//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which do not yet // support stack unwinding. This pass supports two models of exception handling // lowering, the 'cheap' support and the 'expensive' support. // // 'Cheap' exception handling support gives the program the ability to execute // any program which does not "throw an exception", by turning 'invoke' // instructions into calls and by turning 'unwind' instructions into calls to // abort(). If the program does dynamically use the unwind instruction, the // program will print a message then abort. // // 'Expensive' exception handling support gives the full exception handling // support to the program at making the 'invoke' instruction really expensive. // It basically inserts setjmp/longjmp calls to emulate the exception handling // as necessary. // // Because the 'expensive' support slows down programs a lot, and EH is only // used for a subset of the programs, it must be specifically enabled by an // option. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "Support/Statistic.h" #include "Support/CommandLine.h" #include using namespace llvm; namespace { Statistic<> NumLowered("lowerinvoke", "Number of invoke & unwinds replaced"); cl::opt ExpensiveEHSupport("enable-correct-eh-support", cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); class LowerInvoke : public FunctionPass { // Used for both models. Function *WriteFn; Function *AbortFn; Constant *AbortMessageInit; Value *AbortMessage; unsigned AbortMessageLength; // Used for expensive EH support. const Type *JBLinkTy; GlobalVariable *JBListHead; Function *SetJmpFn, *LongJmpFn; public: bool doInitialization(Module &M); bool runOnFunction(Function &F); private: void writeAbortMessage(Instruction *IB); bool insertCheapEHSupport(Function &F); bool insertExpensiveEHSupport(Function &F); }; RegisterOpt X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators"); } const PassInfo *llvm::LowerInvokePassID = X.getPassInfo(); // Public Interface To the LowerInvoke pass. FunctionPass *llvm::createLowerInvokePass() { return new LowerInvoke(); } // doInitialization - Make sure that there is a prototype for abort in the // current module. bool LowerInvoke::doInitialization(Module &M) { const Type *VoidPtrTy = PointerType::get(Type::SByteTy); AbortMessage = 0; if (ExpensiveEHSupport) { // Insert a type for the linked list of jump buffers. Unfortunately, we // don't know the size of the target's setjmp buffer, so we make a guess. // If this guess turns out to be too small, bad stuff could happen. unsigned JmpBufSize = 200; // PPC has 192 words assert(sizeof(jmp_buf) <= JmpBufSize*sizeof(void*) && "LowerInvoke doesn't know about targets with jmp_buf size > 200 words!"); const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JmpBufSize); { // The type is recursive, so use a type holder. std::vector Elements; OpaqueType *OT = OpaqueType::get(); Elements.push_back(PointerType::get(OT)); Elements.push_back(JmpBufTy); PATypeHolder JBLType(StructType::get(Elements)); OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. JBLinkTy = JBLType.get(); } const Type *PtrJBList = PointerType::get(JBLinkTy); // Now that we've done that, insert the jmpbuf list head global, unless it // already exists. if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) JBListHead = new GlobalVariable(PtrJBList, false, GlobalValue::LinkOnceLinkage, Constant::getNullValue(PtrJBList), "llvm.sjljeh.jblist", &M); SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::IntTy, PointerType::get(JmpBufTy), 0); LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy, PointerType::get(JmpBufTy), Type::IntTy, 0); // The abort message for expensive EH support tells the user that the // program 'unwound' without an 'invoke' instruction. Constant *Msg = ConstantArray::get("ERROR: Exception thrown, but not caught!\n"); AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 AbortMessageInit = Msg; GlobalVariable *MsgGV = M.getGlobalVariable("abort.msg", Msg->getType()); if (MsgGV && (!MsgGV->hasInitializer() || MsgGV->getInitializer() != Msg)) MsgGV = 0; if (MsgGV) { std::vector GEPIdx(2, Constant::getNullValue(Type::LongTy)); AbortMessage = ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx); } } else { // The abort message for cheap EH support tells the user that EH is not // enabled. Constant *Msg = ConstantArray::get("Exception handler needed, but not enabled. Recompile" " program with -enable-correct-eh-support.