//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the ARM machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMInstrInfo.h" #include "ARMRelocations.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass { ARMJITInfo *JTI; const ARMInstrInfo *II; const TargetData *TD; TargetMachine &TM; MachineCodeEmitter &MCE; const std::vector *MCPEs; public: static char ID; explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm), MCE(mce), MCPEs(0) {} ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce, const ARMInstrInfo &ii, const TargetData &td) : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm), MCE(mce), MCPEs(0) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); private: void emitConstPoolInstruction(const MachineInstr &MI); void emitPseudoInstruction(const MachineInstr &MI); unsigned getAddrModeNoneInstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); unsigned getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx); unsigned getMachineSoImmOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO); unsigned getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const; unsigned getAddrMode1InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); unsigned getAddrMode2InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); unsigned getAddrMode3InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); unsigned getAddrMode4InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); unsigned getAddrMode6InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary); /// getInstrBinary - Return binary encoding for the specified /// machine instruction. unsigned getInstrBinary(const MachineInstr &MI); /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(const MachineInstr &MI); /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO); unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) { return getMachineOpValue(MI, MI.getOperand(OpIdx)); } /// getBaseOpcodeFor - Return the opcode value. /// unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const { return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand. /// unsigned getShiftOp(const MachineOperand &MO) const ; /// Routines that handle operands which add machine relocations which are /// fixed up by the JIT fixup stage. void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, bool NeedStub); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, unsigned PCAdj = 0 ); void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc, unsigned PCAdj = 0); void emitGlobalConstant(const Constant *CV); void emitMachineBasicBlock(MachineBasicBlock *BB); }; char ARMCodeEmitter::ID = 0; } /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code /// to the specified MCE object. FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM, MachineCodeEmitter &MCE) { return new ARMCodeEmitter(TM, MCE); } bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo(); TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData(); JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo(); MCPEs = &MF.getConstantPool()->getConstants(); JTI->Initialize(MCPEs); do { DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n"; MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand. /// unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const { switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: return 2; case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::ror: case ARM_AM::rrx: return 3; } return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) { if (MO.isReg()) return ARMRegisterInfo::getRegisterNumbering(MO.getReg()); else if (MO.isImm()) return static_cast(MO.getImm()); else if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB()); else { cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } return 0; } /// emitGlobalAddress - Emit the specified address to the code stream. /// void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, bool NeedStub) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, GV, 0, NeedStub)); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp /* = 0 */, unsigned PCAdj /* = 0 */) { // Tell JIT emitter we'll resolve the address. MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, PCAdj, true)); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTIndex, PCAdj)); } /// emitMachineBasicBlock - Emit the specified address basic block. void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) { MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), ARM::reloc_arm_branch, BB)); } void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI; NumEmitted++; // Keep track of the # of mi's emitted if ((MI.getDesc().TSFlags & ARMII::FormMask) == ARMII::Pseudo) emitPseudoInstruction(MI); else MCE.emitWordLE(getInstrBinary(MI)); } void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { unsigned CPI = MI.getOperand(0).getImm(); unsigned CPIndex = MI.getOperand(1).getIndex(); const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; // Remember the