quickly removes trivially dead instructions // without modifying the CFG of the function. It is a BasicBlockPass, so it // runs efficiently when queued next to other BasicBlockPass's. // Pass *createDeadInstEliminationPass(); //===----------------------------------------------------------------------===// // // DeadCodeElimination - This pass is more powerful than DeadInstElimination, // because it is worklist driven that can potentially revisit instructions when // their other instructions become dead, to eliminate chains of dead // computations. // Pass *createDeadCodeEliminationPass(); //===----------------------------------------------------------------------===// // // AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm. This // algorithm assumes instructions are dead until proven otherwise, which makes // it more successful are removing non-obviously dead instructions. // Pass *createAggressiveDCEPass(); //===----------------------------------------------------------------------===// // // Scalar Replacement of Aggregates - Break up alloca's of aggregates into // multiple allocas if possible. // Pass *createScalarReplAggregatesPass(); //===----------------------------------------------------------------------===// // // DecomposeMultiDimRefs - Convert multi-dimensional references consisting of // any combination of 2 or more array and structure indices into a sequence of // instructions (using getelementpr and cast) so that each instruction has at // most one index (except structure references, which need an extra leading // index of [0]). // This pass decomposes all multi-dimensional references in a function. FunctionPass *createDecomposeMultiDimRefsPass(); // This function decomposes a single instance of such a reference. // Return value: true if the instruction was replaced; false otherwise. // bool DecomposeArrayRef(GetElementPtrInst* GEP); //===----------------------------------------------------------------------===// // // GCSE - This pass is designed to be a very quick global transformation that // eliminates global common subexpressions from a function. It does this by // examining the SSA value graph of the function, instead of doing slow // bit-vector computations. // FunctionPass *createGCSEPass(); //===----------------------------------------------------------------------===// // // InductionVariableSimplify - Transform induction variables in a program to all // use a single canonical induction variable per loop. // Pass *createIndVarSimplifyPass(); //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG, and has a tendency to // make instructions dead, so a subsequent DCE pass is useful. // // This pass combines things like: // %Y = add int 1, %X // %Z = add int 1, %Y // into: // %Z = add int 2, %X // Pass *createInstructionCombiningPass(); //===----------------------------------------------------------------------===// // // LICM - This pass is a simple natural loop based loop invariant code motion // pass. // FunctionPass *createLICMPass(); //===----------------------------------------------------------------------===// // // PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks // that are preceeded by a conditional branch, where the branch gives // information about the operands of the condition. For example, this C code: // if (x == 0) { ... = x + 4; // becomes: // if (x == 0) { // x2 = phi(x); // Node that can hold data flow information about X // ... = x2 + 4; // // Since the direction of the condition branch gives information about X itself // (whether or not it is zero), some passes (like value numbering or ABCD) can // use the inserted Phi/Pi nodes as a place to attach information, in this case // saying that X has a value of 0 in this scope. The power of this analysis // information is that "in the scope" translates to "for all uses of x2". // // This special form of Phi node is refered to as a Pi node, following the // terminology defined in the "Array Bounds Checks on Demand" paper. // Pass *createPiNodeInsertionPass(); //===----------------------------------------------------------------------===// // // This pass is used to promote memory references to be register references. A // simple example of the transformation performed by this pass is: // // FROM CODE TO CODE // %X = alloca int, uint 1 ret int 42 // store int 42, int *%X // %Y = load int* %X // ret int %Y // Pass *createPromoteMemoryToRegister(); //===----------------------------------------------------------------------===// // // This pass reassociates commutative expressions in an order that is designed // to promote better constant propagation, GCSE, LICM, PRE... // // For example: 4 + (x + 5) -> x + (4 + 5) // FunctionPass *createReassociatePass(); //===----------------------------------------------------------------------===// // // This pass eliminates correlated conditions, such as these: // if (X == 0) // if (X > 2) ; // Known false // else // Y = X * Z; // = 0 // Pass *createCorrelatedExpressionEliminationPass(); //===----------------------------------------------------------------------===// // // TailDuplication - Eliminate unconditional branches through controlled code // duplication, creating simpler CFG structures. // Pass *createTailDuplicationPass(); //===----------------------------------------------------------------------===// // // CFG Simplification - Merge basic blocks, eliminate unreachable blocks, // simplify terminator instructions, etc... // FunctionPass *createCFGSimplificationPass(); //===----------------------------------------------------------------------===// // // BreakCriticalEdges pass - Break all of the critical edges in the CFG by // inserting a dummy basic block. This pass may be "required" by passes that // cannot deal with critical edges. For this usage, a pass must call: // // AU.addRequiredID(BreakCriticalEdgesID); // // This pass obviously invalidates the CFG, but can update forward dominator // (set, immediate dominators, tree, and frontier) information. // Pass *createBreakCriticalEdgesPass(); extern const PassInfo *BreakCriticalEdgesID; //===----------------------------------------------------------------------===// // // LoopSimplify pass - Insert Pre-header blocks into the CFG for every function // in the module. This pass updates dominator information, loop information, // and does not add critical edges to the CFG. // // AU.addRequiredID(LoopSimplifyID); // Pass *createLoopSimplifyPass(); extern const PassInfo *LoopSimplifyID; //===----------------------------------------------------------------------===// // // This pass eliminates call instructions to the current function which occur // immediately before return instructions. // FunctionPass *createTailCallEliminationPass(); //===----------------------------------------------------------------------===// // This pass convert malloc and free instructions to %malloc & %free function // calls. // FunctionPass *createLowerAllocationsPass(); //===----------------------------------------------------------------------===// // This pass converts SwitchInst instructions into a sequence of chained binary // branch instructions. // FunctionPass *createLowerSwitchPass(); //===----------------------------------------------------------------------===// // This pass converts SelectInst instructions into conditional branch and PHI // instructions. If the OnlyFP flag is set to true, then only floating point // select instructions are lowered. // FunctionPass *createLowerSelectPass(bool OnlyFP = false); //===----------------------------------------------------------------------===// // This pass converts invoke and unwind instructions to use sjlj exception // handling mechanisms. Note that after this pass runs the CFG is not entirely // accurate (exceptional control flow edges are not correct anymore) so only // very simple things should be done after the lowerinvoke pass has run (like // generation of native code). This should not be used as a general purpose "my // LLVM-to-LLVM pass doesn't support the invoke instruction yet" lowering pass. // FunctionPass *createLowerInvokePass(); extern const PassInfo *LowerInvokePassID; //===----------------------------------------------------------------------===// // // These functions removes symbols from functions and modules. // Pass *createSymbolStrippingPass(); Pass *createFullSymbolStrippingPass(); } // End llvm namespace #endif