\n"); AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 AbortMessageInit = Msg; GlobalVariable *MsgGV = M.getGlobalVariable("abort.msg", Msg->getType()); if (MsgGV && (!MsgGV->hasInitializer() || MsgGV->getInitializer() != Msg)) MsgGV = 0; if (MsgGV) { std::vector GEPIdx(2, Constant::getNullValue(Type::LongTy)); AbortMessage = ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx); } } // We need the 'write' and 'abort' functions for both models. AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, 0); // Unfortunately, 'write' can end up being prototyped in several different // ways. If the user defines a three (or more) operand function named 'write' // we will use their prototype. We _do not_ want to insert another instance // of a write prototype, because we don't know that the funcresolve pass will // run after us. If there is a definition of a write function, but it's not // suitable for our uses, we just don't emit write calls. If there is no // write prototype at all, we just add one. if (Function *WF = M.getNamedFunction("write")) { if (WF->getFunctionType()->getNumParams() > 3 || WF->getFunctionType()->isVarArg()) WriteFn = WF; else WriteFn = 0; } else { WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::IntTy, VoidPtrTy, Type::IntTy, 0); } return true; } void LowerInvoke::writeAbortMessage(Instruction *IB) { if (WriteFn) { if (!AbortMessage) { GlobalVariable *MsgGV = new GlobalVariable(AbortMessageInit->getType(), true, GlobalValue::InternalLinkage, AbortMessageInit, "abort.msg", WriteFn->getParent()); std::vector GEPIdx(2, Constant::getNullValue(Type::LongTy)); AbortMessage = ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx); } // These are the arguments we WANT... std::vector Args; Args.push_back(ConstantInt::get(Type::IntTy, 2)); Args.push_back(AbortMessage); Args.push_back(ConstantInt::get(Type::IntTy, AbortMessageLength)); // If the actual declaration of write disagrees, insert casts as // appropriate. const FunctionType *FT = WriteFn->getFunctionType(); unsigned NumArgs = FT->getNumParams(); for (unsigned i = 0; i != 3; ++i) if (i < NumArgs && FT->getParamType(i) != Args[i]->getType()) Args[i] = ConstantExpr::getCast(cast(Args[i]), FT->getParamType(i)); new CallInst(WriteFn, Args, "", IB); } } bool LowerInvoke::insertCheapEHSupport(Function &F) { bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (InvokeInst *II = dyn_cast(BB->getTerminator())) { // Insert a normal call instruction... std::string Name = II->getName(); II->setName(""); Value *NewCall = new CallInst(II->getCalledValue(), std::vector(II->op_begin()+3, II->op_end()), Name,II); II->replaceAllUsesWith(NewCall); // Insert an unconditional branch to the normal destination. new BranchInst(II->getNormalDest(), II); // Remove any PHI node entries from the exception destination. II->getUnwindDest()->removePredecessor(BB); // Remove the invoke instruction now. BB->getInstList().erase(II); ++NumLowered; Changed = true; } else if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { // Insert a new call to write(2, AbortMessage, AbortMessageLength); writeAbortMessage(UI); // Insert a call to abort() new CallInst(AbortFn, std::vector(), "", UI); // Insert a return instruction. This really should be a "barrier", as it // is unreachable. new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 : Constant::getNullValue(F.getReturnType()), UI); // Remove the unwind instruction now. BB->getInstList().erase(UI); ++NumLowered; Changed = true; } return Changed; } bool LowerInvoke::insertExpensiveEHSupport(Function &F) { bool Changed = false; // If a function uses invoke, we have an alloca for the jump buffer. AllocaInst *JmpBuf = 0; // If this function contains an unwind instruction, two blocks get added: one // to actually perform the longjmp, and one to terminate the program if there // is no handler. BasicBlock *UnwindBlock = 0, *TermBlock = 0; std::vector JBPtrs; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (InvokeInst *II = dyn_cast(BB->getTerminator())) { if (JmpBuf == 0) JmpBuf = new AllocaInst(JBLinkTy, 0, "jblink", F.begin()->begin()); // On the entry to the invoke, we must install our JmpBuf as the top of // the stack. LoadInst *OldEntry = new LoadInst(JBListHead, "oldehlist", II); // Store