CONSTPOOL_ENTRY address for later relocation. JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); // Emit constpool island entry. In most cases, the actual values will be // resolved and relocated after code emission. if (MCPE.isMachineConstantPoolEntry()) { ARMConstantPoolValue *ACPV = static_cast(MCPE.Val.MachineCPVal); DOUT << "\t** ARM constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " " << *ACPV << "\n"; GlobalValue *GV = ACPV->getGV(); if (GV) { assert(!ACPV->isStub() && "Don't know how to deal this yet!"); MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV, CPIndex, false)); } else { assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!"); emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute); } MCE.emitWordLE(0); } else { Constant *CV = MCPE.Val.ConstVal; DOUT << "\t** Constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " " << *CV << "\n"; if (GlobalValue *GV = dyn_cast(CV)) { emitGlobalAddress(GV, ARM::reloc_arm_absolute, false); MCE.emitWordLE(0); } else { assert(CV->getType()->isInteger() && "Not expecting non-integer constpool entries yet!"); const ConstantInt *CI = dyn_cast(CV); uint32_t Val = *(uint32_t*)CI->getValue().getRawData(); MCE.emitWordLE(Val); } } } void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { unsigned Opcode = MI.getDesc().Opcode; switch (Opcode) { default: abort(); // FIXME: case ARM::CONSTPOOL_ENTRY: emitConstPoolInstruction(MI); break; case ARM::PICADD: { // Remember of the address of the PC label for relocation later. const MachineOperand &MO2 = MI.getOperand(2); DOUT << "\t** LPC" << MO2.getImm() << " @ " << (void*)MCE.getCurrentPCValue() << '\n'; JTI->addPCLabelAddr(MO2.getImm(), MCE.getCurrentPCValue()); // PICADD is just an add instruction that implicitly read pc. unsigned Binary = getBinaryCodeForInstr(MI); const TargetInstrDesc &TID = MI.getDesc(); MCE.emitWordLE(getAddrMode1InstrBinary(MI, TID, Binary)); break; } } } unsigned ARMCodeEmitter::getAddrModeNoneInstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; switch (TID.TSFlags & ARMII::FormMask) { default: assert(0 && "Unknown instruction subtype!"); break; case ARMII::Branch: { // Set signed_immed_24 field Binary |= getMachineOpValue(MI, 0); // if it is a conditional branch, set cond field if (TID.Opcode == ARM::Bcc) { Binary &= 0x0FFFFFFF; // clear conditional field Binary |= getMachineOpValue(MI, 1) << 28; // set conditional field } break; } case ARMII::BranchMisc: { if (TID.Opcode == ARM::BX) abort(); // FIXME if (TID.Opcode == ARM::BX_RET) Binary |= 0xe; // the return register is LR else // otherwise, set the return register Binary |= getMachineOpValue(MI, 0); break; } } return Binary; } unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx) { unsigned Binary = getMachineOpValue(MI, MO); const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); // Encode the shift opcode. unsigned SBits = 0; unsigned Rs = MO1.getReg(); if (Rs) { // Set shift operand (bit[7:4]). // LSL - 0001 // LSR - 0011 // ASR - 0101 // ROR - 0111 // RRX - 0110 and bit[11:8] clear. switch (SOpc) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x1; break; case ARM_AM::lsr: SBits = 0x3; break; case ARM_AM::asr: SBits = 0x5; break; case ARM_AM::ror: SBits = 0x7; break; case ARM_AM::rrx: SBits = 0x6; break; } } else { // Set shift operand (bit[6:4]). // LSL - 000 // LSR - 010 // ASR - 100 // ROR - 110 switch (SOpc) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x0; break; case ARM_AM::lsr: SBits = 0x2; break; case ARM_AM::asr: SBits = 0x4; break; case ARM_AM::ror: SBits = 0x6; break; } } Binary |= SBits << 4; if (SOpc == ARM_AM::rrx) return Binary; // Encode the shift operation Rs or shift_imm (except rrx). if (Rs) { // Encode Rs bit[11:8]. assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); return Binary | (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift); } // Encode shift_imm bit[11:7]. return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; } unsigned ARMCodeEmitter::getMachineSoImmOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO) { unsigned SoImm = MO.getImm(); // Encode rotate_imm. unsigned Binary = ARM_AM::getSOImmValRot(SoImm) << ARMII::RotImmShift; // Encode immed_8. Binary |= ARM_AM::getSOImmVal(SoImm); return Binary; } unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const { for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){ const MachineOperand &MO = MI.getOperand(i-1); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) return 1 << ARMII::S_BitShift; } return 0; } unsigned ARMCodeEmitter::getAddrMode1InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // Encode register def if there is one. unsigned NumDefs = TID.getNumDefs(); unsigned OpIdx = 0; if (NumDefs) { Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdShift; ++OpIdx; } // Encode first non-shifter register operand if there is one. unsigned Format = TID.TSFlags & ARMII::FormMask; bool HasRnReg = !