//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "llvm/LTO/LTOCodeGenerator.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/Passes.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/LTO/LTOModule.h" #include "llvm/Linker/Linker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/ObjCARC.h" #include using namespace llvm; const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } LTOCodeGenerator::LTOCodeGenerator() : Context(getGlobalContext()), IRLinker(new Module("ld-temp.o", Context)), TargetMach(nullptr), EmitDwarfDebugInfo(false), ScopeRestrictionsDone(false), CodeModel(LTO_CODEGEN_PIC_MODEL_DEFAULT), NativeObjectFile(nullptr), DiagHandler(nullptr), DiagContext(nullptr) { initializeLTOPasses(); } LTOCodeGenerator::~LTOCodeGenerator() { delete TargetMach; delete NativeObjectFile; TargetMach = nullptr; NativeObjectFile = nullptr; IRLinker.deleteModule(); for (std::vector::iterator I = CodegenOptions.begin(), E = CodegenOptions.end(); I != E; ++I) free(*I); } // Initialize LTO passes. Please keep this funciton in sync with // PassManagerBuilder::populateLTOPassManager(), and make sure all LTO // passes are initialized. void LTOCodeGenerator::initializeLTOPasses() { PassRegistry &R = *PassRegistry::getPassRegistry(); initializeInternalizePassPass(R); initializeIPSCCPPass(R); initializeGlobalOptPass(R); initializeConstantMergePass(R); initializeDAHPass(R); initializeInstCombinerPass(R); initializeSimpleInlinerPass(R); initializePruneEHPass(R); initializeGlobalDCEPass(R); initializeArgPromotionPass(R); initializeJumpThreadingPass(R); initializeSROAPass(R); initializeSROA_DTPass(R); initializeSROA_SSAUpPass(R); initializeFunctionAttrsPass(R); initializeGlobalsModRefPass(R); initializeLICMPass(R); initializeMergedLoadStoreMotionPass(R); initializeGVNPass(R); initializeMemCpyOptPass(R); initializeDCEPass(R); initializeCFGSimplifyPassPass(R); } bool LTOCodeGenerator::addModule(LTOModule* mod, std::string& errMsg) { bool ret = IRLinker.linkInModule(&mod->getModule(), &errMsg); const std::vector &undefs = mod->getAsmUndefinedRefs(); for (int i = 0, e = undefs.size(); i != e; ++i) AsmUndefinedRefs[undefs[i]] = 1; return !ret; } void LTOCodeGenerator::setTargetOptions(TargetOptions options) { Options = options; } void LTOCodeGenerator::setDebugInfo(lto_debug_model debug) { switch (debug) { case LTO_DEBUG_MODEL_NONE: EmitDwarfDebugInfo = false; return; case LTO_DEBUG_MODEL_DWARF: EmitDwarfDebugInfo = true; return; } llvm_unreachable("Unknown debug format!"); } void LTOCodeGenerator::setCodePICModel(lto_codegen_model model) { switch (model) { case LTO_CODEGEN_PIC_MODEL_STATIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: case LTO_CODEGEN_PIC_MODEL_DEFAULT: CodeModel = model; return; } llvm_unreachable("Unknown PIC model!"); } bool LTOCodeGenerator::writeMergedModules(const char *path, std::string &errMsg) { if (!determineTarget(errMsg)) return false; // mark which symbols can not be internalized applyScopeRestrictions(); // create output file std::string ErrInfo; tool_output_file Out(path, ErrInfo, sys::fs::F_None); if (!ErrInfo.empty()) { errMsg = "could not open bitcode file for writing: "; errMsg += path; return false; } // write bitcode to it WriteBitcodeToFile(IRLinker.getModule(), Out.os()); Out.os().close(); if (Out.os().has_error()) { errMsg = "could not write bitcode file: "; errMsg += path; Out.os().clear_error(); return false; } Out.keep(); return true; } bool LTOCodeGenerator::compile_to_file(const char** name, bool disableOpt, bool disableInline, bool disableGVNLoadPRE, std::string& errMsg) { // make unique temp .o file to put generated object file SmallString<128> Filename; int