this old value as our 'next' field, and store our alloca as the // current jblist. std::vector Idx; Idx.push_back(Constant::getNullValue(Type::LongTy)); Idx.push_back(ConstantUInt::get(Type::UByteTy, 0)); Value *NextFieldPtr = new GetElementPtrInst(JmpBuf, Idx, "NextField", II); new StoreInst(OldEntry, NextFieldPtr, II); new StoreInst(JmpBuf, JBListHead, II); // Call setjmp, passing in the address of the jmpbuffer. Idx[1] = ConstantUInt::get(Type::UByteTy, 1); Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "TheJmpBuf", II); Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret", II); // Compare the return value to zero. Value *IsNormal = BinaryOperator::create(Instruction::SetEQ, SJRet, Constant::getNullValue(SJRet->getType()), "notunwind", II); // Create the receiver block if there is a critical edge to the normal // destination. SplitCriticalEdge(II, 0, this); Instruction *InsertLoc = II->getNormalDest()->begin(); // Insert a normal call instruction on the normal execution path. std::string Name = II->getName(); II->setName(""); Value *NewCall = new CallInst(II->getCalledValue(), std::vector(II->op_begin()+3, II->op_end()), Name, InsertLoc); II->replaceAllUsesWith(NewCall); // If we got this far, then no exception was thrown and we can pop our // jmpbuf entry off. new StoreInst(OldEntry, JBListHead, InsertLoc); // Now we change the invoke into a branch instruction. new BranchInst(II->getNormalDest(), II->getUnwindDest(), IsNormal, II); // Remove the InvokeInst now. BB->getInstList().erase(II); ++NumLowered; Changed = true; } else if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { if (UnwindBlock == 0) { // Create two new blocks, the unwind block and the terminate block. Add // them at the end of the function because they are not hot. UnwindBlock = new BasicBlock("unwind", &F); TermBlock = new BasicBlock("unwinderror", &F); // Insert return instructions. These really should be "barrier"s, as // they are unreachable. new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 : Constant::getNullValue(F.getReturnType()), UnwindBlock); new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 : Constant::getNullValue(F.getReturnType()), TermBlock); } // Load the JBList, if it's null, then there was no catch! LoadInst *Ptr = new LoadInst(JBListHead, "ehlist", UI); Value *NotNull = BinaryOperator::create(Instruction::SetNE, Ptr, Constant::getNullValue(Ptr->getType()), "notnull", UI); new BranchInst(UnwindBlock, TermBlock, NotNull, UI); // Remember the loaded value so we can insert the PHI node as needed. JBPtrs.push_back(Ptr); // Remove the UnwindInst now. BB->getInstList().erase(UI); ++NumLowered; Changed = true; } // If an unwind instruction was inserted, we need to set up the Unwind and // term blocks. if (UnwindBlock) { // In the unwind block, we know that the pointer coming in on the JBPtrs // list are non-null. Instruction *RI = UnwindBlock->getTerminator(); Value *RecPtr; if (JBPtrs.size() == 1) RecPtr = JBPtrs[0]; else { // If there is more than one unwind in this function, make a PHI node to // merge in all of the loaded values. PHINode *PN = new PHINode(JBPtrs[0]->getType(), "jbptrs", RI); for (unsigned i = 0, e = JBPtrs.size(); i != e; ++i) PN->addIncoming(JBPtrs[i], JBPtrs[i]->getParent()); RecPtr = PN; } // Now that we have a pointer to the whole record, remove the entry from the // JBList. std::vector Idx; Idx.push_back(Constant::getNullValue(Type::LongTy)); Idx.push_back(ConstantUInt::get(Type::UByteTy, 0)); Value *NextFieldPtr = new GetElementPtrInst(RecPtr, Idx, "NextField", RI); Value *NextRec = new LoadInst(NextFieldPtr, "NextRecord", RI); new StoreInst(NextRec, JBListHead, RI); // Now that we popped the top of the JBList, get a pointer to the jmpbuf and // longjmp. Idx[1] = ConstantUInt::get(Type::UByteTy, 1); Idx[0] = new GetElementPtrInst(RecPtr, Idx, "JmpBuf", RI); Idx[1] = ConstantInt::get(Type::IntTy, 1); new CallInst(LongJmpFn, Idx, "", RI); // Now we set up the terminate block. RI = TermBlock->getTerminator(); // Insert a new call to write(2, AbortMessage, AbortMessageLength); writeAbortMessage(RI); // Insert a call to abort() new CallInst(AbortFn, std::vector(), "", RI); } return Changed; } bool LowerInvoke::runOnFunction(Function &F) { if (ExpensiveEHSupport) return insertExpensiveEHSupport(F); else return insertCheapEHSupport(F); }