(Format == ARMII::DPRdMisc || Format == ARMII::DPRdIm || Format == ARMII::DPRdReg || Format == ARMII::DPRdSoReg); if (HasRnReg) { if (TID.getOpcode() == ARM::PICADD) // Special handling for PICADD. It implicitly use add. Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift; else { Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; ++OpIdx; } } // Encode shifter operand. bool HasSoReg = (Format == ARMII::DPRdSoReg || Format == ARMII::DPRnSoReg || Format == ARMII::DPRSoReg || Format == ARMII::DPRSoRegS); const MachineOperand &MO = MI.getOperand(OpIdx); if (HasSoReg) // Encode SoReg. return Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx); if (MO.isReg()) // Encode register Rm. return Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()); // Encode so_imm. // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(MI, TID, MO); return Binary; } unsigned ARMCodeEmitter::getAddrMode2InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Set second operand Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); // Set bit U(23) according to sign of immed value (positive or negative). Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); if (!MO2.getReg()) { // is immediate if (ARM_AM::getAM2Offset(MO3.getImm())) // Set the value of offset_12 field Binary |= ARM_AM::getAM2Offset(MO3.getImm()); return Binary; } // Set bit I(25), because this is not in immediate enconding. Binary |= 1 << ARMII::I_BitShift; assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); // Set bit[3:0] to the corresponding Rm register Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); // if this instr is in scaled register offset/index instruction, set // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) { Binary |= getShiftOp(MO3) << 5; // shift Binary |= ShImm << 7; // shift_immed } return Binary; } unsigned ARMCodeEmitter::getAddrMode3InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Set second operand Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); // Set bit U(23) according to sign of immed value (positive or negative) Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); // If this instr is in register offset/index encoding, set bit[3:0] // to the corresponding Rm register. if (MO2.getReg()) { Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); return Binary; } // if this instr is in immediate offset/index encoding, set bit 22 to 1 if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) { Binary |= 1 << 22; // Set operands Binary |= (ImmOffs >> 4) << 8; // immedH Binary |= (ImmOffs & ~0xF); // immedL } return Binary; } unsigned ARMCodeEmitter::getAddrMode4InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; // Set addressing mode by modifying bits U(23) and P(24) // IA - Increment after - bit U = 1 and bit P = 0 // IB - Increment before - bit U = 1 and bit P = 1 // DA - Decrement after - bit U = 0 and bit P = 0 // DB - Decrement before - bit U = 0 and bit P = 1 const MachineOperand &MO = MI.getOperand(1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm()); switch (Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::da: break; case ARM_AM::db: Binary |= 0x1 << 24; break; case ARM_AM::ia: Binary |= 0x1 << 23; break; case ARM_AM::ib: Binary |= 0x3 << 23; break; } // Set bit W(21) if (ARM_AM::getAM4WBFlag(MO.getImm())) Binary |= 0x1 << 21; // Set registers for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isImplicit()) continue; unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg()); assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && RegNum < 16); Binary |= 0x1 << RegNum; } return Binary; } unsigned ARMCodeEmitter::getAddrMode6InstrBinary(const MachineInstr &MI, const TargetInstrDesc &TID, unsigned Binary) { // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << 28; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // 32x32->64bit operations have two destination registers. The number // of register definitions will tell us if that's what we're dealing with. int OpIdx = 0; if (TID.getNumDefs() == 2) Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; // Encode Rm Binary |= getMachineOpValue(MI, OpIdx++); // Encode Rs Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; return Binary; } /// getInstrBinary - Return binary encoding for the specified /// machine instruction. unsigned ARMCodeEmitter::getInstrBinary(const MachineInstr &MI) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); const TargetInstrDesc &TID = MI.getDesc(); switch (TID.TSFlags & ARMII::AddrModeMask) { case ARMII::AddrModeNone: return getAddrModeNoneInstrBinary(MI, TID, Binary); case ARMII::AddrMode1: return getAddrMode1InstrBinary(MI, TID, Binary); case ARMII::AddrMode2: return getAddrMode2InstrBinary(MI, TID, Binary); case ARMII::AddrMode3: return getAddrMode3InstrBinary(MI, TID, Binary); case ARMII::AddrMode4: return getAddrMode4InstrBinary(MI, TID, Binary); case ARMII::AddrMode6: return getAddrMode6InstrBinary(MI, TID, Binary); } abort(); return 0; } #include "ARMGenCodeEmitter.inc"