//===- ValueHandle.h - Value Smart Pointer classes --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ValueHandle class and its sub-classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_VALUEHANDLE_H #define LLVM_IR_VALUEHANDLE_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/IR/Value.h" namespace llvm { class ValueHandleBase; template struct simplify_type; // ValueHandleBase** is only 4-byte aligned. template<> class PointerLikeTypeTraits { public: static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; } static inline ValueHandleBase **getFromVoidPointer(void *P) { return static_cast(P); } enum { NumLowBitsAvailable = 2 }; }; /// ValueHandleBase - This is the common base class of value handles. /// ValueHandle's are smart pointers to Value's that have special behavior when /// the value is deleted or ReplaceAllUsesWith'd. See the specific handles /// below for details. /// class ValueHandleBase { friend class Value; protected: /// HandleBaseKind - This indicates what sub class the handle actually is. /// This is to avoid having a vtable for the light-weight handle pointers. The /// fully general Callback version does have a vtable. enum HandleBaseKind { Assert, Callback, Tracking, Weak }; private: PointerIntPair PrevPair; ValueHandleBase *Next; // A subclass may want to store some information along with the value // pointer. Allow them to do this by making the value pointer a pointer-int // pair. The 'setValPtrInt' and 'getValPtrInt' methods below give them this // access. PointerIntPair VP; ValueHandleBase(const ValueHandleBase&) LLVM_DELETED_FUNCTION; public: explicit ValueHandleBase(HandleBaseKind Kind) : PrevPair(nullptr, Kind), Next(nullptr), VP(nullptr, 0) {} ValueHandleBase(HandleBaseKind Kind, Value *V) : PrevPair(nullptr, Kind), Next(nullptr), VP(V, 0) { if (isValid(VP.getPointer())) AddToUseList(); } ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS) : PrevPair(nullptr, Kind), Next(nullptr), VP(RHS.VP) { if (isValid(VP.getPointer())) AddToExistingUseList(RHS.getPrevPtr()); } ~ValueHandleBase() { if (isValid(VP.getPointer())) RemoveFromUseList(); } Value *operator=(Value *RHS) { if (VP.getPointer() == RHS) return RHS; if (isValid(VP.getPointer())) RemoveFromUseList(); VP.setPointer(RHS); if (isValid(VP.getPointer())) AddToUseList(); return RHS; } Value *operator=(const ValueHandleBase &RHS) { if (VP.getPointer() == RHS.VP.getPointer()) return RHS.VP.getPointer(); if (isValid(VP.getPointer())) RemoveFromUseList(); VP.setPointer(RHS.VP.getPointer()); if (isValid(VP.getPointer())) AddToExistingUseList(RHS.getPrevPtr()); return VP.getPointer(); } Value *operator->() const { return getValPtr(); } Value &operator*() const { return *getValPtr(); } protected: Value *getValPtr() const { return VP.getPointer(); } void setValPtrInt(unsigned K) { VP.setInt(K); } unsigned getValPtrInt() const { return VP.getInt(); } static bool isValid(Value *V) { return V && V != DenseMapInfo::getEmptyKey() && V != DenseMapInfo::getTombstoneKey(); } public: // Callbacks made from Value. static void ValueIsDeleted(Value *V); static void ValueIsRAUWd(Value *Old, Value *New); private: // Internal implementation details. ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); } HandleBaseKind getKind() const { return PrevPair.getInt(); } void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); } /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where /// List is the address of either the head of the list or a Next node within /// the existing use list. void AddToExistingUseList(ValueHandleBase **List); /// AddToExistingUseListAfter - Add this ValueHandle to the use list after /// Node. void AddToExistingUseListAfter(ValueHandleBase *Node); /// AddToUseList - Add this ValueHandle to the use list for VP. void AddToUseList(); /// RemoveFromUseList - Remove this ValueHandle from its current use list. void RemoveFromUseList(); }; /// WeakVH - This is a value handle that tries hard to point to a Value, even /// across RAUW operations, but will null itself out if the value is destroyed. /// this is useful for advisory sorts of information, but should not be used as /// the key of a map (since the map would have to rearrange itself when the /// pointer changes). class WeakVH : public ValueHandleBase { public: WeakVH() : ValueHandleBase(Weak) {} WeakVH(Value *P) : ValueHandleBase(Weak, P) {} WeakVH(const WeakVH &RHS) : ValueHandleBase(Weak, RHS) {} Value *operator=(Value *RHS) { return ValueHandleBase::operator=(RHS); } Value *operator=(const ValueHandleBase &RHS) { return ValueHandleBase::operator=(RHS); } operator Value*() const { return getValPtr(); } }; // Specialize simplify_type to allow WeakVH to participate in // dyn_cast, isa, etc. template<> struct simplify_type { typedef Value* SimpleType; static SimpleType getSimplifiedValue(WeakVH &WVH) { return WVH; } }; /// AssertingVH - This is a Value Handle that points to a value and asserts out /// if the value is destroyed while the handle is still live. This is very /// useful for catching dangling pointer bugs and other things which can be /// non-obvious. One particularly useful place to use this is as the Key of a /// map. Dangling pointer bugs often lead to really subtle bugs that only occur /// if another object happens to get allocated to the same address as the old /// one. Using an AssertingVH ensures that an assert is triggered as soon as /// the bad delete occurs. /// /// Note that an AssertingVH handle does *not* follow values across RAUW /// operations. This means that RAUW's need to explicitly update the /// AssertingVH's as it moves. This is required because in non-assert mode this /// class turns into a trivial wrapper around a pointer. template class AssertingVH #ifndef NDEBUG : public ValueHandleBase #endif { friend struct DenseMapInfo >; #ifndef NDEBUG ValueTy *getValPtr() const { return static_cast(ValueHandleBase::getValPtr()); } void setValPtr(ValueTy *P) { ValueHandleBase::operator=(GetAsValue(P)); } #else ValueTy *ThePtr; ValueTy *getValPtr() const { return ThePtr; } void setValPtr(ValueTy *P) { ThePtr = P; } #endif // Convert a ValueTy*, which may be const, to the type the base // class expects. static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast(V); } public: #ifndef NDEBUG AssertingVH() : ValueHandleBase(Assert) {} AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {} AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {} #else AssertingVH() : ThePtr(nullptr) {} AssertingVH(ValueTy *P) : ThePtr(P) {} #endif operator ValueTy*() const { return getValPtr(); } ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(const AssertingVH &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); } ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } }; // Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap. template struct DenseMapInfo > { typedef DenseMapInfo PointerInfo; static inline AssertingVH getEmptyKey() { return AssertingVH(PointerInfo::getEmptyKey()); } static inline T* getTombstoneKey() { return AssertingVH(PointerInfo::getTombstoneKey()); } static unsigned getHashValue(const AssertingVH &Val) { return PointerInfo::getHashValue(Val); } #ifndef NDEBUG static bool isEqual(const AssertingVH &LHS, const AssertingVH &RHS) { // Avoid downcasting AssertingVH to T*, as empty/tombstone keys may not // be properly aligned pointers to T*. return LHS.ValueHandleBase::getValPtr() == RHS.ValueHandleBase::getValPtr(); } #else static bool isEqual(const AssertingVH &LHS, const AssertingVH &RHS) { return LHS == RHS; } #endif }; template struct isPodLike > { #ifdef NDEBUG static const bool value = true; #else static const bool value = false; #endif }; /// TrackingVH - This is a value handle that tracks a Value (or Value subclass), /// even across RAUW operations. /// /// TrackingVH is designed for situations where a client needs to hold a handle /// to a Value (or subclass) across some operations which may move that value, /// but should never destroy it or replace it with some unacceptable type. /// /// It is an error to do anything with a TrackingVH whose value has been /// destroyed, except to destruct it. /// /// It is an error to attempt to replace a value with one of a type which is /// incompatible with any of its outstanding TrackingVHs. template class TrackingVH : public ValueHandleBase { void CheckValidity() const { Value *VP = ValueHandleBase::getValPtr(); // Null is always ok. if (!VP) return; // Check that this value is valid (i.e., it hasn't been deleted). We // explicitly delay this check until access to avoid requiring clients to be // unnecessarily careful w.r.t. destruction. assert(ValueHandleBase::isValid(VP) && "Tracked Value was deleted!"); // Check that the value is a member of the correct subclass. We would like // to check this property on assignment for better debugging, but we don't // want to require a virtual interface on this VH. Instead we allow RAUW to // replace this value with a value of an invalid type, and check it here. assert(isa(VP) && "Tracked Value was replaced by one with an invalid type!"); } ValueTy *getValPtr() const { CheckValidity(); return (ValueTy*)ValueHandleBase::getValPtr(); } void setValPtr(ValueTy *P) { CheckValidity(); ValueHandleBase::operator=(GetAsValue(P)); } // Convert a ValueTy*, which may be const, to the type the base // class expects. static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast(V); } public: TrackingVH() : ValueHandleBase(Tracking) {} TrackingVH(ValueTy *P) : ValueHandleBase(Tracking, GetAsValue(P)) {} TrackingVH(const TrackingVH &RHS) : ValueHandleBase(Tracking, RHS) {} operator ValueTy*() const { return getValPtr(); } ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(const TrackingVH &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); } ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } }; /// CallbackVH - This is a value handle that allows subclasses to define /// callbacks that run when the underlying Value has RAUW called on it or is /// destroyed. This class can be used as the key of a map, as long as the user /// takes it out of the map before calling setValPtr() (since the map has to /// rearrange itself when the pointer changes). Unlike ValueHandleBase, this /// class has a vtable and a virtual destructor. class CallbackVH : public ValueHandleBase { virtual void anchor(); protected: CallbackVH(const CallbackVH &RHS) : ValueHandleBase(Callback, RHS) {} virtual ~CallbackVH() {} void setValPtr(Value *P) { ValueHandleBase::operator=(P); } public: CallbackVH() : ValueHandleBase(Callback) {} CallbackVH(Value *P) : ValueHandleBase(Callback, P) {} operator Value*() const { return getValPtr(); } /// Called when this->getValPtr() is destroyed, inside ~Value(), so you may /// call any non-virtual Value method on getValPtr(), but no subclass methods. /// If WeakVH were implemented as a CallbackVH, it would use this method to /// call setValPtr(NULL). AssertingVH would use this method to cause an /// assertion failure. /// /// All implementations must remove the reference from this object to the /// Value that's being destroyed. virtual void deleted() { setValPtr(nullptr); } /// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called, /// _before_ any of the uses have actually been replaced. If WeakVH were /// implemented as a CallbackVH, it would use this method to call /// setValPtr(new_value). AssertingVH would do nothing in this method. virtual void allUsesReplacedWith(Value *) {} }; } // End llvm namespace #endif