//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==// // // This file describes the target machine instructions to the code generator. // //===---------------------------------------------------------------------===// #ifndef LLVM_TARGET_MACHINEINSTRINFO_H #define LLVM_TARGET_MACHINEINSTRINFO_H #include "llvm/Target/TargetMachine.h" #include "Support/DataTypes.h" #include class MachineInstrDescriptor; class TmpInstruction; class MachineInstr; class Value; class Instruction; typedef int InstrSchedClass; // Global variable holding an array of descriptors for machine instructions. // The actual object needs to be created separately for each target machine. // This variable is initialized and reset by class MachineInstrInfo. // // FIXME: This should be a property of the target so that more than one target // at a time can be active... // extern const MachineInstrDescriptor *TargetInstrDescriptors; //--------------------------------------------------------------------------- // struct MachineInstrDescriptor: // Predefined information about each machine instruction. // Designed to initialized statically. // // class MachineInstructionInfo // Interface to description of machine instructions // //--------------------------------------------------------------------------- const unsigned int M_NOP_FLAG = 1; const unsigned int M_BRANCH_FLAG = 1 << 1; const unsigned int M_CALL_FLAG = 1 << 2; const unsigned int M_RET_FLAG = 1 << 3; const unsigned int M_ARITH_FLAG = 1 << 4; const unsigned int M_CC_FLAG = 1 << 6; const unsigned int M_LOGICAL_FLAG = 1 << 6; const unsigned int M_INT_FLAG = 1 << 7; const unsigned int M_FLOAT_FLAG = 1 << 8; const unsigned int M_CONDL_FLAG = 1 << 9; const unsigned int M_LOAD_FLAG = 1 << 10; const unsigned int M_PREFETCH_FLAG = 1 << 11; const unsigned int M_STORE_FLAG = 1 << 12; const unsigned int M_DUMMY_PHI_FLAG = 1 << 13; const unsigned int M_PSEUDO_FLAG = 1 << 14; struct MachineInstrDescriptor { string opCodeString; // Assembly language mnemonic for the opcode. int numOperands; // Number of args; -1 if variable #args int resultPos; // Position of the result; -1 if no result unsigned int maxImmedConst; // Largest +ve constant in IMMMED field or 0. bool immedIsSignExtended; // Is IMMED field sign-extended? If so, // smallest -ve value is -(maxImmedConst+1). unsigned int numDelaySlots; // Number of delay slots after instruction unsigned int latency; // Latency in machine cycles InstrSchedClass schedClass; // enum identifying instr sched class unsigned int iclass; // flags identifying machine instr class }; class MachineInstrInfo : public NonCopyableV { public: const TargetMachine& target; protected: const MachineInstrDescriptor* desc; // raw array to allow static init'n unsigned int descSize; // number of entries in the desc array unsigned int numRealOpCodes; // number of non-dummy op codes public: MachineInstrInfo(const TargetMachine& tgt, const MachineInstrDescriptor *desc, unsigned descSize, unsigned numRealOpCodes); virtual ~MachineInstrInfo(); unsigned getNumRealOpCodes() const { return numRealOpCodes; } unsigned getNumTotalOpCodes() const { return descSize; } const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const { assert(opCode >= 0 && opCode < (int)descSize); return desc[opCode]; } int getNumOperands(MachineOpCode opCode) const { return getDescriptor(opCode).numOperands; } int getResultPos(MachineOpCode opCode) const { return getDescriptor(opCode).resultPos; } unsigned getNumDelaySlots(MachineOpCode opCode) const { return getDescriptor(opCode).numDelaySlots; } InstrSchedClass getSchedClass(MachineOpCode opCode) const { return getDescriptor(opCode).schedClass; } // // Query instruction class flags according to the machine-independent // flags listed above. // unsigned int getIClass(MachineOpCode opCode) const { return getDescriptor(opCode).iclass; } bool isNop(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_NOP_FLAG; } bool isBranch(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_BRANCH_FLAG; } bool isCall(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CALL_FLAG; } bool isReturn(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_RET_FLAG; } bool isControlFlow(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_BRANCH_FLAG || getDescriptor(opCode).iclass & M_CALL_FLAG || getDescriptor(opCode).iclass & M_RET_FLAG; } bool isArith(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_RET_FLAG; } bool