//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that PPC uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H #include "llvm/Target/TargetLowering.h" #include "llvm/CodeGen/SelectionDAG.h" #include "PPC.h" #include "PPCSubtarget.h" namespace llvm { namespace PPCISD { enum NodeType { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// FSEL - Traditional three-operand fsel node. /// FSEL, /// FCFID - The FCFID instruction, taking an f64 operand and producing /// and f64 value containing the FP representation of the integer that /// was temporarily in the f64 operand. FCFID, /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 /// operand, producing an f64 value containing the integer representation /// of that FP value. FCTIDZ, FCTIWZ, /// STFIWX - The STFIWX instruction. The first operand is an input token /// chain, then an f64 value to store, then an address to store it to. STFIWX, // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking // three v4f32 operands and producing a v4f32 result. VMADDFP, VNMSUBFP, /// VPERM - The PPC VPERM Instruction. /// VPERM, /// Hi/Lo - These represent the high and low 16-bit parts of a global /// address respectively. These nodes have two operands, the first of /// which must be a TargetGlobalAddress, and the second of which must be a /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', /// though these are usually folded into other nodes. Hi, Lo, TOC_ENTRY, /// The following three target-specific nodes are used for calls through /// function pointers in the 64-bit SVR4 ABI. /// Restore the TOC from the TOC save area of the current stack frame. /// This is basically a hard coded load instruction which additionally /// takes/produces a flag. TOC_RESTORE, /// Like a regular LOAD but additionally taking/producing a flag. LOAD, /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is /// a hard coded load instruction. LOAD_TOC, /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to /// compute an allocation on the stack. DYNALLOC, /// GlobalBaseReg - On Darwin, this node represents the result of the mflr /// at function entry, used for PIC code. GlobalBaseReg, /// These nodes represent the 32-bit PPC shifts that operate on 6-bit /// shift amounts. These nodes are generated by the multi-precision shift /// code. SRL, SRA, SHL, /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit" /// registers. EXTSW_32, /// CALL - A direct function call. CALL_Darwin, CALL_SVR4, /// NOP - Special NOP which follows 64-bit SVR4 calls. NOP, /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a /// MTCTR instruction. MTCTR, /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a /// BCTRL instruction. BCTRL_Darwin, BCTRL_SVR4, /// Return with a flag operand, matched by 'blr' RET_FLAG, /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF /// instructions. This copies the bits corresponding to the specified /// CRREG into the resultant GPR. Bits corresponding to other CR regs /// are undefined. MFCR, /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* /// instructions. For lack of better number, we use the opcode number /// encoding for the OPC field to identify the compare. For example, 838 /// is VCMPGTSH. VCMP, /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the /// altivec VCMP*o instructions. For lack of better number, we use the /// opcode number encoding for the OPC field to identify the compare. For /// example, 838 is VCMPGTSH. VCMPo, /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the /// condition register to branch on, OPC is the branch opcode to use (e.g. /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is /// an optional input flag argument. COND_BRANCH, // The following 5 instructions are used only as part of the // long double-to-int conversion sequence. /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the /// register. MFFS, /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR. MTFSB0, /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR. MTFSB1, /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with /// rounding towards zero. It has flags added so it won't move past the /// FPSCR-setting instructions. FADDRTZ, /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR. MTFSF, /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and /// reserve indexed. This is used to implement atomic operations. LARX, /// STCX = This corresponds to PPC stcx. instrcution: store conditional /// indexed. This is used to implement atomic operations. STCX, /// TC_RETURN - A tail call return. /// operand #0 chain /// operand #1 callee (register or absolute) /// operand #2 stack adjustment /// operand #3 optional in flag TC_RETURN, /// STD_32 - This is the STD instruction for use with "32-bit" registers. STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE, /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a /// byte-swapping store instruction. It byte-swaps the low "Type" bits of /// the GPRC input, then stores it through Ptr. Type can be either i16 or /// i32. STBRX, /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 /// or i32. LBRX }; } /// Define some predicates that are used for node matching. namespace PPC { /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary); /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary); /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary); /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary); /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. int isVSLDOIShuffleMask(SDNode *N, bool isUnary); /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); /// isAllNegativeZeroVector - Returns true if all elements of build_vector /// are -0.0. bool isAllNegativeZeroVector(SDNode *N); /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize); /// get_VSPLTI_elt - If this is a build_vector of constants which can be /// formed by using a vspltis[bhw] instruction of the specified element /// size, return the constant being splatted. The ByteSize field indicates /// the number of bytes of each element [124] -> [bhw]. SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); } class PPCTargetLowering : public TargetLowering { const PPCSubtarget &PPCSubTarget; public: explicit PPCTargetLowering(PPCTargetMachine &TM); /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// getSetCCResultType - Return the ISD::SETCC ValueType virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const; /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; /// SelectAddressRegImm - Returns true if the address N can be represented /// by a base register plus a signed 16-bit displacement [r+imm], and if it /// is not better represented as reg+reg. bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const; /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; /// SelectAddressRegImmShift - Returns true if the address N can be /// represented by a base register plus a signed 14-bit displacement /// [r+imm*4]. Suitable for use by STD and friends. bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const; /// LowerOperation - Provide custom lowering hooks for some operations. /// virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const; virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; virtual void computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *MBB, bool is64Bit, unsigned BinOpcode) const; MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode) const; ConstraintType getConstraintType(const std::string &Constraint) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; std::pair getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const; /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned getByValTypeAlignment(const Type *Ty) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, std::vector &Ops, SelectionDAG &DAG) const; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const; /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const; /// isLegalAddressImmediate - Return true if the GlobalValue can be used as /// the offset of the target addressing mode. virtual bool isLegalAddressImmediate(GlobalValue *GV) const; virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If /// 'NonScalarIntSafe' is true, that means it's safe to return a /// non-scalar-integer type, e.g. empty string source, constant, or loaded /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is /// constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool NonScalarIntSafe, bool MemcpyStrSrc, MachineFunction &MF) const; /// getFunctionAlignment - Return the Log2 alignment of this function. virtual unsigned getFunctionAlignment(const Function *F) const; private: SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, bool isDarwinABI, DebugLoc dl) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const; SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall, bool isVarArg, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue InFlag, SDValue Chain, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl &Ins, SmallVectorImpl &InVals) const; virtual SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; virtual SDValue LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; virtual SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const; SDValue LowerFormalArguments_Darwin(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerFormalArguments_SVR4(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerCall_SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; }; } #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H