//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements target addressing mode matcher class. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/AddrModeMatcher.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instruction.h" #include "llvm/Assembly/Writer.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::PatternMatch; void ExtAddrMode::print(raw_ostream &OS) const { bool NeedPlus = false; OS << "["; if (BaseGV) { OS << (NeedPlus ? " + " : "") << "GV:"; WriteAsOperand(OS, BaseGV, /*PrintType=*/false); NeedPlus = true; } if (BaseOffs) OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; if (BaseReg) { OS << (NeedPlus ? " + " : "") << "Base:"; WriteAsOperand(OS, BaseReg, /*PrintType=*/false); NeedPlus = true; } if (Scale) { OS << (NeedPlus ? " + " : "") << Scale << "*"; WriteAsOperand(OS, ScaledReg, /*PrintType=*/false); NeedPlus = true; } OS << ']'; } void ExtAddrMode::dump() const { print(dbgs()); dbgs() << '\n'; } /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) return MatchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) return true; // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode TestAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. TestAddrMode.Scale += Scale; TestAddrMode.ScaledReg = ScaleReg; // If the new address isn't legal, bail out. if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) return false; // It was legal, so commit it. AddrMode = TestAddrMode; // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. ConstantInt *CI = 0; Value *AddLHS = 0; if (isa<Instruction>(ScaleReg) && // not a constant expr. match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { TestAddrMode.ScaledReg = AddLHS; TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; // If this addressing mode is legal, commit it and remember that we folded // this instruction. if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); AddrMode = TestAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } /// MightBeFoldableInst - This is a little filter, which returns true if an /// addressing computation involving I might be folded into a load/store /// accessing it. This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { case Instruction::BitCast: // Don't touch identity bitcasts. if (I->getType() == I->getOperand(0)->getType()) return false; return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType()); case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return true; case Instruction::IntToPtr: // We know the input is intptr_t, so this is foldable. return true; case Instruction::Add: return true; case Instruction::Mul: case Instruction::Shl: // Can only handle X*C and X << C. return isa<ConstantInt>(I->getOperand(1)); case Instruction::GetElementPtr: return true; default: return false; } } /// MatchOperationAddr - Given an instruction or constant expr, see if we can /// fold the operation into the addressing mode. If so, update the addressing /// mode and return true, otherwise return false without modifying AddrMode. bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth) { // Avoid exponential behavior on extremely deep expression trees. if (Depth >= 5) return false; switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return MatchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == TLI.getPointerTy()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::BitCast: // BitCast is always a noop, and we can handle it as long as it is // int->int or pointer->pointer (we don't want int<->fp or something). if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) || isa<IntegerType>(AddrInst->getOperand(0)->getType())) && // Don't touch identity bitcasts. These were probably put here by LSR, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (MatchAddr(AddrInst->getOperand(1), Depth+1) && MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (MatchAddr(AddrInst->getOperand(0), Depth+1) && MatchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); break; } //case Instruction::Or: // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. //break; case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C. ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); if (!RHS) return false; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1LL << Scale; return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; const TargetData *TD = TLI.getTargetData(); gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (const StructType *STy = dyn_cast<StructType>(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue()*TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) return false; // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ // Check to see if we can fold the base pointer in too. if (MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; return false; } // Save the valid addressing mode in case we can't match. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // See if the scale and offset amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); } // Match the remaining variable portion of the GEP. if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); if (AddrMode.HasBaseReg) return false; AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } } return true; } } return false; } /// MatchAddr - If we can, try to add the value of 'Addr' into the current /// addressing mode. If Addr can't be added to AddrMode this returns false and /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type /// or intptr_t for the target. /// bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { // Fold in immediates if legal for the target. AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { // If this is a global variable, try to fold it into the addressing mode. if (AddrMode.BaseGV == 0) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseGV = 0; } } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Check to see if it is possible to fold this operation. if (MatchOperationAddr(I, I->getOpcode(), Depth)) { // Okay, it's possible to fold this. Check to see if it is actually // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } // It isn't profitable to do this, roll back. //cerr << "NOT FOLDING: " << *I; AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); } } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) return true; } else if (isa<ConstantPointerNull>(Addr)) { // Null pointer gets folded without affecting the addressing mode. return true; } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; AddrMode.BaseReg = Addr; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.HasBaseReg = false; AddrMode.BaseReg = 0; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; AddrMode.ScaledReg = Addr; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.Scale = 