//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces which should be // implemented by each target which is using a TableGen based code generator. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // // Value types - These values correspond to the register types defined in the // ValueTypes.h file. If you update anything here, you must update it there as // well! // class ValueType { string Namespace = "MVT"; int Size = size; int Value = value; } def OtherVT: ValueType<0 , 0>; // "Other" value def i1 : ValueType<1 , 1>; // One bit boolean value def i8 : ValueType<8 , 2>; // 8-bit integer value def i16 : ValueType<16 , 3>; // 16-bit integer value def i32 : ValueType<32 , 4>; // 32-bit integer value def i64 : ValueType<64 , 5>; // 64-bit integer value def i128 : ValueType<128, 5>; // 128-bit integer value def f32 : ValueType<32 , 7>; // 32-bit floating point value def f64 : ValueType<64 , 8>; // 64-bit floating point value def f80 : ValueType<80 , 9>; // 80-bit floating point value def f128 : ValueType<128, 9>; // 128-bit floating point value def isVoid : ValueType<0 , 11>; // Produces no value //===----------------------------------------------------------------------===// // Register file description - These classes are used to fill in the target // description classes in llvm/Target/MRegisterInfo.h // Register - You should define one instance of this class for each register // in the target machine. String n will become the "name" of the register. class RegisterBase { string Namespace = ""; string Name = n; // SpillSize - If this value is set to a non-zero value, it is the size in // bits of the spill slot required to hold this register. If this value is // set to zero, the information is inferred from any register classes the // register belongs to. int SpillSize = 0; // SpillAlignment - This value is used to specify the alignment required for // spilling the register. Like SpillSize, this should only be explicitly // specified if the register is not in a register class. int SpillAlignment = 0; } class Register : RegisterBase { list Aliases = []; } // RegisterGroup - This can be used to define instances of Register which // need to specify aliases. // List "aliases" specifies which registers are aliased to this one. This // allows the code generator to be careful not to put two values with // overlapping live ranges into registers which alias. class RegisterGroup aliases> : Register { let Aliases = aliases; } // RegisterClass - Now that all of the registers are defined, and aliases // between registers are defined, specify which registers belong to which // register classes. This also defines the default allocation order of // registers by register allocators. // class RegisterClass regList> { // RegType - Specify the ValueType of the registers in this register class. // Note that all registers in a register class must have the same ValueType. // ValueType RegType = regType; // Alignment - Specify the alignment required of the registers when they are // stored or loaded to memory. // int Size = RegType.Size; int Alignment = alignment; // MemberList - Specify which registers are in this class. If the // allocation_order_* method are not specified, this also defines the order of // allocation used by the register allocator. // list MemberList = regList; // Methods - This member can be used to insert arbitrary code into a generated // register class. The normal usage of this is to overload virtual methods. code Methods = [{}]; } //===----------------------------------------------------------------------===// // Instruction set description - These classes correspond to the C++ classes in // the Target/TargetInstrInfo.h file. // class Instruction { string Name = ""; // The opcode string for this instruction string Namespace = ""; dag OperandList; // An dag containing the MI operand list. string AsmString = ""; // The .s format to print the instruction with. // Pattern - Set to the DAG pattern for this instruction, if we know of one, // otherwise, uninitialized. list Pattern; // The follow state will eventually be inferred automatically from the // instruction pattern. list Uses = []; // Default to using no non-operand registers list Defs = []; // Default to modifying no non-operand registers // These bits capture information about the high-level semantics of the // instruction. bit isReturn = 0; // Is this instruction a return instruction? bit isBranch = 0; // Is this instruction a branch instruction? bit isBarrier = 0; // Can control flow fall through this instruction? bit isCall = 0; // Is this instruction a call instruction? bit isLoad = 0; // Is this instruction a load instruction? bit isStore = 0; // Is this instruction a store instruction? bit isTwoAddress = 0; // Is this a two address instruction? bit isTerminator = 0; // Is this