FD; std::error_code EC = sys::fs::createTemporaryFile("lto-llvm", "o", FD, Filename); if (EC) { errMsg = EC.message(); return false; } // generate object file tool_output_file objFile(Filename.c_str(), FD); bool genResult = generateObjectFile(objFile.os(), disableOpt, disableInline, disableGVNLoadPRE, errMsg); objFile.os().close(); if (objFile.os().has_error()) { objFile.os().clear_error(); sys::fs::remove(Twine(Filename)); return false; } objFile.keep(); if (!genResult) { sys::fs::remove(Twine(Filename)); return false; } NativeObjectPath = Filename.c_str(); *name = NativeObjectPath.c_str(); return true; } const void* LTOCodeGenerator::compile(size_t* length, bool disableOpt, bool disableInline, bool disableGVNLoadPRE, std::string& errMsg) { const char *name; if (!compile_to_file(&name, disableOpt, disableInline, disableGVNLoadPRE, errMsg)) return nullptr; // remove old buffer if compile() called twice delete NativeObjectFile; // read .o file into memory buffer ErrorOr> BufferOrErr = MemoryBuffer::getFile(name, -1, false); if (std::error_code EC = BufferOrErr.getError()) { errMsg = EC.message(); sys::fs::remove(NativeObjectPath); return nullptr; } NativeObjectFile = BufferOrErr.get().release(); // remove temp files sys::fs::remove(NativeObjectPath); // return buffer, unless error if (!NativeObjectFile) return nullptr; *length = NativeObjectFile->getBufferSize(); return NativeObjectFile->getBufferStart(); } bool LTOCodeGenerator::determineTarget(std::string &errMsg) { if (TargetMach) return true; std::string TripleStr = IRLinker.getModule()->getTargetTriple(); if (TripleStr.empty()) TripleStr = sys::getDefaultTargetTriple(); llvm::Triple Triple(TripleStr); // create target machine from info for merged modules const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg); if (!march) return false; // The relocation model is actually a static member of TargetMachine and // needs to be set before the TargetMachine is instantiated. Reloc::Model RelocModel = Reloc::Default; switch (CodeModel) { case LTO_CODEGEN_PIC_MODEL_STATIC: RelocModel = Reloc::Static; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC: RelocModel = Reloc::PIC_; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: RelocModel = Reloc::DynamicNoPIC; break; case LTO_CODEGEN_PIC_MODEL_DEFAULT: // RelocModel is already the default, so leave it that way. break; } // Construct LTOModule, hand over ownership of module and target. Use MAttr as // the default set of features. SubtargetFeatures Features(MAttr); Features.getDefaultSubtargetFeatures(Triple); std::string FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. if (MCpu.empty() && Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) MCpu = "core2"; else if (Triple.getArch() == llvm::Triple::x86) MCpu = "yonah"; else if (Triple.getArch() == llvm::Triple::aarch64) MCpu = "cyclone"; } TargetMach = march->createTargetMachine(TripleStr, MCpu, FeatureStr, Options, RelocModel, CodeModel::Default, CodeGenOpt::Aggressive); return true; } void LTOCodeGenerator:: applyRestriction(GlobalValue &GV, const ArrayRef &Libcalls, std::vector &MustPreserveList, SmallPtrSet &AsmUsed, Mangler &Mangler) { // There are no restrictions to apply to declarations. if (GV.isDeclaration()) return; // There is nothing more restrictive than private linkage. if (GV.hasPrivateLinkage()) return; SmallString<64> Buffer; TargetMach->getNameWithPrefix(Buffer, &GV, Mangler); if (MustPreserveSymbols.count(Buffer)) MustPreserveList.push_back(GV.getName().data()); if (AsmUndefinedRefs.count(Buffer)) AsmUsed.insert(&GV); // Conservatively append user-supplied runtime library functions to // llvm.compiler.used. These