0; AddrMode.ScaledReg = 0; } // Couldn't match. return false; } /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified /// inline asm call are due to memory operands. If so, return true, otherwise /// return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI) { std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); unsigned ArgNo = 1; // ArgNo - The operand of the CallInst. for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo OpInfo(Constraints[i]); // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: if (OpInfo.isIndirect) OpInfo.CallOperandVal = CI->getOperand(ArgNo++); break; case InlineAsm::isInput: OpInfo.CallOperandVal = CI->getOperand(ArgNo++); break; case InlineAsm::isClobber: // Nothing to do. break; } // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, SDValue(), OpInfo.ConstraintType == TargetLowering::C_Memory); // If this asm operand is our Value*, and if it isn't an indirect memory // operand, we can't fold it! if (OpInfo.CallOperandVal == OpVal && (OpInfo.ConstraintType != TargetLowering::C_Memory || !OpInfo.isIndirect)) return false; } return true; } /// FindAllMemoryUses - Recursively walk all the uses of I until we find a /// memory use. If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses(Instruction *I, SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, SmallPtrSet<Instruction*, 16> &ConsideredInsts, const TargetLowering &TLI) { // If we already considered this instruction, we're done. if (!ConsideredInsts.insert(I)) return false; // If this is an obviously unfoldable instruction, bail out. if (!MightBeFoldableInst(I)) return true; // Loop over all the uses, recursively processing them. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); continue; } if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo())); continue; } if (CallInst *CI = dyn_cast<CallInst>(*UI)) { InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); if (IA == 0) return true; // If this is a memory operand, we're cool, otherwise bail out. if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) return true; continue; } if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts, TLI)) return true; } return false; } /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at /// the use site that we're folding it into. If so, there is no cost to /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values /// that we know are live at the instruction already. bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) return true; // All values other than instructions and arguments (e.g. constants) are live. if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; // If Val is a constant sized alloca in the entry block, it is live, this is // true because it is just a reference to the stack/frame pointer, which is // live for the whole function. if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) if (AI->isStaticAlloca()) return true; // Check to see if this value is already used in the memory instruction's // block. If so, it's already live into the block at the very least, so we // can reasonably fold it. BasicBlock *MemBB = MemoryInst->getParent(); for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end(); UI != E; ++UI) // We know that uses of arguments and instructions have to be instructions. if (cast<Instruction>(*UI)->getParent() == MemBB) return true; return false; } /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing /// mode of the machine to fold the specified instruction into a load or store /// that ultimately uses it. However, the specified instruction has multiple /// uses. Given this, it may actually increase register pressure to fold it /// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 /// use(Y) -> nonload/store /// Z = Y+1 /// load Z /// /// In this case, Y has multiple uses, and can be folded into the load of Z /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to /// be live at the use(Y) line. If we don't fold Y into load Z, we use one /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the /// number of computations either. /// /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; // AMBefore is the addressing mode before this instruction was folded into it, // and AMAfter is the addressing mode after the instruction was folded. Get // the set of registers referenced by AMAfter and subtract out those // referenced by AMBefore: this is the set of values which folding in this // address extends the lifetime of. // // Note that there are only two potential values being referenced here, // BaseReg and ScaleReg (global addresses are always available, as are any // folded immediates). Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = 0; if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = 0; // If folding this instruction (and it's subexprs) didn't extend any live // ranges, we're ok with it. if (BaseReg == 0 && ScaledReg == 0) return true; // If all uses of this instruction are ultimately load/store/inlineasm's, // check to see if their addressing modes will include this instruction. If // so, we can fold it into all uses, so it doesn't matter if it has multiple // uses. SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; SmallPtrSet<Instruction*, 16> ConsideredInsts; if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) return false; // Has a non-memory, non-foldable use! // Now that we know that all uses of this instruction are part of a chain of // computation involving only operations that could theoretically be folded // into a memory use, loop over each of these uses and see if they could // *actually* fold the instruction. SmallVector<Instruction*, 32> MatchedAddrModeInsts; for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { Instruction *User = MemoryUses[i].first; unsigned OpNo = MemoryUses[i].second; // Get the access type of this use. If the use isn't a pointer, we don't // know what it accesses. Value *Address = User->getOperand(OpNo); if (!isa<PointerType>(Address->getType())) return false; const Type *AddressAccessTy = cast<PointerType>(Address->getType())->getElementType(); // Do a match against the root of this address, ignoring profitability. This // will tell us if the addressing mode for the memory operation will // *actually* cover the shared instruction. ExtAddrMode Result; AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, MemoryInst, Result); Matcher.IgnoreProfitability = true; bool Success = Matcher.MatchAddr(Address, 0); Success = Success; assert(Success && "Couldn't select *anything*?"); // If the match didn't cover I, then it won't be shared by it. if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), I) == MatchedAddrModeInsts.end()) return false; MatchedAddrModeInsts.clear(); } return true; }