isCCInstr(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CC_FLAG; } bool isLogical(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOGICAL_FLAG; } bool isIntInstr(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_INT_FLAG; } bool isFloatInstr(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_FLOAT_FLAG; } bool isConditional(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CONDL_FLAG; } bool isLoad(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG; } bool isPrefetch(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_PREFETCH_FLAG; } bool isLoadOrPrefetch(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG || getDescriptor(opCode).iclass & M_PREFETCH_FLAG; } bool isStore(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_STORE_FLAG; } bool isMemoryAccess(MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG || getDescriptor(opCode).iclass & M_PREFETCH_FLAG || getDescriptor(opCode).iclass & M_STORE_FLAG; } bool isDummyPhiInstr(const MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG; } // delete this later ******* bool isPhi(const MachineOpCode opCode) const { return isDummyPhiInstr(opCode); } bool isPseudoInstr(const MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_PSEUDO_FLAG; } // Check if an instruction can be issued before its operands are ready, // or if a subsequent instruction that uses its result can be issued // before the results are ready. // Default to true since most instructions on many architectures allow this. // virtual bool hasOperandInterlock(MachineOpCode opCode) const { return true; } virtual bool hasResultInterlock(MachineOpCode opCode) const { return true; } // // Latencies for individual instructions and instruction pairs // virtual int minLatency(MachineOpCode opCode) const { return getDescriptor(opCode).latency; } virtual int maxLatency(MachineOpCode opCode) const { return getDescriptor(opCode).latency; } // // Which operand holds an immediate constant? Returns -1 if none // virtual int getImmmedConstantPos(MachineOpCode opCode) const { return -1; // immediate position is machine specific, so say -1 == "none" } // Check if the specified constant fits in the immediate field // of this machine instruction // virtual bool constantFitsInImmedField(MachineOpCode opCode, int64_t intValue) const; // Return the largest +ve constant that can be held in the IMMMED field // of this machine instruction. // isSignExtended is set to true if the value is sign-extended before use // (this is true for all immediate fields in SPARC instructions). // Return 0 if the instruction has no IMMED field. // virtual uint64_t maxImmedConstant(MachineOpCode opCode, bool &isSignExtended) const { isSignExtended = getDescriptor(opCode).immedIsSignExtended; return getDescriptor(opCode).maxImmedConst; } //------------------------------------------------------------------------- // Code generation support for creating individual machine instructions //------------------------------------------------------------------------- // Create an instruction sequence to put the constant `val' into // the virtual register `dest'. `val' may be a Constant or a // GlobalValue, viz., the constant address of a global variable or function. // The generated instructions are returned in `minstrVec'. // Any temp. registers (TmpInstruction) created are returned in `tempVec'. // virtual void CreateCodeToLoadConst(Value* val, Instruction* dest, vector& minstrVec, vector& temps) const =0; // Create an instruction sequence to copy an integer value `val' // to a floating point value `dest' by copying to memory and back. // val must be an integral type. dest must be a Float or Double. // The generated instructions are returned in `minstrVec'. // Any temp. registers (TmpInstruction) created are returned in `tempVec'. // virtual void CreateCodeToCopyIntToFloat(Method* method, Value* val, Instruction* dest, vector& minstrVec, vector& tempVec, TargetMachine& target) const = 0; // Similarly, create an instruction sequence to copy an FP value // `val' to an integer value `dest' by copying to memory and back. // See the previous function for information about return values. // virtual void CreateCodeToCopyFloatToInt(Method* method, Value* val, Instruction* dest, vector& minstrVec, vector& tempVec, TargetMachine& target) const = 0; // create copy instruction(s) virtual void CreateCopyInstructionsByType(const TargetMachine& target, Value* src, Instruction* dest, vector& minstrVec) const = 0; }; #endif