could be internalized and deleted by // optimizations like -globalopt, causing problems when later optimizations // add new library calls (e.g., llvm.memset => memset and printf => puts). // Leave it to the linker to remove any dead code (e.g. with -dead_strip). if (isa(GV) && std::binary_search(Libcalls.begin(), Libcalls.end(), GV.getName())) AsmUsed.insert(&GV); } static void findUsedValues(GlobalVariable *LLVMUsed, SmallPtrSet &UsedValues) { if (!LLVMUsed) return; ConstantArray *Inits = cast(LLVMUsed->getInitializer()); for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) if (GlobalValue *GV = dyn_cast(Inits->getOperand(i)->stripPointerCasts())) UsedValues.insert(GV); } static void accumulateAndSortLibcalls(std::vector &Libcalls, const TargetLibraryInfo& TLI, const TargetLowering *Lowering) { // TargetLibraryInfo has info on C runtime library calls on the current // target. for (unsigned I = 0, E = static_cast(LibFunc::NumLibFuncs); I != E; ++I) { LibFunc::Func F = static_cast(I); if (TLI.has(F)) Libcalls.push_back(TLI.getName(F)); } // TargetLowering has info on library calls that CodeGen expects to be // available, both from the C runtime and compiler-rt. if (Lowering) for (unsigned I = 0, E = static_cast(RTLIB::UNKNOWN_LIBCALL); I != E; ++I) if (const char *Name = Lowering->getLibcallName(static_cast(I))) Libcalls.push_back(Name); array_pod_sort(Libcalls.begin(), Libcalls.end()); Libcalls.erase(std::unique(Libcalls.begin(), Libcalls.end()), Libcalls.end()); } void LTOCodeGenerator::applyScopeRestrictions() { if (ScopeRestrictionsDone) return; Module *mergedModule = IRLinker.getModule(); // Start off with a verification pass. PassManager passes; passes.add(createVerifierPass()); passes.add(createDebugInfoVerifierPass()); // mark which symbols can not be internalized Mangler Mangler(TargetMach->getSubtargetImpl()->getDataLayout()); std::vector MustPreserveList; SmallPtrSet AsmUsed; std::vector Libcalls; TargetLibraryInfo TLI(Triple(TargetMach->getTargetTriple())); accumulateAndSortLibcalls( Libcalls, TLI, TargetMach->getSubtargetImpl()->getTargetLowering()); for (Module::iterator f = mergedModule->begin(), e = mergedModule->end(); f != e; ++f) applyRestriction(*f, Libcalls, MustPreserveList, AsmUsed, Mangler); for (Module::global_iterator v = mergedModule->global_begin(), e = mergedModule->global_end(); v != e; ++v) applyRestriction(*v, Libcalls, MustPreserveList, AsmUsed, Mangler); for (Module::alias_iterator a = mergedModule->alias_begin(), e = mergedModule->alias_end(); a != e; ++a) applyRestriction(*a, Libcalls, MustPreserveList, AsmUsed, Mangler); GlobalVariable *LLVMCompilerUsed = mergedModule->getGlobalVariable("llvm.compiler.used"); findUsedValues(LLVMCompilerUsed, AsmUsed); if (LLVMCompilerUsed) LLVMCompilerUsed->eraseFromParent(); if (!AsmUsed.empty()) { llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(Context); std::vector asmUsed2; for (auto *GV : AsmUsed) { Constant *c = ConstantExpr::getBitCast(GV, i8PTy); asmUsed2.push_back(c); } llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size()); LLVMCompilerUsed = new llvm::GlobalVariable(*mergedModule, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, asmUsed2), "llvm.compiler.used"); LLVMCompilerUsed->setSection("llvm.metadata"); } passes.add(createInternalizePass(MustPreserveList)); // apply scope restrictions passes.run(*mergedModule); ScopeRestrictionsDone = true; } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::generateObjectFile(raw_ostream &out, bool DisableOpt, bool DisableInline, bool DisableGVNLoadPRE, std::string &errMsg) { if (!this->determineTarget(errMsg)) return false; Module *mergedModule = IRLinker.getModule(); // Mark which symbols can not be internalized this->applyScopeRestrictions(); // Instantiate the pass manager to organize the passes. PassManager passes; // Start off with a verification pass. passes.add(createVerifierPass()); passes.add(createDebugInfoVerifierPass()); // Add an appropriate DataLayout instance for this module... mergedModule->setDataLayout(TargetMach->getSubtargetImpl()->getDataLayout()); passes.add(new DataLayoutPass(mergedModule)); // Add appropriate TargetLibraryInfo for this module. passes.add(new TargetLibraryInfo(Triple(TargetMach->getTargetTriple()))); TargetMach->addAnalysisPasses(passes); // Enabling internalize here would use its AllButMain variant. It // keeps only main if it exists and does nothing for libraries. Instead // we create the pass ourselves with the symbol list provided by the linker. if (!DisableOpt) PassManagerBuilder().populateLTOPassManager(passes, !DisableInline, DisableGVNLoadPRE); // Make sure everything is still good. passes.add(createVerifierPass()); passes.add(createDebugInfoVerifierPass()); PassManager codeGenPasses; codeGenPasses.add(new DataLayoutPass(mergedModule)); formatted_raw_ostream Out(out); // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. codeGenPasses.add(createObjCARCContractPass()); if (TargetMach->addPassesToEmitFile(codeGenPasses, Out, TargetMachine::CGFT_ObjectFile)) { errMsg = "target file type not supported"; return false; } // Run our queue of passes all at once now, efficiently. passes.run(*mergedModule); // Run the code generator, and write assembly file codeGenPasses.run(*mergedModule); return true; } /// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging /// LTO problems. void LTOCodeGenerator::setCodeGenDebugOptions(const char *options) { for (std::pair o = getToken(options); !o.first.empty(); o = getToken(o.second)) { // ParseCommandLineOptions() expects argv[0] to be program name. Lazily add // that. if (CodegenOptions.empty()) CodegenOptions.push_back(strdup("libLLVMLTO")); CodegenOptions.push_back(strdup(o.first.str().c_str())); } } void LTOCodeGenerator::parseCodeGenDebugOptions() { // if options were requested, set them if (!CodegenOptions.empty()) cl::ParseCommandLineOptions(CodegenOptions.size(), const_cast(&CodegenOptions[0])); } void LTOCodeGenerator::DiagnosticHandler(const DiagnosticInfo &DI, void *Context) { ((LTOCodeGenerator *)Context)->DiagnosticHandler2(DI); } void LTOCodeGenerator::DiagnosticHandler2(const DiagnosticInfo &DI) { // Map the LLVM internal diagnostic severity to the LTO diagnostic severity. lto_codegen_diagnostic_severity_t Severity; switch (DI.getSeverity()) { case DS_Error: Severity = LTO_DS_ERROR; break; case DS_Warning: Severity = LTO_DS_WARNING; break; case DS_Remark: Severity = LTO_DS_REMARK; break; case DS_Note: Severity = LTO_DS_NOTE; break; } // Create the string that will be reported to the external diagnostic handler. std::string MsgStorage; raw_string_ostream Stream(MsgStorage); DiagnosticPrinterRawOStream DP(Stream); DI.print(DP); Stream.flush(); // If this method has been called it means someone has set up an external // diagnostic handler. Assert on that. assert(DiagHandler && "Invalid diagnostic handler"); (*DiagHandler)(Severity, MsgStorage.c_str(), DiagContext); } void LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler, void *Ctxt) { this->DiagHandler = DiagHandler; this->DiagContext = Ctxt; if (!DiagHandler) return Context.setDiagnosticHandler(nullptr, nullptr); // Register the LTOCodeGenerator stub in the LLVMContext to forward the // diagnostic to the external DiagHandler. Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this); }