part of the terminator for a basic block? bit hasDelaySlot = 0; // Does this instruction have an delay slot? } /// ops definition - This is just a simple marker used to identify the operands /// list for an instruction. This should be used like this: /// (ops R32:$dst, R32:$src) or something similar. def ops; /// Operand Types - These provide the built-in operand types that may be used /// by a target. Targets can optionally provide their own operand types as /// needed, though this should not be needed for RISC targets. class Operand { int NumMIOperands = 1; ValueType Type = ty; string PrintMethod = "printOperand"; } def i1imm : Operand; def i8imm : Operand; def i16imm : Operand; def i32imm : Operand; def i64imm : Operand; // InstrInfo - This class should only be instantiated once to provide parameters // which are global to the the target machine. // class InstrInfo { Instruction PHIInst; // If the target wants to associate some target-specific information with each // instruction, it should provide these two lists to indicate how to assemble // the target specific information into the 32 bits available. // list TSFlagsFields = []; list TSFlagsShifts = []; } //===----------------------------------------------------------------------===// // AsmWriter - This class can be implemented by targets that need to customize // the format of the .s file writer. // // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax // on X86 for example). // class AsmWriter { // AsmWriterClassName - This specifies the suffix to use for the asmwriter // class. Generated AsmWriter classes are always prefixed with the target // name. string AsmWriterClassName = "AsmPrinter"; // InstFormatName - AsmWriters can specify the name of the format string to // print instructions with. string InstFormatName = "AsmString"; } def DefaultAsmWriter : AsmWriter; //===----------------------------------------------------------------------===// // Target - This class contains the "global" target information // class Target { // CalleeSavedRegisters - As you might guess, this is a list of the callee // saved registers for a target. list CalleeSavedRegisters = []; // PointerType - Specify the value type to be used to represent pointers in // this target. Typically this is an i32 or i64 type. ValueType PointerType; // InstructionSet - Instruction set description for this target. InstrInfo InstructionSet; // AssemblyWriter - The AsmWriter instance to use for this target. AsmWriter AssemblyWriter = DefaultAsmWriter; } //===----------------------------------------------------------------------===// // DAG node definitions used by the instruction selector. // // NOTE: all of this is a work-in-progress and should be ignored for now. // /* class Expander result> { dag Pattern = pattern; list Result = result; } class DagNodeValType; def DNVT_any : DagNodeValType; // No constraint on tree node def DNVT_void : DagNodeValType; // Tree node always returns void def DNVT_val : DagNodeValType; // A non-void type def DNVT_arg0 : DagNodeValType; // Tree node returns same type as Arg0 def DNVT_arg1 : DagNodeValType; // Tree node returns same type as Arg1 def DNVT_ptr : DagNodeValType; // The target pointer type def DNVT_i8 : DagNodeValType; // Always have an i8 value class DagNode args> { DagNodeValType RetType = ret; list ArgTypes = args; string EnumName = ?; } // BuiltinDagNodes are built into the instruction selector and correspond to // enum values. class BuiltinDagNode Args, string Ename> : DagNode { let EnumName = Ename; } // Magic nodes... def Void : RegisterClass { let isDummyClass = 1; } def set : DagNode; def chain : BuiltinDagNode; def blockchain : BuiltinDagNode; def ChainExpander : Expander<(chain Void, Void), []>; def BlockChainExpander : Expander<(blockchain Void, Void), []>; // Terminals... def imm : BuiltinDagNode; def frameidx : BuiltinDagNode; def basicblock : BuiltinDagNode; // Arithmetic... def plus : BuiltinDagNode; def minus : BuiltinDagNode; def times : BuiltinDagNode; def sdiv : BuiltinDagNode; def udiv : BuiltinDagNode; def srem : BuiltinDagNode; def urem : BuiltinDagNode; def and : BuiltinDagNode; def or : BuiltinDagNode; def xor : BuiltinDagNode; // Comparisons... def seteq : BuiltinDagNode; def setne : BuiltinDagNode; def setlt : BuiltinDagNode; def setle : BuiltinDagNode; def setgt : BuiltinDagNode; def setge : BuiltinDagNode; def load : BuiltinDagNode; //def store : BuiltinDagNode; // Other... def ret : BuiltinDagNode; def retvoid : BuiltinDagNode; def br : BuiltinDagNode; def brcond : BuiltinDagNode; def unspec1 : BuiltinDagNode; def unspec2 : BuiltinDagNode; //===----------------------------------------------------------------------===// // DAG nonterminals definitions used by the instruction selector... // class Nonterminal { dag Pattern = pattern; bit BuiltIn = 0; } */