//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG. This pass is where // algebraic simplification happens. // // This pass combines things like: // %Y = add i32 %X, 1 // %Z = add i32 %Y, 1 // into: // %Z = add i32 %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All cmp instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumCombined , "Number of insts combined"); STATISTIC(NumConstProp, "Number of constant folds"); STATISTIC(NumDeadInst , "Number of dead inst eliminated"); STATISTIC(NumDeadStore, "Number of dead stores eliminated"); STATISTIC(NumSunkInst , "Number of instructions sunk"); namespace { class VISIBILITY_HIDDEN InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. SmallVector Worklist; DenseMap WorklistMap; TargetData *TD; bool MustPreserveLCSSA; public: static char ID; // Pass identification, replacement for typeid InstCombiner() : FunctionPass(&ID) {} /// AddToWorkList - Add the specified instruction to the worklist if it /// isn't already in it. void AddToWorkList(Instruction *I) { if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) Worklist.push_back(I); } // RemoveFromWorkList - remove I from the worklist if it exists. void RemoveFromWorkList(Instruction *I) { DenseMap::iterator It = WorklistMap.find(I); if (It == WorklistMap.end()) return; // Not in worklist. // Don't bother moving everything down, just null out the slot. Worklist[It->second] = 0; WorklistMap.erase(It); } Instruction *RemoveOneFromWorkList() { Instruction *I = Worklist.back(); Worklist.pop_back(); WorklistMap.erase(I); return I; } /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(Value &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) AddToWorkList(cast(*UI)); } /// AddUsesToWorkList - When an instruction is simplified, add operands to /// the work lists because they might get more simplified now. /// void AddUsesToWorkList(Instruction &I) { for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) if (Instruction *Op = dyn_cast(*i)) AddToWorkList(Op); } /// AddSoonDeadInstToWorklist - The specified instruction is about to become /// dead. Add all of its operands to the worklist, turning them into /// undef's to reduce the number of uses of those instructions. /// /// Return the specified operand before it is turned into an undef. /// Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) { Value *R = I.getOperand(op); for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) if (Instruction *Op = dyn_cast(*i)) { AddToWorkList(Op); // Set the operand to undef to drop the use. *i = UndefValue::get(Op->getType()); } return R; } public: virtual bool runOnFunction(Function &F); bool DoOneIteration(Function &F, unsigned ItNum); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } TargetData &getTargetData() const { return *TD; } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitAdd(BinaryOperator &I); Instruction *visitSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitURem(BinaryOperator &I); Instruction *visitSRem(BinaryOperator &I); Instruction *visitFRem(BinaryOperator &I); bool SimplifyDivRemOfSelect(BinaryOperator &I); Instruction *commonRemTransforms(BinaryOperator &I); Instruction *commonIRemTransforms(BinaryOperator &I); Instruction *commonDivTransforms(BinaryOperator &I); Instruction *commonIDivTransforms(BinaryOperator &I); Instruction *visitUDiv(BinaryOperator &I); Instruction *visitSDiv(BinaryOperator &I); Instruction *visitFDiv(BinaryOperator &I); Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); Instruction *visitAnd(BinaryOperator &I); Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A, Value *B, Value *C); Instruction *visitOr (BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitShl(BinaryOperator &I); Instruction *visitAShr(BinaryOperator &I); Instruction *visitLShr(BinaryOperator &I); Instruction *commonShiftTransforms(BinaryOperator &I); Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, Constant *RHSC); Instruction *visitFCmpInst(FCmpInst &I); Instruction *visitICmpInst(ICmpInst &I); Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS, ConstantInt *RHS); Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS); Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I); Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, BinaryOperator &I); Instruction *commonCastTransforms(CastInst &CI); Instruction *commonIntCastTransforms(CastInst &CI); Instruction *commonPointerCastTransforms(CastInst &CI); Instruction *visitTrunc(TruncInst &CI); Instruction *visitZExt(ZExtInst &CI); Instruction *visitSExt(SExtInst &CI); Instruction *visitFPTrunc(FPTruncInst &CI); Instruction *visitFPExt(CastInst &CI); Instruction *visitFPToUI(FPToUIInst &FI); Instruction *visitFPToSI(FPToSIInst &FI); Instruction *visitUIToFP(CastInst &CI); Instruction *visitSIToFP(CastInst &CI); Instruction *visitPtrToInt(CastInst &CI); Instruction *visitIntToPtr(IntToPtrInst &CI); Instruction *visitBitCast(BitCastInst &CI); Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); Instruction *visitSelectInst(SelectInst &SI); Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); Instruction *visitCallInst(CallInst &CI); Instruction *visitInvokeInst(InvokeInst &II); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); Instruction *visitAllocationInst(AllocationInst &AI); Instruction *visitFreeInst(FreeInst &FI); Instruction *visitLoadInst(LoadInst &LI); Instruction *visitStoreInst(StoreInst &SI); Instruction *visitBranchInst(BranchInst &BI); Instruction *visitSwitchInst(SwitchInst &SI); Instruction *visitInsertElementInst(InsertElementInst &IE); Instruction *visitExtractElementInst(ExtractElementInst &EI); Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); Instruction *visitExtractValueInst(ExtractValueInst &EV); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction &I) { return 0; } private: Instruction *visitCallSite(CallSite CS); bool transformConstExprCastCall(CallSite CS); Instruction *transformCallThroughTrampoline(CallSite CS); Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, bool DoXform = true); bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); public: // InsertNewInstBefore - insert an instruction New before instruction Old // in the program. Add the new instruction to the worklist. // Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && New->getParent() == 0 && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); BB->getInstList().insert(&Old, New); // Insert inst AddToWorkList(New); return New; } /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. /// This also adds the cast to the worklist. Finally, this returns the /// cast. Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty, Instruction &Pos) { if (V->getType() == Ty) return V; if (Constant *CV = dyn_cast(V)) return ConstantExpr::getCast(opc, CV, Ty); Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos); AddToWorkList(C); return C; } Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) { return InsertCastBefore(Instruction::BitCast, V, Ty, Pos); } // ReplaceInstUsesWith - This method is to be used when an instruction is // found to be dead, replacable with another preexisting expression. Here // we add all uses of I to the worklist, replace all uses of I with the new // value, then return I, so that the inst combiner will know that I was // modified. // Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { AddUsersToWorkList(I); // Add all modified instrs to worklist if (&I != V) { I.replaceAllUsesWith(V); return &I; } else { // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. I.replaceAllUsesWith(UndefValue::get(I.getType())); return &I; } } // EraseInstFromFunction - When dealing with an instruction that has side // effects or produces a void value, we can't rely on DCE to delete the // instruction. Instead, visit methods should return the value returned by // this function. Instruction *EraseInstFromFunction(Instruction &I) { assert(I.use_empty() && "Cannot erase instruction that is used!"); AddUsesToWorkList(I); RemoveFromWorkList(&I); I.eraseFromParent(); return 0; // Don't do anything with FI } void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, unsigned Depth = 0) const { return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); } bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0) const { return llvm::MaskedValueIsZero(V, Mask, TD, Depth); } unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const { return llvm::ComputeNumSignBits(Op, TD, Depth); } private: /// SimplifyCommutative - This performs a few simplifications for /// commutative operators. bool SimplifyCommutative(BinaryOperator &I); /// SimplifyCompare - This reorders the operands of a CmpInst to get them in /// most-complex to least-complex order. bool SimplifyCompare(CmpInst &I); /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value /// based on the demanded bits. Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt& KnownZero, APInt& KnownOne, unsigned Depth); bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt& KnownZero, APInt& KnownOne, unsigned Depth=0); /// SimplifyDemandedInstructionBits - Inst is an integer instruction that /// SimplifyDemandedBits knows about. See if the instruction has any /// properties that allow us to simplify its operands. bool SimplifyDemandedInstructionBits(Instruction &Inst); Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt& UndefElts, unsigned Depth = 0); // FoldOpIntoPhi - Given a binary operator or cast instruction which has a // PHI node as operand #0, see if we can fold the instruction into the PHI // (which is only possible if all operands to the PHI are constants). Instruction *FoldOpIntoPhi(Instruction &I); // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, ConstantInt *AndRHS, BinaryOperator &TheAnd); Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, bool isSub, Instruction &I); Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned, bool Inside, Instruction &IB); Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI); Instruction *MatchBSwap(BinaryOperator &I); bool SimplifyStoreAtEndOfBlock(StoreInst &SI); Instruction *SimplifyMemTransfer(MemIntrinsic *MI); Instruction *SimplifyMemSet(MemSetInst *MI); Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, unsigned CastOpc, int &NumCastsRemoved); unsigned GetOrEnforceKnownAlignment(Value *V, unsigned PrefAlign = 0); }; } char InstCombiner::ID = 0; static RegisterPass X("instcombine", "Combine redundant instructions"); // getComplexity: Assign a complexity or rank value to LLVM Values... // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst static unsigned getComplexity(Value *V) { if (isa(V)) { if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) return 3; return 4; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } // isOnlyUse - Return true if this instruction will be deleted if we stop using // it. static bool isOnlyUse(Value *V) { return V->hasOneUse() || isa(V); } // getPromotedType - Return the specified type promoted as it would be to pass // though a va_arg area... static const Type *getPromotedType(const Type *Ty) { if (const IntegerType* ITy = dyn_cast(Ty)) { if (ITy->getBitWidth() < 32) return Type::Int32Ty; } return Ty; } /// getBitCastOperand - If the specified operand is a CastInst, a constant /// expression bitcast, or a GetElementPtrInst with all zero indices, return the /// operand value, otherwise return null. static Value *getBitCastOperand(Value *V) { if (BitCastInst *I = dyn_cast(V)) // BitCastInst? return I->getOperand(0); else if (GetElementPtrInst *GEP = dyn_cast(V)) { // GetElementPtrInst? if (GEP->hasAllZeroIndices()) return GEP->getOperand(0); } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::BitCast) // BitCast ConstantExp? return CE->getOperand(0); else if (CE->getOpcode() == Instruction::GetElementPtr) { // GetElementPtr ConstantExp? for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end(); I != E; ++I) { ConstantInt *CI = dyn_cast(I); if (!CI || !CI->isZero()) // Any non-zero indices? Not cast-like. return 0; } // All-zero indices? This is just like casting. return CE->getOperand(0); } } return 0; } /// This function is a wrapper around CastInst::isEliminableCastPair. It /// simply extracts arguments and returns what that function returns. static Instruction::CastOps isEliminableCastPair( const CastInst *CI, ///< The first cast instruction unsigned opcode, ///< The opcode of the second cast instruction const Type *DstTy, ///< The target type for the second cast instruction TargetData *TD ///< The target data for pointer size ) { const Type *SrcTy = CI->getOperand(0)->getType(); // A from above const Type *MidTy = CI->getType(); // B from above // Get the opcodes of the two Cast instructions Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); Instruction::CastOps secondOp = Instruction::CastOps(opcode); return Instruction::CastOps( CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, TD->getIntPtrType())); } /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results /// in any code being generated. It does not require codegen if V is simple /// enough or if the cast can be folded into other casts. static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, const Type *Ty, TargetData *TD) { if (V->getType() == Ty || isa(V)) return false; // If this is another cast that can be eliminated, it isn't codegen either. if (const CastInst *CI = dyn_cast(V)) if (isEliminableCastPair(CI, opcode, Ty, TD)) return false; return true; } // SimplifyCommutative - This performs a few simplifications for commutative // operators: // // 1. Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. // // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) // bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { bool Changed = false; if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); if (!I.isAssociative()) return Changed; Instruction::BinaryOps Opcode = I.getOpcode(); if (BinaryOperator *Op = dyn_cast(I.getOperand(0))) if (Op->getOpcode() == Opcode && isa(Op->getOperand(1))) { if (isa(I.getOperand(1))) { Constant *Folded = ConstantExpr::get(I.getOpcode(), cast(I.getOperand(1)), cast(Op->getOperand(1))); I.setOperand(0, Op->getOperand(0)); I.setOperand(1, Folded); return true; } else if (BinaryOperator *Op1=dyn_cast(I.getOperand(1))) if (Op1->getOpcode() == Opcode && isa(Op1->getOperand(1)) && isOnlyUse(Op) && isOnlyUse(Op1)) { Constant *C1 = cast(Op->getOperand(1)); Constant *C2 = cast(Op1->getOperand(1)); // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), Op1->getOperand(0), Op1->getName(), &I); AddToWorkList(New); I.setOperand(0, New); I.setOperand(1, Folded); return true; } } return Changed; } /// SimplifyCompare - For a CmpInst this function just orders the operands /// so that theyare listed from right (least complex) to left (most complex). /// This puts constants before unary operators before binary operators. bool InstCombiner::SimplifyCompare(CmpInst &I) { if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1))) return false; I.swapOperands(); // Compare instructions are not associative so there's nothing else we can do. return true; } // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction // if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegVal(Value *V) { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(V); // Constants can be considered to be negated values if they can be folded. if (ConstantInt *C = dyn_cast(V)) return ConstantExpr::getNeg(C); if (ConstantVector *C = dyn_cast(V)) if (C->getType()->getElementType()->isInteger()) return ConstantExpr::getNeg(C); return 0; } static inline Value *dyn_castNotVal(Value *V) { if (BinaryOperator::isNot(V)) return BinaryOperator::getNotArgument(V); // Constants can be considered to be not'ed values... if (ConstantInt *C = dyn_cast(V)) return ConstantInt::get(~C->getValue()); return 0; } // dyn_castFoldableMul - If this value is a multiply that can be folded into // other computations (because it has a constant operand), return the // non-constant operand of the multiply, and set CST to point to the multiplier. // Otherwise, return null. // static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { if (V->hasOneUse() && V->getType()->isInteger()) if (Instruction *I = dyn_cast(V)) { if (I->getOpcode() == Instruction::Mul) if ((CST = dyn_cast(I->getOperand(1)))) return I->getOperand(0); if (I->getOpcode() == Instruction::Shl) if ((CST = dyn_cast(I->getOperand(1)))) { // The multiplier is really 1 << CST. uint32_t BitWidth = cast(V->getType())->getBitWidth(); uint32_t CSTVal = CST->getLimitedValue(BitWidth); CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal)); return I->getOperand(0); } } return 0; } /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant /// expression, return it. static User *dyn_castGetElementPtr(Value *V) { if (isa(V)) return cast(V); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::GetElementPtr) return cast(V); return false; } /// getOpcode - If this is an Instruction or a ConstantExpr, return the /// opcode value. Otherwise return UserOp1. static unsigned getOpcode(const Value *V) { if (const Instruction *I = dyn_cast(V)) return I->getOpcode(); if (const ConstantExpr *CE = dyn_cast(V)) return CE->getOpcode(); // Use UserOp1 to mean there's no opcode. return Instruction::UserOp1; } /// AddOne - Add one to a ConstantInt static ConstantInt *AddOne(ConstantInt *C) { APInt Val(C->getValue()); return ConstantInt::get(++Val); } /// SubOne - Subtract one from a ConstantInt static ConstantInt *SubOne(ConstantInt *C) { APInt Val(C->getValue()); return ConstantInt::get(--Val); } /// Add - Add two ConstantInts together static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() + C2->getValue()); } /// And - Bitwise AND two ConstantInts together static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() & C2->getValue()); } /// Subtract - Subtract one ConstantInt from another static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() - C2->getValue()); } /// Multiply - Multiply two ConstantInts together static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() * C2->getValue()); } /// MultiplyOverflows - True if the multiply can not be expressed in an int /// this size. static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { uint32_t W = C1->getBitWidth(); APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); if (sign) { LHSExt.sext(W * 2); RHSExt.sext(W * 2); } else { LHSExt.zext(W * 2); RHSExt.zext(W * 2); } APInt MulExt = LHSExt * RHSExt; if (sign) { APInt Min = APInt::getSignedMinValue(W).sext(W * 2); APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); return MulExt.slt(Min) || MulExt.sgt(Max); } else return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, APInt Demanded) { assert(I && "No instruction?"); assert(OpNo < I->getNumOperands() && "Operand index too large"); // If the operand is not a constant integer, nothing to do. ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); if (!OpC) return false; // If there are no bits set that aren't demanded, nothing to do. Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); if ((~Demanded & OpC->getValue()) == 0) return false; // This instruction is producing bits that are not demanded. Shrink the RHS. Demanded &= OpC->getValue(); I->setOperand(OpNo, ConstantInt::get(Demanded)); return true; } // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a // set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, const APInt& KnownZero, const APInt& KnownOne, APInt& Min, APInt& Max) { uint32_t BitWidth = cast(Ty)->getBitWidth(); assert(KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); APInt UnknownBits = ~(KnownZero|KnownOne); // The minimum value is when all unknown bits are zeros, EXCEPT for the sign // bit if it is unknown. Min = KnownOne; Max = KnownOne|UnknownBits; if (UnknownBits[BitWidth-1]) { // Sign bit is unknown Min.set(BitWidth-1); Max.clear(BitWidth-1); } } // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and // a set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, const APInt &KnownZero, const APInt &KnownOne, APInt &Min, APInt &Max) { uint32_t BitWidth = cast(Ty)->getBitWidth(); BitWidth = BitWidth; assert(KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && Min.getBitWidth() == BitWidth && Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); APInt UnknownBits = ~(KnownZero|KnownOne); // The minimum value is when the unknown bits are all zeros. Min = KnownOne; // The maximum value is when the unknown bits are all ones. Max = KnownOne|UnknownBits; } /// SimplifyDemandedInstructionBits - Inst is an integer instruction that /// SimplifyDemandedBits knows about. See if the instruction has any /// properties that allow us to simplify its operands. bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { unsigned BitWidth = cast(Inst.getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne, 0); if (V == 0) return false; if (V == &Inst) return true; ReplaceInstUsesWith(Inst, V); return true; } /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the /// specified instruction operand if possible, updating it in place. It returns /// true if it made any change and false otherwise. bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne, unsigned Depth) { Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, KnownOne, Depth); if (NewVal == 0) return false; U.set(NewVal); return true; } /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler /// value based on the demanded bits. When this function is called, it is known /// that only the bits set in DemandedMask of the result of V are ever used /// downstream. Consequently, depending on the mask and V, it may be possible /// to replace V with a constant or one of its operands. In such cases, this /// function does the replacement and returns true. In all other cases, it /// returns false after analyzing the expression and setting KnownOne and known /// to be one in the expression. KnownZero contains all the bits that are known /// to be zero in the expression. These are provided to potentially allow the /// caller (which might recursively be SimplifyDemandedBits itself) to simplify /// the expression. KnownOne and KnownZero always follow the invariant that /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that /// the bits in KnownOne and KnownZero may only be accurate for those bits set /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero /// and KnownOne must all be the same. /// /// This returns null if it did not change anything and it permits no /// simplification. This returns V itself if it did some simplification of V's /// operands based on the information about what bits are demanded. This returns /// some other non-null value if it found out that V is equal to another value /// in the context where the specified bits are demanded, but not for all users. Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne, unsigned Depth) { assert(V != 0 && "Null pointer of Value???"); assert(Depth <= 6 && "Limit Search Depth"); uint32_t BitWidth = DemandedMask.getBitWidth(); const IntegerType *VTy = cast(V->getType()); assert(VTy->getBitWidth() == BitWidth && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && "Value *V, DemandedMask, KnownZero and KnownOne \ must have same BitWidth"); if (ConstantInt *CI = dyn_cast(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & DemandedMask; KnownZero = ~KnownOne & DemandedMask; return 0; } KnownZero.clear(); KnownOne.clear(); if (DemandedMask == 0) { // Not demanding any bits from V. if (isa(V)) return 0; return UndefValue::get(VTy); } if (Depth == 6) // Limit search depth. return 0; Instruction *I = dyn_cast(V); if (!I) return 0; // Only analyze instructions. APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne; // If there are multiple uses of this value and we aren't at the root, then // we can't do any simplifications of the operands, because DemandedMask // only reflects the bits demanded by *one* of the users. if (Depth != 0 && !I->hasOneUse()) { // Despite the fact that we can't simplify this instruction in all User's // context, we can at least compute the knownzero/knownone bits, and we can // do simplifications that apply to *just* the one user if we know that // this instruction has a simpler value in that context. if (I->getOpcode() == Instruction::And) { // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(I->getOperand(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1); ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, LHSKnownZero, LHSKnownOne, Depth+1); // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and' in this // context. if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == (DemandedMask & ~LHSKnownZero)) return I->getOperand(0); if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == (DemandedMask & ~RHSKnownZero)) return I->getOperand(1); // If all of the demanded bits in the inputs are known zeros, return zero. if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) return Constant::getNullValue(VTy); } else if (I->getOpcode() == Instruction::Or) { // We can simplify (X|Y) -> X or Y in the user's context if we know that // only bits from X or Y are demanded. // If either the LHS or the RHS are One, the result is One. ComputeMaskedBits(I->getOperand(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1); ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, LHSKnownZero, LHSKnownOne, Depth+1); // If all of the demanded bits are known zero on one side, return the // other. These bits cannot contribute to the result of the 'or' in this // context. if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == (DemandedMask & ~LHSKnownOne)) return I->getOperand(0); if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == (DemandedMask & ~RHSKnownOne)) return I->getOperand(1); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == (DemandedMask & (~RHSKnownZero))) return I->getOperand(0); if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == (DemandedMask & (~LHSKnownZero))) return I->getOperand(1); } // Compute the KnownZero/KnownOne bits to simplify things downstream. ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); return 0; } // If this is the root being simplified, allow it to have multiple uses, // just set the DemandedMask to all bits so that we can try to simplify the // operands. This allows visitTruncInst (for example) to simplify the // operand of a trunc without duplicating all the logic below. if (Depth == 0 && !V->hasOneUse()) DemandedMask = APInt::getAllOnesValue(BitWidth); switch (I->getOpcode()) { default: ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); break; case Instruction::And: // If either the LHS or the RHS are Zero, the result is zero. if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, LHSKnownZero, LHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == (DemandedMask & ~LHSKnownZero)) return I->getOperand(0); if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == (DemandedMask & ~RHSKnownZero)) return I->getOperand(1); // If all of the demanded bits in the inputs are known zeros, return zero. if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) return Constant::getNullValue(VTy); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) return I; // Output known-1 bits are only known if set in both the LHS & RHS. RHSKnownOne &= LHSKnownOne; // Output known-0 are known to be clear if zero in either the LHS | RHS. RHSKnownZero |= LHSKnownZero; break; case Instruction::Or: // If either the LHS or the RHS are One, the result is One. if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, LHSKnownZero, LHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == (DemandedMask & ~LHSKnownOne)) return I->getOperand(0); if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == (DemandedMask & ~RHSKnownOne)) return I->getOperand(1); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == (DemandedMask & (~RHSKnownZero))) return I->getOperand(0); if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == (DemandedMask & (~LHSKnownZero))) return I->getOperand(1); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return I; // Output known-0 bits are only known if clear in both the LHS & RHS. RHSKnownZero &= LHSKnownZero; // Output known-1 are known to be set if set in either the LHS | RHS. RHSKnownOne |= LHSKnownOne; break; case Instruction::Xor: { if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero, LHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((DemandedMask & RHSKnownZero) == DemandedMask) return I->getOperand(0); if ((DemandedMask & LHSKnownZero) == DemandedMask) return I->getOperand(1); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); // Output known-1 are known to be set if set in only one of the LHS, RHS. APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); // If all of the demanded bits are known to be zero on one side or the // other, turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { Instruction *Or = BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), I->getName()); return InsertNewInstBefore(Or, *I); } // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { // all known if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask); Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); return InsertNewInstBefore(And, *I); } } // If the RHS is a constant, see if we can simplify it. // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return I; RHSKnownZero = KnownZeroOut; RHSKnownOne = KnownOneOut; break; } case Instruction::Select: if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero, LHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (ShrinkDemandedConstant(I, 1, DemandedMask) || ShrinkDemandedConstant(I, 2, DemandedMask)) return I; // Only known if known in both the LHS and RHS. RHSKnownOne &= LHSKnownOne; RHSKnownZero &= LHSKnownZero; break; case Instruction::Trunc: { unsigned truncBf = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); DemandedMask.zext(truncBf); RHSKnownZero.zext(truncBf); RHSKnownOne.zext(truncBf); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return I; DemandedMask.trunc(BitWidth); RHSKnownZero.trunc(BitWidth); RHSKnownOne.trunc(BitWidth); assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); break; } case Instruction::BitCast: if (!I->getOperand(0)->getType()->isInteger()) return false; // vector->int or fp->int? if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); break; case Instruction::ZExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); DemandedMask.trunc(SrcBitWidth); RHSKnownZero.trunc(SrcBitWidth); RHSKnownOne.trunc(SrcBitWidth); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return I; DemandedMask.zext(BitWidth); RHSKnownZero.zext(BitWidth); RHSKnownOne.zext(BitWidth); assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); // The top bits are known to be zero. RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); APInt InputDemandedBits = DemandedMask & APInt::getLowBitsSet(BitWidth, SrcBitWidth); APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. if ((NewBits & DemandedMask) != 0) InputDemandedBits.set(SrcBitWidth-1); InputDemandedBits.trunc(SrcBitWidth); RHSKnownZero.trunc(SrcBitWidth); RHSKnownOne.trunc(SrcBitWidth); if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, RHSKnownZero, RHSKnownOne, Depth+1)) return I; InputDemandedBits.zext(BitWidth); RHSKnownZero.zext(BitWidth); RHSKnownOne.zext(BitWidth); assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, or if the NewBits are not demanded // convert this into a zero extension. if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { // Convert to ZExt cast CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); return InsertNewInstBefore(NewCast, *I); } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set RHSKnownOne |= NewBits; } break; } case Instruction::Add: { // Figure out what the input bits are. If the top bits of the and result // are not demanded, then the add doesn't demand them from its input // either. unsigned NLZ = DemandedMask.countLeadingZeros(); // If there is a constant on the RHS, there are a variety of xformations // we can do. if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { // If null, this should be simplified elsewhere. Some of the xforms here // won't work if the RHS is zero. if (RHS->isZero()) break; // If the top bit of the output is demanded, demand everything from the // input. Otherwise, we demand all the input bits except NLZ top bits. APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); // Find information about known zero/one bits in the input. if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, LHSKnownZero, LHSKnownOne, Depth+1)) return I; // If the RHS of the add has bits set that can't affect the input, reduce // the constant. if (ShrinkDemandedConstant(I, 1, InDemandedBits)) return I; // Avoid excess work. if (LHSKnownZero == 0 && LHSKnownOne == 0) break; // Turn it into OR if input bits are zero. if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { Instruction *Or = BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), I->getName()); return InsertNewInstBefore(Or, *I); } // We can say something about the output known-zero and known-one bits, // depending on potential carries from the input constant and the // unknowns. For example if the LHS is known to have at most the 0x0F0F0 // bits set and the RHS constant is 0x01001, then we know we have a known // one mask of 0x00001 and a known zero mask of 0xE0F0E. // To compute this, we first compute the potential carry bits. These are // the bits which may be modified. I'm not aware of a better way to do // this scan. const APInt &RHSVal = RHS->getValue(); APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); // Now that we know which bits have carries, compute the known-1/0 sets. // Bits are known one if they are known zero in one operand and one in the // other, and there is no input carry. RHSKnownOne = ((LHSKnownZero & RHSVal) | (LHSKnownOne & ~RHSVal)) & ~CarryBits; // Bits are known zero if they are known zero in both operands and there // is no input carry. RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; } else { // If the high-bits of this ADD are not demanded, then it does not demand // the high bits of its LHS or RHS. if (DemandedMask[BitWidth-1] == 0) { // Right fill the mask of bits for this ADD to demand the most // significant bit and all those below it. APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return I; } } break; } case Instruction::Sub: // If the high-bits of this SUB are not demanded, then it does not demand // the high bits of its LHS or RHS. if (DemandedMask[BitWidth-1] == 0) { // Right fill the mask of bits for this SUB to demand the most // significant bit and all those below it. uint32_t NLZ = DemandedMask.countLeadingZeros(); APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1) || SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return I; } // Otherwise just hand the sub off to ComputeMaskedBits to fill in // the known zeros and ones. ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); break; case Instruction::Shl: if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); RHSKnownZero <<= ShiftAmt; RHSKnownOne <<= ShiftAmt; // low bits known zero. if (ShiftAmt) RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::LShr: // For a logical shift right if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); if (ShiftAmt) { // Compute the new bits that are at the top now. APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); RHSKnownZero |= HighBits; // high bits known zero. } } break; case Instruction::AShr: // If this is an arithmetic shift right and only the low-bit is set, we can // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. if (DemandedMask == 1) { // Perform the logical shift right. Instruction *NewVal = BinaryOperator::CreateLShr( I->getOperand(0), I->getOperand(1), I->getName()); return InsertNewInstBefore(NewVal, *I); } // If the sign bit is the only bit demanded by this ashr, then there is no // need to do it, the shift doesn't change the high bit. if (DemandedMask.isSignBit()) return I->getOperand(0); if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint32_t ShiftAmt = SA->getLimitedValue(BitWidth); // Signed shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); // If any of the "high bits" are demanded, we should set the sign bit as // demanded. if (DemandedMask.countLeadingZeros() <= ShiftAmt) DemandedMaskIn.set(BitWidth-1); if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return I; assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); // Compute the new bits that are at the top now. APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); // Handle the sign bits. APInt SignBit(APInt::getSignBit(BitWidth)); // Adjust to where it is now in the mask. SignBit = APIntOps::lshr(SignBit, ShiftAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] || (HighBits & ~DemandedMask) == HighBits) { // Perform the logical shift right. Instruction *NewVal = BinaryOperator::CreateLShr( I->getOperand(0), SA, I->getName()); return InsertNewInstBefore(NewVal, *I); } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one. RHSKnownOne |= HighBits; } } break; case Instruction::SRem: if (ConstantInt *Rem = dyn_cast(I->getOperand(1))) { APInt RA = Rem->getValue().abs(); if (RA.isPowerOf2()) { if (DemandedMask.ule(RA)) // srem won't affect demanded bits return I->getOperand(0); APInt LowBits = RA - 1; APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero, LHSKnownOne, Depth+1)) return I; if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) LHSKnownZero |= ~LowBits; KnownZero |= LHSKnownZero & DemandedMask; assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); } } break; case Instruction::URem: { APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); APInt AllOnes = APInt::getAllOnesValue(BitWidth); if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2, KnownOne2, Depth+1) || SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2, KnownOne2, Depth+1)) return I; unsigned Leaders = KnownZero2.countLeadingOnes(); Leaders = std::max(Leaders, KnownZero2.countLeadingOnes()); KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; break; } case Instruction::Call: if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: { // If the only bits demanded come from one byte of the bswap result, // just shift the input byte into position to eliminate the bswap. unsigned NLZ = DemandedMask.countLeadingZeros(); unsigned NTZ = DemandedMask.countTrailingZeros(); // Round NTZ down to the next byte. If we have 11 trailing zeros, then // we need all the bits down to bit 8. Likewise, round NLZ. If we // have 14 leading zeros, round to 8. NLZ &= ~7; NTZ &= ~7; // If we need exactly one byte, we can do this transformation. if (BitWidth-NLZ-NTZ == 8) { unsigned ResultBit = NTZ; unsigned InputBit = BitWidth-NTZ-8; // Replace this with either a left or right shift to get the byte into // the right place. Instruction *NewVal; if (InputBit > ResultBit) NewVal = BinaryOperator::CreateLShr(I->getOperand(1), ConstantInt::get(I->getType(), InputBit-ResultBit)); else NewVal = BinaryOperator::CreateShl(I->getOperand(1), ConstantInt::get(I->getType(), ResultBit-InputBit)); NewVal->takeName(I); return InsertNewInstBefore(NewVal, *I); } // TODO: Could compute known zero/one bits based on the input. break; } } } ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); break; } // If the client is only demanding bits that we know, return the known // constant. if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) return ConstantInt::get(RHSKnownOne); return false; } /// SimplifyDemandedVectorElts - The specified value produces a vector with /// any number of elements. DemandedElts contains the set of elements that are /// actually used by the caller. This method analyzes which elements of the /// operand are undef and returns that information in UndefElts. /// /// If the information about demanded elements can be used to simplify the /// operation, the operation is simplified, then the resultant value is /// returned. This returns null if no change was made. Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt& UndefElts, unsigned Depth) { unsigned VWidth = cast(V->getType())->getNumElements(); APInt EltMask(APInt::getAllOnesValue(VWidth)); assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); if (isa(V)) { // If the entire vector is undefined, just return this info. UndefElts = EltMask; return 0; } else if (DemandedElts == 0) { // If nothing is demanded, provide undef. UndefElts = EltMask; return UndefValue::get(V->getType()); } UndefElts = 0; if (ConstantVector *CP = dyn_cast(V)) { const Type *EltTy = cast(V->getType())->getElementType(); Constant *Undef = UndefValue::get(EltTy); std::vector Elts; for (unsigned i = 0; i != VWidth; ++i) if (!DemandedElts[i]) { // If not demanded, set to undef. Elts.push_back(Undef); UndefElts.set(i); } else if (isa(CP->getOperand(i))) { // Already undef. Elts.push_back(Undef); UndefElts.set(i); } else { // Otherwise, defined. Elts.push_back(CP->getOperand(i)); } // If we changed the constant, return it. Constant *NewCP = ConstantVector::get(Elts); return NewCP != CP ? NewCP : 0; } else if (isa(V)) { // Simplify the CAZ to a ConstantVector where the non-demanded elements are // set to undef. // Check if this is identity. If so, return 0 since we are not simplifying // anything. if (DemandedElts == ((1ULL << VWidth) -1)) return 0; const Type *EltTy = cast(V->getType())->getElementType(); Constant *Zero = Constant::getNullValue(EltTy); Constant *Undef = UndefValue::get(EltTy); std::vector Elts; for (unsigned i = 0; i != VWidth; ++i) { Constant *Elt = DemandedElts[i] ? Zero : Undef; Elts.push_back(Elt); } UndefElts = DemandedElts ^ EltMask; return ConstantVector::get(Elts); } // Limit search depth. if (Depth == 10) return false; // If multiple users are using the root value, procede with // simplification conservatively assuming that all elements // are needed. if (!V->hasOneUse()) { // Quit if we find multiple users of a non-root value though. // They'll be handled when it's their turn to be visited by // the main instcombine process. if (Depth != 0) // TODO: Just compute the UndefElts information recursively. return false; // Conservatively assume that all elements are needed. DemandedElts = EltMask; } Instruction *I = dyn_cast(V); if (!I) return false; // Only analyze instructions. bool MadeChange = false; APInt UndefElts2(VWidth, 0); Value *TmpV; switch (I->getOpcode()) { default: break; case Instruction::InsertElement: { // If this is a variable index, we don't know which element it overwrites. // demand exactly the same input as we produce. ConstantInt *Idx = dyn_cast(I->getOperand(2)); if (Idx == 0) { // Note that we can't propagate undef elt info, because we don't know // which elt is getting updated. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } break; } // If this is inserting an element that isn't demanded, remove this // insertelement. unsigned IdxNo = Idx->getZExtValue(); if (IdxNo >= VWidth || !DemandedElts[IdxNo]) return AddSoonDeadInstToWorklist(*I, 0); // Otherwise, the element inserted overwrites whatever was there, so the // input demanded set is simpler than the output set. APInt DemandedElts2 = DemandedElts; DemandedElts2.clear(IdxNo); TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, UndefElts, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } // The inserted element is defined. UndefElts.clear(IdxNo); break; } case Instruction::ShuffleVector: { ShuffleVectorInst *Shuffle = cast(I); uint64_t LHSVWidth = cast(Shuffle->getOperand(0)->getType())->getNumElements(); APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); for (unsigned i = 0; i < VWidth; i++) { if (DemandedElts[i]) { unsigned MaskVal = Shuffle->getMaskValue(i); if (MaskVal != -1u) { assert(MaskVal < LHSVWidth * 2 && "shufflevector mask index out of range!"); if (MaskVal < LHSVWidth) LeftDemanded.set(MaskVal); else RightDemanded.set(MaskVal - LHSVWidth); } } } APInt UndefElts4(LHSVWidth, 0); TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, UndefElts4, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } APInt UndefElts3(LHSVWidth, 0); TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, UndefElts3, Depth+1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } bool NewUndefElts = false; for (unsigned i = 0; i < VWidth; i++) { unsigned MaskVal = Shuffle->getMaskValue(i); if (MaskVal == -1u) { UndefElts.set(i); } else if (MaskVal < LHSVWidth) { if (UndefElts4[MaskVal]) { NewUndefElts = true; UndefElts.set(i); } } else { if (UndefElts3[MaskVal - LHSVWidth]) { NewUndefElts = true; UndefElts.set(i); } } } if (NewUndefElts) { // Add additional discovered undefs. std::vector Elts; for (unsigned i = 0; i < VWidth; ++i) { if (UndefElts[i]) Elts.push_back(UndefValue::get(Type::Int32Ty)); else Elts.push_back(ConstantInt::get(Type::Int32Ty, Shuffle->getMaskValue(i))); } I->setOperand(2, ConstantVector::get(Elts)); MadeChange = true; } break; } case Instruction::BitCast: { // Vector->vector casts only. const VectorType *VTy = dyn_cast(I->getOperand(0)->getType()); if (!VTy) break; unsigned InVWidth = VTy->getNumElements(); APInt InputDemandedElts(InVWidth, 0); unsigned Ratio; if (VWidth == InVWidth) { // If we are converting from <4 x i32> -> <4 x f32>, we demand the same // elements as are demanded of us. Ratio = 1; InputDemandedElts = DemandedElts; } else if (VWidth > InVWidth) { // Untested so far. break; // If there are more elements in the result than there are in the source, // then an input element is live if any of the corresponding output // elements are live. Ratio = VWidth/InVWidth; for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { if (DemandedElts[OutIdx]) InputDemandedElts.set(OutIdx/Ratio); } } else { // Untested so far. break; // If there are more elements in the source than there are in the result, // then an input element is live if the corresponding output element is // live. Ratio = InVWidth/VWidth; for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) if (DemandedElts[InIdx/Ratio]) InputDemandedElts.set(InIdx); } // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } UndefElts = UndefElts2; if (VWidth > InVWidth) { assert(0 && "Unimp"); // If there are more elements in the result than there are in the source, // then an output element is undef if the corresponding input element is // undef. for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) if (UndefElts2[OutIdx/Ratio]) UndefElts.set(OutIdx); } else if (VWidth < InVWidth) { assert(0 && "Unimp"); // If there are more elements in the source than there are in the result, // then a result element is undef if all of the corresponding input // elements are undef. UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) if (!UndefElts2[InIdx]) // Not undef? UndefElts.clear(InIdx/Ratio); // Clear undef bit. } break; } case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } // Output elements are undefined if both are undefined. Consider things // like undef&0. The result is known zero, not undef. UndefElts &= UndefElts2; break; case Instruction::Call: { IntrinsicInst *II = dyn_cast(I); if (!II) break; switch (II->getIntrinsicID()) { default: break; // Binary vector operations that work column-wise. A dest element is a // function of the corresponding input elements from the two inputs. case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse_min_ss: case Intrinsic::x86_sse_max_ss: case Intrinsic::x86_sse2_sub_sd: case Intrinsic::x86_sse2_mul_sd: case Intrinsic::x86_sse2_min_sd: case Intrinsic::x86_sse2_max_sd: TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, UndefElts, Depth+1); if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, UndefElts2, Depth+1); if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } // If only the low elt is demanded and this is a scalarizable intrinsic, // scalarize it now. if (DemandedElts == 1) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse2_sub_sd: case Intrinsic::x86_sse2_mul_sd: // TODO: Lower MIN/MAX/ABS/etc Value *LHS = II->getOperand(1); Value *RHS = II->getOperand(2); // Extract the element as scalars. LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II); RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II); switch (II->getIntrinsicID()) { default: assert(0 && "Case stmts out of sync!"); case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse2_sub_sd: TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS, II->getName()), *II); break; case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse2_mul_sd: TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS, II->getName()), *II); break; } Instruction *New = InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U, II->getName()); InsertNewInstBefore(New, *II); AddSoonDeadInstToWorklist(*II, 0); return New; } } // Output elements are undefined if both are undefined. Consider things // like undef&0. The result is known zero, not undef. UndefElts &= UndefElts2; break; } break; } } return MadeChange ? I : 0; } /// AssociativeOpt - Perform an optimization on an associative operator. This /// function is designed to check a chain of associative operators for a /// potential to apply a certain optimization. Since the optimization may be /// applicable if the expression was reassociated, this checks the chain, then /// reassociates the expression as necessary to expose the optimization /// opportunity. This makes use of a special Functor, which must define /// 'shouldApply' and 'apply' methods. /// template static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { unsigned Opcode = Root.getOpcode(); Value *LHS = Root.getOperand(0); // Quick check, see if the immediate LHS matches... if (F.shouldApply(LHS)) return F.apply(Root); // Otherwise, if the LHS is not of the same opcode as the root, return. Instruction *LHSI = dyn_cast(LHS); while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { // Should we apply this transform to the RHS? bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); // If not to the RHS, check to see if we should apply to the LHS... if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { cast(LHSI)->swapOperands(); // Make the LHS the RHS ShouldApply = true; } // If the functor wants to apply the optimization to the RHS of LHSI, // reassociate the expression from ((? op A) op B) to (? op (A op B)) if (ShouldApply) { // Now all of the instructions are in the current basic block, go ahead // and perform the reassociation. Instruction *TmpLHSI = cast(Root.getOperand(0)); // First move the selected RHS to the LHS of the root... Root.setOperand(0, LHSI->getOperand(1)); // Make what used to be the LHS of the root be the user of the root... Value *ExtraOperand = TmpLHSI->getOperand(1); if (&Root == TmpLHSI) { Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); return 0; } Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root BasicBlock::iterator ARI = &Root; ++ARI; TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root ARI = Root; // Now propagate the ExtraOperand down the chain of instructions until we // get to LHSI. while (TmpLHSI != LHSI) { Instruction *NextLHSI = cast(TmpLHSI->getOperand(0)); // Move the instruction to immediately before the chain we are // constructing to avoid breaking dominance properties. NextLHSI->moveBefore(ARI); ARI = NextLHSI; Value *NextOp = NextLHSI->getOperand(1); NextLHSI->setOperand(1, ExtraOperand); TmpLHSI = NextLHSI; ExtraOperand = NextOp; } // Now that the instructions are reassociated, have the functor perform // the transformation... return F.apply(Root); } LHSI = dyn_cast(LHSI->getOperand(0)); } return 0; } namespace { // AddRHS - Implements: X + X --> X << 1 struct AddRHS { Value *RHS; AddRHS(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::CreateShl(Add.getOperand(0), ConstantInt::get(Add.getType(), 1)); } }; // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) // iff C1&C2 == 0 struct AddMaskingAnd { Constant *C2; AddMaskingAnd(Constant *c) : C2(c) {} bool shouldApply(Value *LHS) const { ConstantInt *C1; return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && ConstantExpr::getAnd(C1, C2)->isNullValue(); } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1)); } }; } static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC) { if (CastInst *CI = dyn_cast(&I)) { return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I); } // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa(I.getOperand(1)); Constant *ConstOperand = cast(I.getOperand(ConstIsRHS)); if (Constant *SOC = dyn_cast(SO)) { if (ConstIsRHS) return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); } Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); Instruction *New; if (BinaryOperator *BO = dyn_cast(&I)) New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op"); else if (CmpInst *CI = dyn_cast(&I)) New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, SO->getName()+".cmp"); else { assert(0 && "Unknown binary instruction type!"); abort(); } return IC->InsertNewInstBefore(New, I); } // FoldOpIntoSelect - Given an instruction with a select as one operand and a // constant as the other operand, try to fold the binary operator into the // select arguments. This also works for Cast instructions, which obviously do // not have a second operand. static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, InstCombiner *IC) { // Don't modify shared select instructions if (!SI->hasOneUse()) return 0; Value *TV = SI->getOperand(1); Value *FV = SI->getOperand(2); if (isa(TV) || isa(FV)) { // Bool selects with constant operands can be folded to logical ops. if (SI->getType() == Type::Int1Ty) return 0; Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); return SelectInst::Create(SI->getCondition(), SelectTrueVal, SelectFalseVal); } return 0; } /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI /// node as operand #0, see if we can fold the instruction into the PHI (which /// is only possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); if (!PN->hasOneUse() || NumPHIValues == 0) return 0; // Check to see if all of the operands of the PHI are constants. If there is // one non-constant value, remember the BB it is. If there is more than one // or if *it* is a PHI, bail out. BasicBlock *NonConstBB = 0; for (unsigned i = 0; i != NumPHIValues; ++i) if (!isa(PN->getIncomingValue(i))) { if (NonConstBB) return 0; // More than one non-const value. if (isa(PN->getIncomingValue(i))) return 0; // Itself a phi. NonConstBB = PN->getIncomingBlock(i); // If the incoming non-constant value is in I's block, we have an infinite // loop. if (NonConstBB == I.getParent()) return 0; } // If there is exactly one non-constant value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation one some other paths (e.g. inside a loop). Only // do this if the pred block is unconditionally branching into the phi block. if (NonConstBB) { BranchInst *BI = dyn_cast(NonConstBB->getTerminator()); if (!BI || !BI->isUnconditional()) return 0; } // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = PHINode::Create(I.getType(), ""); NewPN->reserveOperandSpace(PN->getNumOperands()/2); InsertNewInstBefore(NewPN, *PN); NewPN->takeName(PN); // Next, add all of the operands to the PHI. if (I.getNumOperands() == 2) { Constant *C = cast(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV = 0; if (Constant *InC = dyn_cast(PN->getIncomingValue(i))) { if (CmpInst *CI = dyn_cast(&I)) InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); else InV = ConstantExpr::get(I.getOpcode(), InC, C); } else { assert(PN->getIncomingBlock(i) == NonConstBB); if (BinaryOperator *BO = dyn_cast(&I)) InV = BinaryOperator::Create(BO->getOpcode(), PN->getIncomingValue(i), C, "phitmp", NonConstBB->getTerminator()); else if (CmpInst *CI = dyn_cast(&I)) InV = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), PN->getIncomingValue(i), C, "phitmp", NonConstBB->getTerminator()); else assert(0 && "Unknown binop!"); AddToWorkList(cast(InV)); } NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } else { CastInst *CI = cast(&I); const Type *RetTy = CI->getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV; if (Constant *InC = dyn_cast(PN->getIncomingValue(i))) { InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); } else { assert(PN->getIncomingBlock(i) == NonConstBB); InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), I.getType(), "phitmp", NonConstBB->getTerminator()); AddToWorkList(cast(InV)); } NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } return ReplaceInstUsesWith(I, NewPN); } /// WillNotOverflowSignedAdd - Return true if we can prove that: /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) /// This basically requires proving that the add in the original type would not /// overflow to change the sign bit or have a carry out. bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { // There are different heuristics we can use for this. Here are some simple // ones. // Add has the property that adding any two 2's complement numbers can only // have one carry bit which can change a sign. As such, if LHS and RHS each // have at least two sign bits, we know that the addition of the two values will // sign extend fine. if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) return true; // If one of the operands only has one non-zero bit, and if the other operand // has a known-zero bit in a more significant place than it (not including the // sign bit) the ripple may go up to and fill the zero, but won't change the // sign. For example, (X & ~4) + 1. // TODO: Implement. return false; } Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (Constant *RHSC = dyn_cast(RHS)) { // X + undef -> undef if (isa(RHS)) return ReplaceInstUsesWith(I, RHS); // X + 0 --> X if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0. if (RHSC->isNullValue()) return ReplaceInstUsesWith(I, LHS); } else if (ConstantFP *CFP = dyn_cast(RHSC)) { if (CFP->isExactlyValue(ConstantFP::getNegativeZero (I.getType())->getValueAPF())) return ReplaceInstUsesWith(I, LHS); } if (ConstantInt *CI = dyn_cast(RHSC)) { // X + (signbit) --> X ^ signbit const APInt& Val = CI->getValue(); uint32_t BitWidth = Val.getBitWidth(); if (Val == APInt::getSignBit(BitWidth)) return BinaryOperator::CreateXor(LHS, RHS); // See if SimplifyDemandedBits can simplify this. This handles stuff like // (X & 254)+1 -> (X&254)|1 if (!isa(I.getType()) && SimplifyDemandedInstructionBits(I)) return &I; // zext(i1) - 1 -> select i1, 0, -1 if (ZExtInst *ZI = dyn_cast(LHS)) if (CI->isAllOnesValue() && ZI->getOperand(0)->getType() == Type::Int1Ty) return SelectInst::Create(ZI->getOperand(0), Constant::getNullValue(I.getType()), ConstantInt::getAllOnesValue(I.getType())); } if (isa(LHS)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; ConstantInt *XorRHS = 0; Value *XorLHS = 0; if (isa(RHSC) && match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits(); const APInt& RHSVal = cast(RHSC)->getValue(); uint32_t Size = TySizeBits / 2; APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); APInt CFF80Val(-C0080Val); do { if (TySizeBits > Size) { // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { // This is a sign extend if the top bits are known zero. if (!MaskedValueIsZero(XorLHS, APInt::getHighBitsSet(TySizeBits, TySizeBits - Size))) Size = 0; // Not a sign ext, but can't be any others either. break; } } Size >>= 1; C0080Val = APIntOps::lshr(C0080Val, Size); CFF80Val = APIntOps::ashr(CFF80Val, Size); } while (Size >= 1); // FIXME: This shouldn't be necessary. When the backends can handle types // with funny bit widths then this switch statement should be removed. It // is just here to get the size of the "middle" type back up to something // that the back ends can handle. const Type *MiddleType = 0; switch (Size) { default: break; case 32: MiddleType = Type::Int32Ty; break; case 16: MiddleType = Type::Int16Ty; break; case 8: MiddleType = Type::Int8Ty; break; } if (MiddleType) { Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext"); InsertNewInstBefore(NewTrunc, I); return new SExtInst(NewTrunc, I.getType(), I.getName()); } } } if (I.getType() == Type::Int1Ty) return BinaryOperator::CreateXor(LHS, RHS); // X + X --> X << 1 if (I.getType()->isInteger()) { if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; if (Instruction *RHSI = dyn_cast(RHS)) { if (RHSI->getOpcode() == Instruction::Sub) if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B return ReplaceInstUsesWith(I, RHSI->getOperand(0)); } if (Instruction *LHSI = dyn_cast(LHS)) { if (LHSI->getOpcode() == Instruction::Sub) if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B return ReplaceInstUsesWith(I, LHSI->getOperand(0)); } } // -A + B --> B - A // -A + -B --> -(A + B) if (Value *LHSV = dyn_castNegVal(LHS)) { if (LHS->getType()->isIntOrIntVector()) { if (Value *RHSV = dyn_castNegVal(RHS)) { Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum"); InsertNewInstBefore(NewAdd, I); return BinaryOperator::CreateNeg(NewAdd); } } return BinaryOperator::CreateSub(RHS, LHSV); } // A + -B --> A - B if (!isa(RHS)) if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::CreateSub(LHS, V); ConstantInt *C2; if (Value *X = dyn_castFoldableMul(LHS, C2)) { if (X == RHS) // X*C + X --> X * (C+1) return BinaryOperator::CreateMul(RHS, AddOne(C2)); // X*C1 + X*C2 --> X * (C1+C2) ConstantInt *C1; if (X == dyn_castFoldableMul(RHS, C1)) return BinaryOperator::CreateMul(X, Add(C1, C2)); } // X + X*C --> X * (C+1) if (dyn_castFoldableMul(RHS, C2) == LHS) return BinaryOperator::CreateMul(LHS, AddOne(C2)); // X + ~X --> -1 since ~X = -X-1 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R; // A+B --> A|B iff A and B have no bits set in common. if (const IntegerType *IT = dyn_cast(I.getType())) { APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); APInt LHSKnownOne(IT->getBitWidth(), 0); APInt LHSKnownZero(IT->getBitWidth(), 0); ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); if (LHSKnownZero != 0) { APInt RHSKnownOne(IT->getBitWidth(), 0); APInt RHSKnownZero(IT->getBitWidth(), 0); ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); // No bits in common -> bitwise or. if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) return BinaryOperator::CreateOr(LHS, RHS); } } // W*X + Y*Z --> W * (X+Z) iff W == Y if (I.getType()->isIntOrIntVector()) { Value *W, *X, *Y, *Z; if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { if (W != Y) { if (W == Z) { std::swap(Y, Z); } else if (Y == X) { std::swap(W, X); } else if (X == Z) { std::swap(Y, Z); std::swap(W, X); } } if (W == Y) { Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z, LHS->getName()), I); return BinaryOperator::CreateMul(W, NewAdd); } } } if (ConstantInt *CRHS = dyn_cast(RHS)) { Value *X = 0; if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X return BinaryOperator::CreateSub(SubOne(CRHS), X); // (X & FF00) + xx00 -> (X+xx00) & FF00 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { Constant *Anded = And(CRHS, C2); if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. const APInt& AddRHSV = CRHS->getValue(); // Form a mask of all bits from the lowest bit added through the top. APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); // See if the and mask includes all of these bits. APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); if (AddRHSHighBits == AddRHSHighBitsAnd) { // Okay, the xform is safe. Insert the new add pronto. Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS, LHS->getName()), I); return BinaryOperator::CreateAnd(NewAdd, C2); } } } // Try to fold constant add into select arguments. if (SelectInst *SI = dyn_cast(LHS)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } // add (cast *A to intptrtype) B -> // cast (GEP (cast *A to sbyte*) B) --> intptrtype { CastInst *CI = dyn_cast(LHS); Value *Other = RHS; if (!CI) { CI = dyn_cast(RHS); Other = LHS; } if (CI && CI->getType()->isSized() && (CI->getType()->getPrimitiveSizeInBits() == TD->getIntPtrType()->getPrimitiveSizeInBits()) && isa(CI->getOperand(0)->getType())) { unsigned AS = cast(CI->getOperand(0)->getType())->getAddressSpace(); Value *I2 = InsertBitCastBefore(CI->getOperand(0), PointerType::get(Type::Int8Ty, AS), I); I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I); return new PtrToIntInst(I2, CI->getType()); } } // add (select X 0 (sub n A)) A --> select X A n { SelectInst *SI = dyn_cast(LHS); Value *A = RHS; if (!SI) { SI = dyn_cast(RHS); A = LHS; } if (SI && SI->hasOneUse()) { Value *TV = SI->getTrueValue(); Value *FV = SI->getFalseValue(); Value *N; // Can we fold the add into the argument of the select? // We check both true and false select arguments for a matching subtract. if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) // Fold the add into the true select value. return SelectInst::Create(SI->getCondition(), N, A); if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) // Fold the add into the false select value. return SelectInst::Create(SI->getCondition(), A, N); } } // Check for X+0.0. Simplify it to X if we know X is not -0.0. if (ConstantFP *CFP = dyn_cast(RHS)) if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) return ReplaceInstUsesWith(I, LHS); // Check for (add (sext x), y), see if we can merge this into an // integer add followed by a sext. if (SExtInst *LHSConv = dyn_cast(LHS)) { // (add (sext x), cst) --> (sext (add x, cst')) if (ConstantInt *RHSC = dyn_cast(RHS)) { Constant *CI = ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); if (LHSConv->hasOneUse() && ConstantExpr::getSExt(CI, I.getType()) == RHSC && WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { // Insert the new, smaller add. Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), CI, "addconv"); InsertNewInstBefore(NewAdd, I); return new SExtInst(NewAdd, I.getType()); } } // (add (sext x), (sext y)) --> (sext (add int x, y)) if (SExtInst *RHSConv = dyn_cast(RHS)) { // Only do this if x/y have the same type, if at last one of them has a // single use (so we don't increase the number of sexts), and if the // integer add will not overflow. if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && WillNotOverflowSignedAdd(LHSConv->getOperand(0), RHSConv->getOperand(0))) { // Insert the new integer add. Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); InsertNewInstBefore(NewAdd, I); return new SExtInst(NewAdd, I.getType()); } } } // Check for (add double (sitofp x), y), see if we can merge this into an // integer add followed by a promotion. if (SIToFPInst *LHSConv = dyn_cast(LHS)) { // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) // ... if the constant fits in the integer value. This is useful for things // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer // requires a constant pool load, and generally allows the add to be better // instcombined. if (ConstantFP *CFP = dyn_cast(RHS)) { Constant *CI = ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); if (LHSConv->hasOneUse() && ConstantExpr::getSIToFP(CI, I.getType()) == CFP && WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { // Insert the new integer add. Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), CI, "addconv"); InsertNewInstBefore(NewAdd, I); return new SIToFPInst(NewAdd, I.getType()); } } // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) if (SIToFPInst *RHSConv = dyn_cast(RHS)) { // Only do this if x/y have the same type, if at last one of them has a // single use (so we don't increase the number of int->fp conversions), // and if the integer add will not overflow. if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && WillNotOverflowSignedAdd(LHSConv->getOperand(0), RHSConv->getOperand(0))) { // Insert the new integer add. Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); InsertNewInstBefore(NewAdd, I); return new SIToFPInst(NewAdd, I.getType()); } } } return Changed ? &I : 0; } Instruction *InstCombiner::visitSub(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1 && // sub X, X -> 0 !I.getType()->isFPOrFPVector()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // If this is a 'B = x-(-A)', change to B = x+A... if (Value *V = dyn_castNegVal(Op1)) return BinaryOperator::CreateAdd(Op0, V); if (isa(Op0)) return ReplaceInstUsesWith(I, Op0); // undef - X -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X - undef -> undef if (ConstantInt *C = dyn_cast(Op0)) { // Replace (-1 - A) with (~A)... if (C->isAllOnesValue()) return BinaryOperator::CreateNot(Op1); // C - ~X == X + (1+C) Value *X = 0; if (match(Op1, m_Not(m_Value(X)))) return BinaryOperator::CreateAdd(X, AddOne(C)); // -(X >>u 31) -> (X >>s 31) // -(X >>s 31) -> (X >>u 31) if (C->isZero()) { if (BinaryOperator *SI = dyn_cast(Op1)) { if (SI->getOpcode() == Instruction::LShr) { if (ConstantInt *CU = dyn_cast(SI->getOperand(1))) { // Check to see if we are shifting out everything but the sign bit. if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == SI->getType()->getPrimitiveSizeInBits()-1) { // Ok, the transformation is safe. Insert AShr. return BinaryOperator::Create(Instruction::AShr, SI->getOperand(0), CU, SI->getName()); } } } else if (SI->getOpcode() == Instruction::AShr) { if (ConstantInt *CU = dyn_cast(SI->getOperand(1))) { // Check to see if we are shifting out everything but the sign bit. if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == SI->getType()->getPrimitiveSizeInBits()-1) { // Ok, the transformation is safe. Insert LShr. return BinaryOperator::CreateLShr( SI->getOperand(0), CU, SI->getName()); } } } } } // Try to fold constant sub into select arguments. if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } if (I.getType() == Type::Int1Ty) return BinaryOperator::CreateXor(Op0, Op1); if (BinaryOperator *Op1I = dyn_cast(Op1)) { if (Op1I->getOpcode() == Instruction::Add && !Op0->getType()->isFPOrFPVector()) { if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName()); else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName()); else if (ConstantInt *CI1 = dyn_cast(I.getOperand(0))) { if (ConstantInt *CI2 = dyn_cast(Op1I->getOperand(1))) // C1-(X+C2) --> (C1-C2)-X return BinaryOperator::CreateSub(Subtract(CI1, CI2), Op1I->getOperand(0)); } } if (Op1I->hasOneUse()) { // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression // is not used by anyone else... // if (Op1I->getOpcode() == Instruction::Sub && !Op1I->getType()->isFPOrFPVector()) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::CreateAdd(Op0, Op1); } // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... // if (Op1I->getOpcode() == Instruction::And && (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); Value *NewNot = InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I); return BinaryOperator::CreateAnd(Op0, NewNot); } // 0 - (X sdiv C) -> (X sdiv -C) if (Op1I->getOpcode() == Instruction::SDiv) if (ConstantInt *CSI = dyn_cast(Op0)) if (CSI->isZero()) if (Constant *DivRHS = dyn_cast(Op1I->getOperand(1))) return BinaryOperator::CreateSDiv(Op1I->getOperand(0), ConstantExpr::getNeg(DivRHS)); // X - X*C --> X * (1-C) ConstantInt *C2 = 0; if (dyn_castFoldableMul(Op1I, C2) == Op0) { Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2); return BinaryOperator::CreateMul(Op0, CP1); } } } if (!Op0->getType()->isFPOrFPVector()) if (BinaryOperator *Op0I = dyn_cast(Op0)) { if (Op0I->getOpcode() == Instruction::Add) { if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(1)); else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(0)); } else if (Op0I->getOpcode() == Instruction::Sub) { if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName()); } } ConstantInt *C1; if (Value *X = dyn_castFoldableMul(Op0, C1)) { if (X == Op1) // X*C - X --> X * (C-1) return BinaryOperator::CreateMul(Op1, SubOne(C1)); ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) if (X == dyn_castFoldableMul(Op1, C2)) return BinaryOperator::CreateMul(X, Subtract(C1, C2)); } return 0; } /// isSignBitCheck - Given an exploded icmp instruction, return true if the /// comparison only checks the sign bit. If it only checks the sign bit, set /// TrueIfSigned if the result of the comparison is true when the input value is /// signed. static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, bool &TrueIfSigned) { switch (pred) { case ICmpInst::ICMP_SLT: // True if LHS s< 0 TrueIfSigned = true; return RHS->isZero(); case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 TrueIfSigned = true; return RHS->isAllOnesValue(); case ICmpInst::ICMP_SGT: // True if LHS s> -1 TrueIfSigned = false; return RHS->isAllOnesValue(); case ICmpInst::ICMP_UGT: // True if LHS u> RHS and RHS == high-bit-mask - 1 TrueIfSigned = true; return RHS->getValue() == APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits()); case ICmpInst::ICMP_UGE: // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) TrueIfSigned = true; return RHS->getValue().isSignBit(); default: return false; } } Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0); if (isa(I.getOperand(1))) // undef * X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Simplify mul instructions with a constant RHS... if (Constant *Op1 = dyn_cast(I.getOperand(1))) { if (ConstantInt *CI = dyn_cast(Op1)) { // ((X << C1)*C2) == (X * (C2 << C1)) if (BinaryOperator *SI = dyn_cast(Op0)) if (SI->getOpcode() == Instruction::Shl) if (Constant *ShOp = dyn_cast(SI->getOperand(1))) return BinaryOperator::CreateMul(SI->getOperand(0), ConstantExpr::getShl(CI, ShOp)); if (CI->isZero()) return ReplaceInstUsesWith(I, Op1); // X * 0 == 0 if (CI->equalsInt(1)) // X * 1 == X return ReplaceInstUsesWith(I, Op0); if (CI->isAllOnesValue()) // X * -1 == 0 - X return BinaryOperator::CreateNeg(Op0, I.getName()); const APInt& Val = cast(CI)->getValue(); if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C return BinaryOperator::CreateShl(Op0, ConstantInt::get(Op0->getType(), Val.logBase2())); } } else if (ConstantFP *Op1F = dyn_cast(Op1)) { if (Op1F->isNullValue()) return ReplaceInstUsesWith(I, Op1); // "In IEEE floating point, x*1 is not equivalent to x for nans. However, // ANSI says we can drop signals, so we can do this anyway." (from GCC) if (Op1F->isExactlyValue(1.0)) return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' } else if (isa(Op1->getType())) { if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); if (ConstantVector *Op1V = dyn_cast(Op1)) { if (Op1V->isAllOnesValue()) // X * -1 == 0 - X return BinaryOperator::CreateNeg(Op0, I.getName()); // As above, vector X*splat(1.0) -> X in all defined cases. if (Constant *Splat = Op1V->getSplatValue()) { if (ConstantFP *F = dyn_cast(Splat)) if (F->isExactlyValue(1.0)) return ReplaceInstUsesWith(I, Op0); if (ConstantInt *CI = dyn_cast(Splat)) if (CI->equalsInt(1)) return ReplaceInstUsesWith(I, Op0); } } } if (BinaryOperator *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && isa(Op0I->getOperand(1)) && isa(Op1)) { // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0), Op1, "tmp"); InsertNewInstBefore(Add, I); Value *C1C2 = ConstantExpr::getMul(Op1, cast(Op0I->getOperand(1))); return BinaryOperator::CreateAdd(Add, C1C2); } // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) return BinaryOperator::CreateMul(Op0v, Op1v); // (X / Y) * Y = X - (X % Y) // (X / Y) * -Y = (X % Y) - X { Value *Op1 = I.getOperand(1); BinaryOperator *BO = dyn_cast(Op0); if (!BO || (BO->getOpcode() != Instruction::UDiv && BO->getOpcode() != Instruction::SDiv)) { Op1 = Op0; BO = dyn_cast(I.getOperand(1)); } Value *Neg = dyn_castNegVal(Op1); if (BO && BO->hasOneUse() && (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) && (BO->getOpcode() == Instruction::UDiv || BO->getOpcode() == Instruction::SDiv)) { Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); Instruction *Rem; if (BO->getOpcode() == Instruction::UDiv) Rem = BinaryOperator::CreateURem(Op0BO, Op1BO); else Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO); InsertNewInstBefore(Rem, I); Rem->takeName(BO); if (Op1BO == Op1) return BinaryOperator::CreateSub(Op0BO, Rem); else return BinaryOperator::CreateSub(Rem, Op0BO); } } if (I.getType() == Type::Int1Ty) return BinaryOperator::CreateAnd(Op0, I.getOperand(1)); // If one of the operands of the multiply is a cast from a boolean value, then // we know the bool is either zero or one, so this is a 'masking' multiply. // See if we can simplify things based on how the boolean was originally // formed. CastInst *BoolCast = 0; if (ZExtInst *CI = dyn_cast(Op0)) if (CI->getOperand(0)->getType() == Type::Int1Ty) BoolCast = CI; if (!BoolCast) if (ZExtInst *CI = dyn_cast(I.getOperand(1))) if (CI->getOperand(0)->getType() == Type::Int1Ty) BoolCast = CI; if (BoolCast) { if (ICmpInst *SCI = dyn_cast(BoolCast->getOperand(0))) { Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); const Type *SCOpTy = SCIOp0->getType(); bool TIS = false; // If the icmp is true iff the sign bit of X is set, then convert this // multiply into a shift/and combination. if (isa(SCIOp1) && isSignBitCheck(SCI->getPredicate(), cast(SCIOp1), TIS) && TIS) { // Shift the X value right to turn it into "all signbits". Constant *Amt = ConstantInt::get(SCIOp0->getType(), SCOpTy->getPrimitiveSizeInBits()-1); Value *V = InsertNewInstBefore( BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt, BoolCast->getOperand(0)->getName()+ ".mask"), I); // If the multiply type is not the same as the source type, sign extend // or truncate to the multiply type. if (I.getType() != V->getType()) { uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits(); uint32_t DstBits = I.getType()->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc)); V = InsertCastBefore(opcode, V, I.getType(), I); } Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; return BinaryOperator::CreateAnd(V, OtherOp); } } } return Changed ? &I : 0; } /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select /// instruction. bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { SelectInst *SI = cast(I.getOperand(1)); // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y int NonNullOperand = -1; if (Constant *ST = dyn_cast(SI->getOperand(1))) if (ST->isNullValue()) NonNullOperand = 2; // div/rem X, (Cond ? Y : 0) -> div/rem X, Y if (Constant *ST = dyn_cast(SI->getOperand(2))) if (ST->isNullValue()) NonNullOperand = 1; if (NonNullOperand == -1) return false; Value *SelectCond = SI->getOperand(0); // Change the div/rem to use 'Y' instead of the select. I.setOperand(1, SI->getOperand(NonNullOperand)); // Okay, we know we replace the operand of the div/rem with 'Y' with no // problem. However, the select, or the condition of the select may have // multiple uses. Based on our knowledge that the operand must be non-zero, // propagate the known value for the select into other uses of it, and // propagate a known value of the condition into its other users. // If the select and condition only have a single use, don't bother with this, // early exit. if (SI->use_empty() && SelectCond->hasOneUse()) return true; // Scan the current block backward, looking for other uses of SI. BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); while (BBI != BBFront) { --BBI; // If we found a call to a function, we can't assume it will return, so // information from below it cannot be propagated above it. if (isa(BBI) && !isa(BBI)) break; // Replace uses of the select or its condition with the known values. for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); I != E; ++I) { if (*I == SI) { *I = SI->getOperand(NonNullOperand); AddToWorkList(BBI); } else if (*I == SelectCond) { *I = NonNullOperand == 1 ? ConstantInt::getTrue() : ConstantInt::getFalse(); AddToWorkList(BBI); } } // If we past the instruction, quit looking for it. if (&*BBI == SI) SI = 0; if (&*BBI == SelectCond) SelectCond = 0; // If we ran out of things to eliminate, break out of the loop. if (SelectCond == 0 && SI == 0) break; } return true; } /// This function implements the transforms on div instructions that work /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is /// used by the visitors to those instructions. /// @brief Transforms common to all three div instructions Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // undef / X -> 0 for integer. // undef / X -> undef for FP (the undef could be a snan). if (isa(Op0)) { if (Op0->getType()->isFPOrFPVector()) return ReplaceInstUsesWith(I, Op0); return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // X / undef -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); return 0; } /// This function implements the transforms common to both integer division /// instructions (udiv and sdiv). It is called by the visitors to those integer /// division instructions. /// @brief Common integer divide transforms Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // (sdiv X, X) --> 1 (udiv X, X) --> 1 if (Op0 == Op1) { if (const VectorType *Ty = dyn_cast(I.getType())) { ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1); std::vector Elts(Ty->getNumElements(), CI); return ReplaceInstUsesWith(I, ConstantVector::get(Elts)); } ConstantInt *CI = ConstantInt::get(I.getType(), 1); return ReplaceInstUsesWith(I, CI); } if (Instruction *Common = commonDivTransforms(I)) return Common; // Handle cases involving: [su]div X, (select Cond, Y, Z) // This does not apply for fdiv. if (isa(Op1) && SimplifyDivRemOfSelect(I)) return &I; if (ConstantInt *RHS = dyn_cast(Op1)) { // div X, 1 == X if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, Op0); // (X / C1) / C2 -> X / (C1*C2) if (Instruction *LHS = dyn_cast(Op0)) if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) if (ConstantInt *LHSRHS = dyn_cast(LHS->getOperand(1))) { if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); else return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), Multiply(RHS, LHSRHS)); } if (!RHS->isZero()) { // avoid X udiv 0 if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } } // 0 / X == 0, we don't need to preserve faults! if (ConstantInt *LHS = dyn_cast(Op0)) if (LHS->equalsInt(0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // It can't be division by zero, hence it must be division by one. if (I.getType() == Type::Int1Ty) return ReplaceInstUsesWith(I, Op0); if (ConstantVector *Op1V = dyn_cast(Op1)) { if (ConstantInt *X = cast_or_null(Op1V->getSplatValue())) // div X, 1 == X if (X->isOne()) return ReplaceInstUsesWith(I, Op0); } return 0; } Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; if (ConstantInt *C = dyn_cast(Op1)) { // X udiv C^2 -> X >> C // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2 return BinaryOperator::CreateLShr(Op0, ConstantInt::get(Op0->getType(), C->getValue().logBase2())); // X udiv C, where C >= signbit if (C->getValue().isNegative()) { Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C), I); return SelectInst::Create(IC, Constant::getNullValue(I.getType()), ConstantInt::get(I.getType(), 1)); } } // X udiv (C1 << N), where C1 is "1< X >> (N+C2) if (BinaryOperator *RHSI = dyn_cast(I.getOperand(1))) { if (RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { const APInt& C1 = cast(RHSI->getOperand(0))->getValue(); if (C1.isPowerOf2()) { Value *N = RHSI->getOperand(1); const Type *NTy = N->getType(); if (uint32_t C2 = C1.logBase2()) { Constant *C2V = ConstantInt::get(NTy, C2); N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I); } return BinaryOperator::CreateLShr(Op0, N); } } } // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) // where C1&C2 are powers of two. if (SelectInst *SI = dyn_cast(Op1)) if (ConstantInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantInt *SFO = dyn_cast(SI->getOperand(2))) { const APInt &TVA = STO->getValue(), &FVA = SFO->getValue(); if (TVA.isPowerOf2() && FVA.isPowerOf2()) { // Compute the shift amounts uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2(); // Construct the "on true" case of the select Constant *TC = ConstantInt::get(Op0->getType(), TSA); Instruction *TSI = BinaryOperator::CreateLShr( Op0, TC, SI->getName()+".t"); TSI = InsertNewInstBefore(TSI, I); // Construct the "on false" case of the select Constant *FC = ConstantInt::get(Op0->getType(), FSA); Instruction *FSI = BinaryOperator::CreateLShr( Op0, FC, SI->getName()+".f"); FSI = InsertNewInstBefore(FSI, I); // construct the select instruction and return it. return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName()); } } return 0; } Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; if (ConstantInt *RHS = dyn_cast(Op1)) { // sdiv X, -1 == -X if (RHS->isAllOnesValue()) return BinaryOperator::CreateNeg(Op0); } // If the sign bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a udiv. if (I.getType()->isInteger()) { APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); } } return 0; } Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { return commonDivTransforms(I); } /// This function implements the transforms on rem instructions that work /// regardless of the kind of rem instruction it is (urem, srem, or frem). It /// is used by the visitors to those instructions. /// @brief Transforms common to all three rem instructions Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op0)) { // undef % X -> 0 if (I.getType()->isFPOrFPVector()) return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X % undef -> undef // Handle cases involving: rem X, (select Cond, Y, Z) if (isa(Op1) && SimplifyDivRemOfSelect(I)) return &I; return 0; } /// This function implements the transforms common to both integer remainder /// instructions (urem and srem). It is called by the visitors to those integer /// remainder instructions. /// @brief Common integer remainder transforms Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *common = commonRemTransforms(I)) return common; // 0 % X == 0 for integer, we don't need to preserve faults! if (Constant *LHS = dyn_cast(Op0)) if (LHS->isNullValue()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (ConstantInt *RHS = dyn_cast(Op1)) { // X % 0 == undef, we don't need to preserve faults! if (RHS->equalsInt(0)) return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); if (RHS->equalsInt(1)) // X % 1 == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (Instruction *Op0I = dyn_cast(Op0)) { if (SelectInst *SI = dyn_cast(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } else if (isa(Op0I)) { if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // See if we can fold away this rem instruction. if (SimplifyDemandedInstructionBits(I)) return &I; } } return 0; } Instruction *InstCombiner::visitURem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *common = commonIRemTransforms(I)) return common; if (ConstantInt *RHS = dyn_cast(Op1)) { // X urem C^2 -> X and C // Check to see if this is an unsigned remainder with an exact power of 2, // if so, convert to a bitwise and. if (ConstantInt *C = dyn_cast(RHS)) if (C->getValue().isPowerOf2()) return BinaryOperator::CreateAnd(Op0, SubOne(C)); } if (Instruction *RHSI = dyn_cast(I.getOperand(1))) { // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) if (RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { if (cast(RHSI->getOperand(0))->getValue().isPowerOf2()) { Constant *N1 = ConstantInt::getAllOnesValue(I.getType()); Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1, "tmp"), I); return BinaryOperator::CreateAnd(Op0, Add); } } } // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) // where C1&C2 are powers of two. if (SelectInst *SI = dyn_cast(Op1)) { if (ConstantInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantInt *SFO = dyn_cast(SI->getOperand(2))) { // STO == 0 and SFO == 0 handled above. if ((STO->getValue().isPowerOf2()) && (SFO->getValue().isPowerOf2())) { Value *TrueAnd = InsertNewInstBefore( BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I); Value *FalseAnd = InsertNewInstBefore( BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I); return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd); } } } return 0; } Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Handle the integer rem common cases if (Instruction *common = commonIRemTransforms(I)) return common; if (Value *RHSNeg = dyn_castNegVal(Op1)) if (!isa(RHSNeg) || (isa(RHSNeg) && cast(RHSNeg)->getValue().isStrictlyPositive())) { // X % -Y -> X % Y AddUsesToWorkList(I); I.setOperand(1, RHSNeg); return &I; } // If the sign bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a urem. if (I.getType()->isInteger()) { APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { // X srem Y -> X urem Y, iff X and Y don't have sign bit set return BinaryOperator::CreateURem(Op0, Op1, I.getName()); } } // If it's a constant vector, flip any negative values positive. if (ConstantVector *RHSV = dyn_cast(Op1)) { unsigned VWidth = RHSV->getNumOperands(); bool hasNegative = false; for (unsigned i = 0; !hasNegative && i != VWidth; ++i) if (ConstantInt *RHS = dyn_cast(RHSV->getOperand(i))) if (RHS->getValue().isNegative()) hasNegative = true; if (hasNegative) { std::vector Elts(VWidth); for (unsigned i = 0; i != VWidth; ++i) { if (ConstantInt *RHS = dyn_cast(RHSV->getOperand(i))) { if (RHS->getValue().isNegative()) Elts[i] = cast(ConstantExpr::getNeg(RHS)); else Elts[i] = RHS; } } Constant *NewRHSV = ConstantVector::get(Elts); if (NewRHSV != RHSV) { AddUsesToWorkList(I); I.setOperand(1, NewRHSV); return &I; } } } return 0; } Instruction *InstCombiner::visitFRem(BinaryOperator &I) { return commonRemTransforms(I); } // isOneBitSet - Return true if there is exactly one bit set in the specified // constant. static bool isOneBitSet(const ConstantInt *CI) { return CI->getValue().isPowerOf2(); } // isHighOnes - Return true if the constant is of the form 1+0+. // This is the same as lowones(~X). static bool isHighOnes(const ConstantInt *CI) { return (~CI->getValue() + 1).isPowerOf2(); } /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits /// are carefully arranged to allow folding of expressions such as: /// /// (A < B) | (A > B) --> (A != B) /// /// Note that this is only valid if the first and second predicates have the /// same sign. Is illegal to do: (A u< B) | (A s> B) /// /// Three bits are used to represent the condition, as follows: /// 0 A > B /// 1 A == B /// 2 A < B /// /// <=> Value Definition /// 000 0 Always false /// 001 1 A > B /// 010 2 A == B /// 011 3 A >= B /// 100 4 A < B /// 101 5 A != B /// 110 6 A <= B /// 111 7 Always true /// static unsigned getICmpCode(const ICmpInst *ICI) { switch (ICI->getPredicate()) { // False -> 0 case ICmpInst::ICMP_UGT: return 1; // 001 case ICmpInst::ICMP_SGT: return 1; // 001 case ICmpInst::ICMP_EQ: return 2; // 010 case ICmpInst::ICMP_UGE: return 3; // 011 case ICmpInst::ICMP_SGE: return 3; // 011 case ICmpInst::ICMP_ULT: return 4; // 100 case ICmpInst::ICMP_SLT: return 4; // 100 case ICmpInst::ICMP_NE: return 5; // 101 case ICmpInst::ICMP_ULE: return 6; // 110 case ICmpInst::ICMP_SLE: return 6; // 110 // True -> 7 default: assert(0 && "Invalid ICmp predicate!"); return 0; } } /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp /// predicate into a three bit mask. It also returns whether it is an ordered /// predicate by reference. static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { isOrdered = false; switch (CC) { case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 case FCmpInst::FCMP_UNO: return 0; // 000 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 case FCmpInst::FCMP_UGT: return 1; // 001 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 case FCmpInst::FCMP_UEQ: return 2; // 010 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 case FCmpInst::FCMP_UGE: return 3; // 011 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 case FCmpInst::FCMP_ULT: return 4; // 100 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 case FCmpInst::FCMP_UNE: return 5; // 101 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 case FCmpInst::FCMP_ULE: return 6; // 110 // True -> 7 default: // Not expecting FCMP_FALSE and FCMP_TRUE; assert(0 && "Unexpected FCmp predicate!"); return 0; } } /// getICmpValue - This is the complement of getICmpCode, which turns an /// opcode and two operands into either a constant true or false, or a brand /// new ICmp instruction. The sign is passed in to determine which kind /// of predicate to use in the new icmp instruction. static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) { switch (code) { default: assert(0 && "Illegal ICmp code!"); case 0: return ConstantInt::getFalse(); case 1: if (sign) return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS); case 3: if (sign) return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); case 4: if (sign) return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS); case 6: if (sign) return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); case 7: return ConstantInt::getTrue(); } } /// getFCmpValue - This is the complement of getFCmpCode, which turns an /// opcode and two operands into either a FCmp instruction. isordered is passed /// in to determine which kind of predicate to use in the new fcmp instruction. static Value *getFCmpValue(bool isordered, unsigned code, Value *LHS, Value *RHS) { switch (code) { default: assert(0 && "Illegal FCmp code!"); case 0: if (isordered) return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS); case 1: if (isordered) return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS); case 2: if (isordered) return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS); case 3: if (isordered) return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS); case 4: if (isordered) return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS); case 5: if (isordered) return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS); case 6: if (isordered) return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS); else return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS); case 7: return ConstantInt::getTrue(); } } /// PredicatesFoldable - Return true if both predicates match sign or if at /// least one of them is an equality comparison (which is signless). static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) || (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) || (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1)); } namespace { // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) struct FoldICmpLogical { InstCombiner &IC; Value *LHS, *RHS; ICmpInst::Predicate pred; FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI) : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)), pred(ICI->getPredicate()) {} bool shouldApply(Value *V) const { if (ICmpInst *ICI = dyn_cast(V)) if (PredicatesFoldable(pred, ICI->getPredicate())) return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) || (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS)); return false; } Instruction *apply(Instruction &Log) const { ICmpInst *ICI = cast(Log.getOperand(0)); if (ICI->getOperand(0) != LHS) { assert(ICI->getOperand(1) == LHS); ICI->swapOperands(); // Swap the LHS and RHS of the ICmp } ICmpInst *RHSICI = cast(Log.getOperand(1)); unsigned LHSCode = getICmpCode(ICI); unsigned RHSCode = getICmpCode(RHSICI); unsigned Code; switch (Log.getOpcode()) { case Instruction::And: Code = LHSCode & RHSCode; break; case Instruction::Or: Code = LHSCode | RHSCode; break; case Instruction::Xor: Code = LHSCode ^ RHSCode; break; default: assert(0 && "Illegal logical opcode!"); return 0; } bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || ICmpInst::isSignedPredicate(ICI->getPredicate()); Value *RV = getICmpValue(isSigned, Code, LHS, RHS); if (Instruction *I = dyn_cast(RV)) return I; // Otherwise, it's a constant boolean value... return IC.ReplaceInstUsesWith(Log, RV); } }; } // end anonymous namespace // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is // guaranteed to be a binary operator. Instruction *InstCombiner::OptAndOp(Instruction *Op, ConstantInt *OpRHS, ConstantInt *AndRHS, BinaryOperator &TheAnd) { Value *X = Op->getOperand(0); Constant *Together = 0; if (!Op->isShift()) Together = And(AndRHS, OpRHS); switch (Op->getOpcode()) { case Instruction::Xor: if (Op->hasOneUse()) { // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) Instruction *And = BinaryOperator::CreateAnd(X, AndRHS); InsertNewInstBefore(And, TheAnd); And->takeName(Op); return BinaryOperator::CreateXor(And, Together); } break; case Instruction::Or: if (Together == AndRHS) // (X | C) & C --> C return ReplaceInstUsesWith(TheAnd, AndRHS); if (Op->hasOneUse() && Together != OpRHS) { // (X | C1) & C2 --> (X | (C1&C2)) & C2 Instruction *Or = BinaryOperator::CreateOr(X, Together); InsertNewInstBefore(Or, TheAnd); Or->takeName(Op); return BinaryOperator::CreateAnd(Or, AndRHS); } break; case Instruction::Add: if (Op->hasOneUse()) { // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. const APInt& AndRHSV = cast(AndRHS)->getValue(); // If there is only one bit set... if (isOneBitSet(cast(AndRHS))) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. const APInt& AddRHS = cast(OpRHS)->getValue(); // Check to see if any bits below the one bit set in AndRHSV are set. if ((AddRHS & (AndRHSV-1)) == 0) { // If not, the only thing that can effect the output of the AND is // the bit specified by AndRHSV. If that bit is set, the effect of // the XOR is to toggle the bit. If it is clear, then the ADD has // no effect. if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop TheAnd.setOperand(0, X); return &TheAnd; } else { // Pull the XOR out of the AND. Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS); InsertNewInstBefore(NewAnd, TheAnd); NewAnd->takeName(Op); return BinaryOperator::CreateXor(NewAnd, AndRHS); } } } } break; case Instruction::Shl: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! // uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask); if (CI->getValue() == ShlMask) { // Masking out bits that the shift already masks return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. } else if (CI != AndRHS) { // Reducing bits set in and. TheAnd.setOperand(1, CI); return &TheAnd; } break; } case Instruction::LShr: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! This only applies to // unsigned shifts, because a signed shr may bring in set bits! // uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask); if (CI->getValue() == ShrMask) { // Masking out bits that the shift already masks. return ReplaceInstUsesWith(TheAnd, Op); } else if (CI != AndRHS) { TheAnd.setOperand(1, CI); // Reduce bits set in and cst. return &TheAnd; } break; } case Instruction::AShr: // Signed shr. // See if this is shifting in some sign extension, then masking it out // with an and. if (Op->hasOneUse()) { uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask); if (C == AndRHS) { // Masking out bits shifted in. // (Val ashr C1) & C2 -> (Val lshr C1) & C2 // Make the argument unsigned. Value *ShVal = Op->getOperand(0); ShVal = InsertNewInstBefore( BinaryOperator::CreateLShr(ShVal, OpRHS, Op->getName()), TheAnd); return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); } } break; } return 0; } /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient /// (V-Lo) (ConstantExpr::getICmp((isSigned ? ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && "Lo is not <= Hi in range emission code!"); if (Inside) { if (Lo == Hi) // Trivially false. return new ICmpInst(ICmpInst::ICMP_NE, V, V); // V >= Min && V < Hi --> V < Hi if (cast(Lo)->isMinValue(isSigned)) { ICmpInst::Predicate pred = (isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); return new ICmpInst(pred, V, Hi); } // Emit V-Lo getName()+".off"); InsertNewInstBefore(Add, IB); Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); } if (Lo == Hi) // Trivially true. return new ICmpInst(ICmpInst::ICMP_EQ, V, V); // V < Min || V >= Hi -> V > Hi-1 Hi = SubOne(cast(Hi)); if (cast(Lo)->isMinValue(isSigned)) { ICmpInst::Predicate pred = (isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); return new ICmpInst(pred, V, Hi); } // Emit V-Lo >u Hi-1-Lo // Note that Hi has already had one subtracted from it, above. ConstantInt *NegLo = cast(ConstantExpr::getNeg(Lo)); Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off"); InsertNewInstBefore(Add, IB); Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); } // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with // any number of 0s on either side. The 1s are allowed to wrap from LSB to // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1s are not contiguous. static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { const APInt& V = Val->getValue(); uint32_t BitWidth = Val->getType()->getBitWidth(); if (!APIntOps::isShiftedMask(BitWidth, V)) return false; // look for the first zero bit after the run of ones MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); // look for the first non-zero bit ME = V.getActiveBits(); return true; } /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, /// where isSub determines whether the operator is a sub. If we can fold one of /// the following xforms: /// /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// /// return (A +/- B). /// Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, bool isSub, Instruction &I) { Instruction *LHSI = dyn_cast(LHS); if (!LHSI || LHSI->getNumOperands() != 2 || !isa(LHSI->getOperand(1))) return 0; ConstantInt *N = cast(LHSI->getOperand(1)); switch (LHSI->getOpcode()) { default: return 0; case Instruction::And: if (And(N, Mask) == Mask) { // If the AndRHS is a power of two minus one (0+1+), this is simple. if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()) break; // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ // part, we don't need any explicit masks to take them out of A. If that // is all N is, ignore it. uint32_t MB = 0, ME = 0; if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive uint32_t BitWidth = cast(RHS->getType())->getBitWidth(); APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); if (MaskedValueIsZero(RHS, Mask)) break; } } return 0; case Instruction::Or: case Instruction::Xor: // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() && And(N, Mask)->isZero()) break; return 0; } Instruction *New; if (isSub) New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold"); else New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold"); return InsertNewInstBefore(New, I); } /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS) { Value *Val, *Val2; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) || !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst)))) return 0; // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) // where C is a power of 2 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT && LHSCst->getValue().isPowerOf2()) { Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2); InsertNewInstBefore(NewOr, I); return new ICmpInst(LHSCC, NewOr, LHSCst); } // From here on, we only handle: // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. if (Val != Val2) return 0; // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) return 0; // We can't fold (ugt x, C) & (sgt x, C2). if (!PredicatesFoldable(LHSCC, RHSCC)) return 0; // Ensure that the larger constant is on the RHS. bool ShouldSwap; if (ICmpInst::isSignedPredicate(LHSCC) || (ICmpInst::isEquality(LHSCC) && ICmpInst::isSignedPredicate(RHSCC))) ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); else ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); if (ShouldSwap) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two icmp instructions // comparing a value against two constants and and'ing the result // together. Because of the above check, we know that we only have // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know // (from the FoldICmpLogical check above), that the two constants // are not equal and that the larger constant is on the RHS assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 return ReplaceInstUsesWith(I, LHS); } case ICmpInst::ICMP_NE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_ULT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst); break; // (X != 13 & X u< 15) -> no change case ICmpInst::ICMP_SLT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst); break; // (X != 13 & X s< 15) -> no change case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_NE: if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 Constant *AddCST = ConstantExpr::getNeg(LHSCst); Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST, Val->getName()+".off"); InsertNewInstBefore(Add, I); return new ICmpInst(ICmpInst::ICMP_UGT, Add, ConstantInt::get(Add->getType(), 1)); } break; // (X != 13 & X != 15) -> no change } break; case ICmpInst::ICMP_ULT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change break; } break; case ICmpInst::ICMP_SLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change break; } break; case ICmpInst::ICMP_UGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change break; case ICmpInst::ICMP_NE: if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 return new ICmpInst(LHSCC, Val, RHSCst); break; // (X u> 13 & X != 15) -> no change case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) 13 & X s< 15) -> no change break; } break; case ICmpInst::ICMP_SGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change break; case ICmpInst::ICMP_NE: if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 return new ICmpInst(LHSCC, Val, RHSCst); break; // (X s> 13 & X != 15) -> no change case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I); case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change break; } break; } return 0; } Instruction *InstCombiner::visitAnd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X & undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // and X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op1); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { if (SimplifyDemandedInstructionBits(I)) return &I; } else { if (ConstantVector *CP = dyn_cast(Op1)) { if (CP->isAllOnesValue()) // X & <-1,-1> -> X return ReplaceInstUsesWith(I, I.getOperand(0)); } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0> } } if (ConstantInt *AndRHS = dyn_cast(Op1)) { const APInt& AndRHSMask = AndRHS->getValue(); APInt NotAndRHS(~AndRHSMask); // Optimize a variety of ((val OP C1) & C2) combinations... if (isa(Op0)) { Instruction *Op0I = cast(Op0); Value *Op0LHS = Op0I->getOperand(0); Value *Op0RHS = Op0I->getOperand(1); switch (Op0I->getOpcode()) { case Instruction::Xor: case Instruction::Or: // If the mask is only needed on one incoming arm, push it up. if (Op0I->hasOneUse()) { if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { // Not masking anything out for the LHS, move to RHS. Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS, Op0RHS->getName()+".masked"); InsertNewInstBefore(NewRHS, I); return BinaryOperator::Create( cast(Op0I)->getOpcode(), Op0LHS, NewRHS); } if (!isa(Op0RHS) && MaskedValueIsZero(Op0RHS, NotAndRHS)) { // Not masking anything out for the RHS, move to LHS. Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS, Op0LHS->getName()+".masked"); InsertNewInstBefore(NewLHS, I); return BinaryOperator::Create( cast(Op0I)->getOpcode(), NewLHS, Op0RHS); } } break; case Instruction::Add: // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) return BinaryOperator::CreateAnd(V, AndRHS); if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes break; case Instruction::Sub: // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) return BinaryOperator::CreateAnd(V, AndRHS); // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS // has 1's for all bits that the subtraction with A might affect. if (Op0I->hasOneUse()) { uint32_t BitWidth = AndRHSMask.getBitWidth(); uint32_t Zeros = AndRHSMask.countLeadingZeros(); APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); ConstantInt *A = dyn_cast(Op0LHS); if (!(A && A->isZero()) && // avoid infinite recursion. MaskedValueIsZero(Op0LHS, Mask)) { Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS); InsertNewInstBefore(NewNeg, I); return BinaryOperator::CreateAnd(NewNeg, AndRHS); } } break; case Instruction::Shl: case Instruction::LShr: // (1 << x) & 1 --> zext(x == 0) // (1 >> x) & 1 --> zext(x == 0) if (AndRHSMask == 1 && Op0LHS == AndRHS) { Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS, Constant::getNullValue(I.getType())); InsertNewInstBefore(NewICmp, I); return new ZExtInst(NewICmp, I.getType()); } break; } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) return Res; } else if (CastInst *CI = dyn_cast(Op0)) { // If this is an integer truncation or change from signed-to-unsigned, and // if the source is an and/or with immediate, transform it. This // frequently occurs for bitfield accesses. if (Instruction *CastOp = dyn_cast(CI->getOperand(0))) { if ((isa(CI) || isa(CI)) && CastOp->getNumOperands() == 2) if (ConstantInt *AndCI = dyn_cast(CastOp->getOperand(1))) { if (CastOp->getOpcode() == Instruction::And) { // Change: and (cast (and X, C1) to T), C2 // into : and (cast X to T), trunc_or_bitcast(C1)&C2 // This will fold the two constants together, which may allow // other simplifications. Instruction *NewCast = CastInst::CreateTruncOrBitCast( CastOp->getOperand(0), I.getType(), CastOp->getName()+".shrunk"); NewCast = InsertNewInstBefore(NewCast, I); // trunc_or_bitcast(C1)&C2 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); C3 = ConstantExpr::getAnd(C3, AndRHS); return BinaryOperator::CreateAnd(NewCast, C3); } else if (CastOp->getOpcode() == Instruction::Or) { // Change: and (cast (or X, C1) to T), C2 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2 return ReplaceInstUsesWith(I, AndRHS); } } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *Op0NotVal = dyn_castNotVal(Op0); Value *Op1NotVal = dyn_castNotVal(Op1); if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // (~A & ~B) == (~(A | B)) - De Morgan's Law if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal, I.getName()+".demorgan"); InsertNewInstBefore(Or, I); return BinaryOperator::CreateNot(Or); } { Value *A = 0, *B = 0, *C = 0, *D = 0; if (match(Op0, m_Or(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) // (A | ?) & A --> A return ReplaceInstUsesWith(I, Op1); // (A|B) & ~(A&B) -> A^B if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::CreateXor(A, B); } } if (match(Op1, m_Or(m_Value(A), m_Value(B)))) { if (A == Op0 || B == Op0) // A & (A | ?) --> A return ReplaceInstUsesWith(I, Op0); // ~(A&B) & (A|B) -> A^B if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::CreateXor(A, B); } } if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1) { // (A^B)&A -> A&(A^B) I.swapOperands(); // Simplify below std::swap(Op0, Op1); } else if (B == Op1) { // (A^B)&B -> B&(B^A) cast(Op0)->swapOperands(); I.swapOperands(); // Simplify below std::swap(Op0, Op1); } } if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_Value(B)))) { if (B == Op0) { // B&(A^B) -> B&(B^A) cast(Op1)->swapOperands(); std::swap(A, B); } if (A == Op0) { // A&(A^B) -> A & ~B Instruction *NotB = BinaryOperator::CreateNot(B, "tmp"); InsertNewInstBefore(NotB, I); return BinaryOperator::CreateAnd(A, NotB); } } // (A&((~A)|B)) -> A&B if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) return BinaryOperator::CreateAnd(A, Op1); if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) return BinaryOperator::CreateAnd(A, Op0); } if (ICmpInst *RHS = dyn_cast(Op1)) { // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; if (ICmpInst *LHS = dyn_cast(Op0)) if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS)) return Res; } // fold (and (cast A), (cast B)) -> (cast (and A, B)) if (CastInst *Op0C = dyn_cast(Op0)) if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); } } // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. if (BinaryOperator *SI1 = dyn_cast(Op1)) { if (BinaryOperator *SI0 = dyn_cast(Op0)) if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && SI0->getOperand(1) == SI1->getOperand(1) && (SI0->hasOneUse() || SI1->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0), SI1->getOperand(0), SI0->getName()), I); return BinaryOperator::Create(SI1->getOpcode(), NewOp, SI1->getOperand(1)); } } // If and'ing two fcmp, try combine them into one. if (FCmpInst *LHS = dyn_cast(I.getOperand(0))) { if (FCmpInst *RHS = dyn_cast(I.getOperand(1))) { if (LHS->getPredicate() == FCmpInst::FCMP_ORD && RHS->getPredicate() == FCmpInst::FCMP_ORD) { // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) if (ConstantFP *LHSC = dyn_cast(LHS->getOperand(1))) if (ConstantFP *RHSC = dyn_cast(RHS->getOperand(1))) { // If either of the constants are nans, then the whole thing returns // false. if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0), RHS->getOperand(0)); } } else { Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS; FCmpInst::Predicate Op0CC, Op1CC; if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) && match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) { if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { // Swap RHS operands to match LHS. Op1CC = FCmpInst::getSwappedPredicate(Op1CC); std::swap(Op1LHS, Op1RHS); } if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). if (Op0CC == Op1CC) return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); else if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); else if (Op0CC == FCmpInst::FCMP_TRUE) return ReplaceInstUsesWith(I, Op1); else if (Op1CC == FCmpInst::FCMP_TRUE) return ReplaceInstUsesWith(I, Op0); bool Op0Ordered; bool Op1Ordered; unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); if (Op1Pred == 0) { std::swap(Op0, Op1); std::swap(Op0Pred, Op1Pred); std::swap(Op0Ordered, Op1Ordered); } if (Op0Pred == 0) { // uno && ueq -> uno && (uno || eq) -> ueq // ord && olt -> ord && (ord && lt) -> olt if (Op0Ordered == Op1Ordered) return ReplaceInstUsesWith(I, Op1); // uno && oeq -> uno && (ord && eq) -> false // uno && ord -> false if (!Op0Ordered) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); // ord && ueq -> ord && (uno || eq) -> oeq return cast(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS)); } } } } } } return Changed ? &I : 0; } /// CollectBSwapParts - Analyze the specified subexpression and see if it is /// capable of providing pieces of a bswap. The subexpression provides pieces /// of a bswap if it is proven that each of the non-zero bytes in the output of /// the expression came from the corresponding "byte swapped" byte in some other /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then /// we know that the expression deposits the low byte of %X into the high byte /// of the bswap result and that all other bytes are zero. This expression is /// accepted, the high byte of ByteValues is set to X to indicate a correct /// match. /// /// This function returns true if the match was unsuccessful and false if so. /// On entry to the function the "OverallLeftShift" is a signed integer value /// indicating the number of bytes that the subexpression is later shifted. For /// example, if the expression is later right shifted by 16 bits, the /// OverallLeftShift value would be -2 on entry. This is used to specify which /// byte of ByteValues is actually being set. /// /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding /// byte is masked to zero by a user. For example, in (X & 255), X will be /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits /// this function to working on up to 32-byte (256 bit) values. ByteMask is /// always in the local (OverallLeftShift) coordinate space. /// static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, SmallVector &ByteValues) { if (Instruction *I = dyn_cast(V)) { // If this is an or instruction, it may be an inner node of the bswap. if (I->getOpcode() == Instruction::Or) { return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, ByteValues) || CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask, ByteValues); } // If this is a logical shift by a constant multiple of 8, recurse with // OverallLeftShift and ByteMask adjusted. if (I->isLogicalShift() && isa(I->getOperand(1))) { unsigned ShAmt = cast(I->getOperand(1))->getLimitedValue(~0U); // Ensure the shift amount is defined and of a byte value. if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size())) return true; unsigned ByteShift = ShAmt >> 3; if (I->getOpcode() == Instruction::Shl) { // X << 2 -> collect(X, +2) OverallLeftShift += ByteShift; ByteMask >>= ByteShift; } else { // X >>u 2 -> collect(X, -2) OverallLeftShift -= ByteShift; ByteMask <<= ByteShift; ByteMask &= (~0U >> (32-ByteValues.size())); } if (OverallLeftShift >= (int)ByteValues.size()) return true; if (OverallLeftShift <= -(int)ByteValues.size()) return true; return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, ByteValues); } // If this is a logical 'and' with a mask that clears bytes, clear the // corresponding bytes in ByteMask. if (I->getOpcode() == Instruction::And && isa(I->getOperand(1))) { // Scan every byte of the and mask, seeing if the byte is either 0 or 255. unsigned NumBytes = ByteValues.size(); APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255); const APInt &AndMask = cast(I->getOperand(1))->getValue(); for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) { // If this byte is masked out by a later operation, we don't care what // the and mask is. if ((ByteMask & (1 << i)) == 0) continue; // If the AndMask is all zeros for this byte, clear the bit. APInt MaskB = AndMask & Byte; if (MaskB == 0) { ByteMask &= ~(1U << i); continue; } // If the AndMask is not all ones for this byte, it's not a bytezap. if (MaskB != Byte) return true; // Otherwise, this byte is kept. } return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, ByteValues); } } // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be // the input value to the bswap. Some observations: 1) if more than one byte // is demanded from this input, then it could not be successfully assembled // into a byteswap. At least one of the two bytes would not be aligned with // their ultimate destination. if (!isPowerOf2_32(ByteMask)) return true; unsigned InputByteNo = CountTrailingZeros_32(ByteMask); // 2) The input and ultimate destinations must line up: if byte 3 of an i32 // is demanded, it needs to go into byte 0 of the result. This means that the // byte needs to be shifted until it lands in the right byte bucket. The // shift amount depends on the position: if the byte is coming from the high // part of the value (e.g. byte 3) then it must be shifted right. If from the // low part, it must be shifted left. unsigned DestByteNo = InputByteNo + OverallLeftShift; if (InputByteNo < ByteValues.size()/2) { if (ByteValues.size()-1-DestByteNo != InputByteNo) return true; } else { if (ByteValues.size()-1-DestByteNo != InputByteNo) return true; } // If the destination byte value is already defined, the values are or'd // together, which isn't a bswap (unless it's an or of the same bits). if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V) return true; ByteValues[DestByteNo] = V; return false; } /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. /// If so, insert the new bswap intrinsic and return it. Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { const IntegerType *ITy = dyn_cast(I.getType()); if (!ITy || ITy->getBitWidth() % 16 || // ByteMask only allows up to 32-byte values. ITy->getBitWidth() > 32*8) return 0; // Can only bswap pairs of bytes. Can't do vectors. /// ByteValues - For each byte of the result, we keep track of which value /// defines each byte. SmallVector ByteValues; ByteValues.resize(ITy->getBitWidth()/8); // Try to find all the pieces corresponding to the bswap. uint32_t ByteMask = ~0U >> (32-ByteValues.size()); if (CollectBSwapParts(&I, 0, ByteMask, ByteValues)) return 0; // Check to see if all of the bytes come from the same value. Value *V = ByteValues[0]; if (V == 0) return 0; // Didn't find a byte? Must be zero. // Check to make sure that all of the bytes come from the same value. for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) if (ByteValues[i] != V) return 0; const Type *Tys[] = { ITy }; Module *M = I.getParent()->getParent()->getParent(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); return CallInst::Create(F, V); } /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then /// we can simplify this expression to "cond ? C : D or B". static Instruction *MatchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D) { // If A is not a select of -1/0, this cannot match. Value *Cond = 0; if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond)))) return 0; // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. if (match(D, m_SelectCst<0, -1>(m_Specific(Cond)))) return SelectInst::Create(Cond, C, B); if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) return SelectInst::Create(Cond, C, B); // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. if (match(B, m_SelectCst<0, -1>(m_Specific(Cond)))) return SelectInst::Create(Cond, C, D); if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) return SelectInst::Create(Cond, C, D); return 0; } /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS) { Value *Val, *Val2; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) || !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst)))) return 0; // From here on, we only handle: // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. if (Val != Val2) return 0; // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) return 0; // We can't fold (ugt x, C) | (sgt x, C2). if (!PredicatesFoldable(LHSCC, RHSCC)) return 0; // Ensure that the larger constant is on the RHS. bool ShouldSwap; if (ICmpInst::isSignedPredicate(LHSCC) || (ICmpInst::isEquality(LHSCC) && ICmpInst::isSignedPredicate(RHSCC))) ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); else ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); if (ShouldSwap) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two icmp instructions // comparing a value against two constants and or'ing the result // together. Because of the above check, we know that we only have // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the // FoldICmpLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 getName()+".off"); InsertNewInstBefore(Add, I); AddCST = Subtract(AddOne(RHSCst), LHSCst); return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); } break; // (X == 13 | X == 15) -> no change case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change break; case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 return ReplaceInstUsesWith(I, RHS); } break; case ICmpInst::ICMP_NE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); } break; case ICmpInst::ICMP_ULT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change break; case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 // If RHSCst is [us]MAXINT, it is always false. Not handling // this can cause overflow. if (RHSCst->isMaxValue(false)) return ReplaceInstUsesWith(I, LHS); return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I); case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change break; } break; case ICmpInst::ICMP_SLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change break; case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 // If RHSCst is [us]MAXINT, it is always false. Not handling // this can cause overflow. if (RHSCst->isMaxValue(true)) return ReplaceInstUsesWith(I, LHS); return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I); case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change break; } break; case ICmpInst::ICMP_UGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change break; } break; case ICmpInst::ICMP_SGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change break; } break; } return 0; } /// FoldOrWithConstants - This helper function folds: /// /// ((A | B) & C1) | (B & C2) /// /// into: /// /// (A & C1) | B /// /// when the XOR of the two constants is "all ones" (-1). Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A, Value *B, Value *C) { ConstantInt *CI1 = dyn_cast(C); if (!CI1) return 0; Value *V1 = 0; ConstantInt *CI2 = 0; if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0; APInt Xor = CI1->getValue() ^ CI2->getValue(); if (!Xor.isAllOnesValue()) return 0; if (V1 == A || V1 == B) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I); return BinaryOperator::CreateOr(NewOp, V1); } return 0; } Instruction *InstCombiner::visitOr(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X | undef -> -1 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // or X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op0); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { if (SimplifyDemandedInstructionBits(I)) return &I; } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X } else if (ConstantVector *CP = dyn_cast(Op1)) { if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1> return ReplaceInstUsesWith(I, I.getOperand(1)); } // or X, -1 == -1 if (ConstantInt *RHS = dyn_cast(Op1)) { ConstantInt *C1 = 0; Value *X = 0; // (X & C1) | C2 --> (X | C2) & (C1|C2) if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { Instruction *Or = BinaryOperator::CreateOr(X, RHS); InsertNewInstBefore(Or, I); Or->takeName(Op0); return BinaryOperator::CreateAnd(Or, ConstantInt::get(RHS->getValue() | C1->getValue())); } // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { Instruction *Or = BinaryOperator::CreateOr(X, RHS); InsertNewInstBefore(Or, I); Or->takeName(Op0); return BinaryOperator::CreateXor(Or, ConstantInt::get(C1->getValue() & ~RHS->getValue())); } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *A = 0, *B = 0; ConstantInt *C1 = 0, *C2 = 0; if (match(Op0, m_And(m_Value(A), m_Value(B)))) if (A == Op1 || B == Op1) // (A & ?) | A --> A return ReplaceInstUsesWith(I, Op1); if (match(Op1, m_And(m_Value(A), m_Value(B)))) if (A == Op0 || B == Op0) // A | (A & ?) --> A return ReplaceInstUsesWith(I, Op0); // (A | B) | C and A | (B | C) -> bswap if possible. // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. if (match(Op0, m_Or(m_Value(), m_Value())) || match(Op1, m_Or(m_Value(), m_Value())) || (match(Op0, m_Shift(m_Value(), m_Value())) && match(Op1, m_Shift(m_Value(), m_Value())))) { if (Instruction *BSwap = MatchBSwap(I)) return BSwap; } // (X^C)|Y -> (X|Y)^C iff Y&C == 0 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op1, C1->getValue())) { Instruction *NOr = BinaryOperator::CreateOr(A, Op1); InsertNewInstBefore(NOr, I); NOr->takeName(Op0); return BinaryOperator::CreateXor(NOr, C1); } // Y|(X^C) -> (X|Y)^C iff Y&C == 0 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op0, C1->getValue())) { Instruction *NOr = BinaryOperator::CreateOr(A, Op0); InsertNewInstBefore(NOr, I); NOr->takeName(Op0); return BinaryOperator::CreateXor(NOr, C1); } // (A & C)|(B & D) Value *C = 0, *D = 0; if (match(Op0, m_And(m_Value(A), m_Value(C))) && match(Op1, m_And(m_Value(B), m_Value(D)))) { Value *V1 = 0, *V2 = 0, *V3 = 0; C1 = dyn_cast(C); C2 = dyn_cast(D); if (C1 && C2) { // (A & C1)|(B & C2) // If we have: ((V + N) & C1) | (V & C2) // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 // replace with V+N. if (C1->getValue() == ~C2->getValue()) { if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+ match(A, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) return ReplaceInstUsesWith(I, A); if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) return ReplaceInstUsesWith(I, A); } // Or commutes, try both ways. if ((C1->getValue() & (C1->getValue()+1)) == 0 && match(B, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) return ReplaceInstUsesWith(I, B); if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) return ReplaceInstUsesWith(I, B); } } V1 = 0; V2 = 0; V3 = 0; } // Check to see if we have any common things being and'ed. If so, find the // terms for V1 & (V2|V3). if (isOnlyUse(Op0) || isOnlyUse(Op1)) { if (A == B) // (A & C)|(A & D) == A & (C|D) V1 = A, V2 = C, V3 = D; else if (A == D) // (A & C)|(B & A) == A & (B|C) V1 = A, V2 = B, V3 = C; else if (C == B) // (A & C)|(C & D) == C & (A|D) V1 = C, V2 = A, V3 = D; else if (C == D) // (A & C)|(B & C) == C & (A|B) V1 = C, V2 = A, V3 = B; if (V1) { Value *Or = InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I); return BinaryOperator::CreateAnd(V1, Or); } } // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D)) return Match; if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C)) return Match; if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D)) return Match; if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C)) return Match; // ((A&~B)|(~A&B)) -> A^B if ((match(C, m_Not(m_Specific(D))) && match(B, m_Not(m_Specific(A))))) return BinaryOperator::CreateXor(A, D); // ((~B&A)|(~A&B)) -> A^B if ((match(A, m_Not(m_Specific(D))) && match(B, m_Not(m_Specific(C))))) return BinaryOperator::CreateXor(C, D); // ((A&~B)|(B&~A)) -> A^B if ((match(C, m_Not(m_Specific(B))) && match(D, m_Not(m_Specific(A))))) return BinaryOperator::CreateXor(A, B); // ((~B&A)|(B&~A)) -> A^B if ((match(A, m_Not(m_Specific(B))) && match(D, m_Not(m_Specific(C))))) return BinaryOperator::CreateXor(C, B); } // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. if (BinaryOperator *SI1 = dyn_cast(Op1)) { if (BinaryOperator *SI0 = dyn_cast(Op0)) if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && SI0->getOperand(1) == SI1->getOperand(1) && (SI0->hasOneUse() || SI1->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0), SI1->getOperand(0), SI0->getName()), I); return BinaryOperator::Create(SI1->getOpcode(), NewOp, SI1->getOperand(1)); } } // ((A|B)&1)|(B&-2) -> (A&1) | B if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C); if (Ret) return Ret; } // (B&-2)|((A|B)&1) -> (A&1) | B if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C); if (Ret) return Ret; } if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1 if (A == Op1) // ~A | A == -1 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); } else { A = 0; } // Note, A is still live here! if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B if (Op0 == B) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // (~A | ~B) == (~(A & B)) - De Morgan's Law if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B, I.getName()+".demorgan"), I); return BinaryOperator::CreateNot(And); } } // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) if (ICmpInst *RHS = dyn_cast(I.getOperand(1))) { if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; if (ICmpInst *LHS = dyn_cast(I.getOperand(0))) if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS)) return Res; } // fold (or (cast A), (cast B)) -> (cast (or A, B)) if (CastInst *Op0C = dyn_cast(Op0)) { if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? if (!isa(Op0C->getOperand(0)) || !isa(Op1C->getOperand(0))) { const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be // generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); } } } } // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) if (FCmpInst *LHS = dyn_cast(I.getOperand(0))) { if (FCmpInst *RHS = dyn_cast(I.getOperand(1))) { if (LHS->getPredicate() == FCmpInst::FCMP_UNO && RHS->getPredicate() == FCmpInst::FCMP_UNO && LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { if (ConstantFP *LHSC = dyn_cast(LHS->getOperand(1))) if (ConstantFP *RHSC = dyn_cast(RHS->getOperand(1))) { // If either of the constants are nans, then the whole thing returns // true. if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); // Otherwise, no need to compare the two constants, compare the // rest. return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0), RHS->getOperand(0)); } } else { Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS; FCmpInst::Predicate Op0CC, Op1CC; if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) && match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) { if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { // Swap RHS operands to match LHS. Op1CC = FCmpInst::getSwappedPredicate(Op1CC); std::swap(Op1LHS, Op1RHS); } if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). if (Op0CC == Op1CC) return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); else if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); else if (Op0CC == FCmpInst::FCMP_FALSE) return ReplaceInstUsesWith(I, Op1); else if (Op1CC == FCmpInst::FCMP_FALSE) return ReplaceInstUsesWith(I, Op0); bool Op0Ordered; bool Op1Ordered; unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); if (Op0Ordered == Op1Ordered) { // If both are ordered or unordered, return a new fcmp with // or'ed predicates. Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS); if (Instruction *I = dyn_cast(RV)) return I; // Otherwise, it's a constant boolean value... return ReplaceInstUsesWith(I, RV); } } } } } } return Changed ? &I : 0; } namespace { // XorSelf - Implements: X ^ X --> 0 struct XorSelf { Value *RHS; XorSelf(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Xor) const { return &Xor; } }; } Instruction *InstCombiner::visitXor(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) { if (isa(Op0)) // Handle undef ^ undef -> 0 special case. This is a common // idiom (misuse). return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef } // xor X, X = 0, even if X is nested in a sequence of Xor's. if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result; return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { if (SimplifyDemandedInstructionBits(I)) return &I; } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X } // Is this a ~ operation? if (Value *NotOp = dyn_castNotVal(&I)) { // ~(~X & Y) --> (X | ~Y) - De Morgan's Law // ~(~X | Y) === (X & ~Y) - De Morgan's Law if (BinaryOperator *Op0I = dyn_cast(NotOp)) { if (Op0I->getOpcode() == Instruction::And || Op0I->getOpcode() == Instruction::Or) { if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { Instruction *NotY = BinaryOperator::CreateNot(Op0I->getOperand(1), Op0I->getOperand(1)->getName()+".not"); InsertNewInstBefore(NotY, I); if (Op0I->getOpcode() == Instruction::And) return BinaryOperator::CreateOr(Op0NotVal, NotY); else return BinaryOperator::CreateAnd(Op0NotVal, NotY); } } } } if (ConstantInt *RHS = dyn_cast(Op1)) { if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) { // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B if (ICmpInst *ICI = dyn_cast(Op0)) return new ICmpInst(ICI->getInversePredicate(), ICI->getOperand(0), ICI->getOperand(1)); if (FCmpInst *FCI = dyn_cast(Op0)) return new FCmpInst(FCI->getInversePredicate(), FCI->getOperand(0), FCI->getOperand(1)); } // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). if (CastInst *Op0C = dyn_cast(Op0)) { if (CmpInst *CI = dyn_cast(Op0C->getOperand(0))) { if (CI->hasOneUse() && Op0C->hasOneUse()) { Instruction::CastOps Opcode = Op0C->getOpcode(); if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(), Op0C->getDestTy())) { Instruction *NewCI = InsertNewInstBefore(CmpInst::Create( CI->getOpcode(), CI->getInversePredicate(), CI->getOperand(0), CI->getOperand(1)), I); NewCI->takeName(CI); return CastInst::Create(Opcode, NewCI, Op0C->getType()); } } } } } if (BinaryOperator *Op0I = dyn_cast(Op0)) { // ~(c-X) == X-c-1 == X+(-c-1) if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) if (Constant *Op0I0C = dyn_cast(Op0I->getOperand(0))) { Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, ConstantInt::get(I.getType(), 1)); return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) { if (Op0I->getOpcode() == Instruction::Add) { // ~(X-c) --> (-c-1)-X if (RHS->isAllOnesValue()) { Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); return BinaryOperator::CreateSub( ConstantExpr::getSub(NegOp0CI, ConstantInt::get(I.getType(), 1)), Op0I->getOperand(0)); } else if (RHS->getValue().isSignBit()) { // (X + C) ^ signbit -> (X + C + signbit) Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue()); return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); } } else if (Op0I->getOpcode() == Instruction::Or) { // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) { Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); // Anything in both C1 and C2 is known to be zero, remove it from // NewRHS. Constant *CommonBits = And(Op0CI, RHS); NewRHS = ConstantExpr::getAnd(NewRHS, ConstantExpr::getNot(CommonBits)); AddToWorkList(Op0I); I.setOperand(0, Op0I->getOperand(0)); I.setOperand(1, NewRHS); return &I; } } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 if (X == Op1) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 if (X == Op0) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); BinaryOperator *Op1I = dyn_cast(Op1); if (Op1I) { Value *A, *B; if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { if (A == Op0) { // B^(B|A) == (A|B)^B Op1I->swapOperands(); I.swapOperands(); std::swap(Op0, Op1); } else if (B == Op0) { // B^(A|B) == (A|B)^B I.swapOperands(); // Simplified below. std::swap(Op0, Op1); } } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) { return ReplaceInstUsesWith(I, B); // A^(A^B) == B } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) { return ReplaceInstUsesWith(I, A); // A^(B^A) == B } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){ if (A == Op0) { // A^(A&B) -> A^(B&A) Op1I->swapOperands(); std::swap(A, B); } if (B == Op0) { // A^(B&A) -> (B&A)^A I.swapOperands(); // Simplified below. std::swap(Op0, Op1); } } } BinaryOperator *Op0I = dyn_cast(Op0); if (Op0I) { Value *A, *B; if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) { if (A == Op1) // (B|A)^B == (A|B)^B std::swap(A, B); if (B == Op1) { // (A|B)^B == A & ~B Instruction *NotB = InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I); return BinaryOperator::CreateAnd(A, NotB); } } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) { return ReplaceInstUsesWith(I, B); // (A^B)^A == B } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) { return ReplaceInstUsesWith(I, A); // (B^A)^A == B } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){ if (A == Op1) // (A&B)^A -> (B&A)^A std::swap(A, B); if (B == Op1 && // (B&A)^A == ~B & A !isa(Op1)) { // Canonical form is (B&C)^C Instruction *N = InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I); return BinaryOperator::CreateAnd(N, Op1); } } } // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. if (Op0I && Op1I && Op0I->isShift() && Op0I->getOpcode() == Op1I->getOpcode() && Op0I->getOperand(1) == Op1I->getOperand(1) && (Op1I->hasOneUse() || Op1I->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0), Op1I->getOperand(0), Op0I->getName()), I); return BinaryOperator::Create(Op1I->getOpcode(), NewOp, Op1I->getOperand(1)); } if (Op0I && Op1I) { Value *A, *B, *C, *D; // (A & B)^(A | B) -> A ^ B if (match(Op0I, m_And(m_Value(A), m_Value(B))) && match(Op1I, m_Or(m_Value(C), m_Value(D)))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::CreateXor(A, B); } // (A | B)^(A & B) -> A ^ B if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && match(Op1I, m_And(m_Value(C), m_Value(D)))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::CreateXor(A, B); } // (A & B)^(C & D) if ((Op0I->hasOneUse() || Op1I->hasOneUse()) && match(Op0I, m_And(m_Value(A), m_Value(B))) && match(Op1I, m_And(m_Value(C), m_Value(D)))) { // (X & Y)^(X & Y) -> (Y^Z) & X Value *X = 0, *Y = 0, *Z = 0; if (A == C) X = A, Y = B, Z = D; else if (A == D) X = A, Y = B, Z = C; else if (B == C) X = B, Y = A, Z = D; else if (B == D) X = B, Y = A, Z = C; if (X) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I); return BinaryOperator::CreateAnd(NewOp, X); } } } // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) if (ICmpInst *RHS = dyn_cast(I.getOperand(1))) if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) if (CastInst *Op0C = dyn_cast(Op0)) { if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); } } } return Changed ? &I : 0; } /// AddWithOverflow - Compute Result = In1+In2, returning true if the result /// overflowed for this type. static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2, bool IsSigned = false) { Result = cast(Add(In1, In2)); if (IsSigned) if (In2->getValue().isNegative()) return Result->getValue().sgt(In1->getValue()); else return Result->getValue().slt(In1->getValue()); else return Result->getValue().ult(In1->getValue()); } /// SubWithOverflow - Compute Result = In1-In2, returning true if the result /// overflowed for this type. static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2, bool IsSigned = false) { Result = cast(Subtract(In1, In2)); if (IsSigned) if (In2->getValue().isNegative()) return Result->getValue().slt(In1->getValue()); else return Result->getValue().sgt(In1->getValue()); else return Result->getValue().ugt(In1->getValue()); } /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the /// code necessary to compute the offset from the base pointer (without adding /// in the base pointer). Return the result as a signed integer of intptr size. static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { TargetData &TD = IC.getTargetData(); gep_type_iterator GTI = gep_type_begin(GEP); const Type *IntPtrTy = TD.getIntPtrType(); Value *Result = Constant::getNullValue(IntPtrTy); // Build a mask for high order bits. unsigned IntPtrWidth = TD.getPointerSizeInBits(); uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; ++i, ++GTI) { Value *Op = *i; uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType()) & PtrSizeMask; if (ConstantInt *OpC = dyn_cast(Op)) { if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); if (ConstantInt *RC = dyn_cast(Result)) Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size)); else Result = IC.InsertNewInstBefore( BinaryOperator::CreateAdd(Result, ConstantInt::get(IntPtrTy, Size), GEP->getName()+".offs"), I); continue; } Constant *Scale = ConstantInt::get(IntPtrTy, Size); Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); Scale = ConstantExpr::getMul(OC, Scale); if (Constant *RC = dyn_cast(Result)) Result = ConstantExpr::getAdd(RC, Scale); else { // Emit an add instruction. Result = IC.InsertNewInstBefore( BinaryOperator::CreateAdd(Result, Scale, GEP->getName()+".offs"), I); } continue; } // Convert to correct type. if (Op->getType() != IntPtrTy) { if (Constant *OpC = dyn_cast(Op)) Op = ConstantExpr::getSExt(OpC, IntPtrTy); else Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy, Op->getName()+".c"), I); } if (Size != 1) { Constant *Scale = ConstantInt::get(IntPtrTy, Size); if (Constant *OpC = dyn_cast(Op)) Op = ConstantExpr::getMul(OpC, Scale); else // We'll let instcombine(mul) convert this to a shl if possible. Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale, GEP->getName()+".idx"), I); } // Emit an add instruction. if (isa(Op) && isa(Result)) Result = ConstantExpr::getAdd(cast(Op), cast(Result)); else Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result, GEP->getName()+".offs"), I); } return Result; } /// EvaluateGEPOffsetExpression - Return an value that can be used to compare of /// the *offset* implied by GEP to zero. For example, if we have &A[i], we want /// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be /// complex, and scales are involved. The above expression would also be legal /// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This /// later form is less amenable to optimization though, and we are allowed to /// generate the first by knowing that pointer arithmetic doesn't overflow. /// /// If we can't emit an optimized form for this expression, this returns null. /// static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I, InstCombiner &IC) { TargetData &TD = IC.getTargetData(); gep_type_iterator GTI = gep_type_begin(GEP); // Check to see if this gep only has a single variable index. If so, and if // any constant indices are a multiple of its scale, then we can compute this // in terms of the scale of the variable index. For example, if the GEP // implies an offset of "12 + i*4", then we can codegen this as "3 + i", // because the expression will cross zero at the same point. unsigned i, e = GEP->getNumOperands(); int64_t Offset = 0; for (i = 1; i != e; ++i, ++GTI) { if (ConstantInt *CI = dyn_cast(GEP->getOperand(i))) { // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } else { // Found our variable index. break; } } // If there are no variable indices, we must have a constant offset, just // evaluate it the general way. if (i == e) return 0; Value *VariableIdx = GEP->getOperand(i); // Determine the scale factor of the variable element. For example, this is // 4 if the variable index is into an array of i32. uint64_t VariableScale = TD.getTypePaddedSize(GTI.getIndexedType()); // Verify that there are no other variable indices. If so, emit the hard way. for (++i, ++GTI; i != e; ++i, ++GTI) { ConstantInt *CI = dyn_cast(GEP->getOperand(i)); if (!CI) return 0; // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } // Okay, we know we have a single variable index, which must be a // pointer/array/vector index. If there is no offset, life is simple, return // the index. unsigned IntPtrWidth = TD.getPointerSizeInBits(); if (Offset == 0) { // Cast to intptrty in case a truncation occurs. If an extension is needed, // we don't need to bother extending: the extension won't affect where the // computation crosses zero. if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(), VariableIdx->getNameStart(), &I); return VariableIdx; } // Otherwise, there is an index. The computation we will do will be modulo // the pointer size, so get it. uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); Offset &= PtrSizeMask; VariableScale &= PtrSizeMask; // To do this transformation, any constant index must be a multiple of the // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a // multiple of the variable scale. int64_t NewOffs = Offset / (int64_t)VariableScale; if (Offset != NewOffs*(int64_t)VariableScale) return 0; // Okay, we can do this evaluation. Start by converting the index to intptr. const Type *IntPtrTy = TD.getIntPtrType(); if (VariableIdx->getType() != IntPtrTy) VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy, true /*SExt*/, VariableIdx->getNameStart(), &I); Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I); } /// FoldGEPICmp - Fold comparisons between a GEP instruction and something /// else. At this point we know that the GEP is on the LHS of the comparison. Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I) { assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!"); // Look through bitcasts. if (BitCastInst *BCI = dyn_cast(RHS)) RHS = BCI->getOperand(0); Value *PtrBase = GEPLHS->getOperand(0); if (PtrBase == RHS) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). // This transformation (ignoring the base and scales) is valid because we // know pointers can't overflow. See if we can output an optimized form. Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this); // If not, synthesize the offset the hard way. if (Offset == 0) Offset = EmitGEPOffset(GEPLHS, I, *this); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, Constant::getNullValue(Offset->getType())); } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) { // If the base pointers are different, but the indices are the same, just // compare the base pointer. if (PtrBase != GEPRHS->getOperand(0)) { bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); IndicesTheSame &= GEPLHS->getOperand(0)->getType() == GEPRHS->getOperand(0)->getType(); if (IndicesTheSame) for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { IndicesTheSame = false; break; } // If all indices are the same, just compare the base pointers. if (IndicesTheSame) return new ICmpInst(ICmpInst::getSignedPredicate(Cond), GEPLHS->getOperand(0), GEPRHS->getOperand(0)); // Otherwise, the base pointers are different and the indices are // different, bail out. return 0; } // If one of the GEPs has all zero indices, recurse. bool AllZeros = true; for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (!isa(GEPLHS->getOperand(i)) || !cast(GEPLHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), ICmpInst::getSwappedPredicate(Cond), I); // If the other GEP has all zero indices, recurse. AllZeros = true; for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (!isa(GEPRHS->getOperand(i)) || !cast(GEPRHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { // If the GEPs only differ by one index, compare it. unsigned NumDifferences = 0; // Keep track of # differences. unsigned DiffOperand = 0; // The operand that differs. for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { // Irreconcilable differences. NumDifferences = 2; break; } else { if (NumDifferences++) break; DiffOperand = i; } } if (NumDifferences == 0) // SAME GEP? return ReplaceInstUsesWith(I, // No comparison is needed here. ConstantInt::get(Type::Int1Ty, ICmpInst::isTrueWhenEqual(Cond))); else if (NumDifferences == 1) { Value *LHSV = GEPLHS->getOperand(DiffOperand); Value *RHSV = GEPRHS->getOperand(DiffOperand); // Make sure we do a signed comparison here. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); } } // Only lower this if the icmp is the only user of the GEP or if we expect // the result to fold to a constant! if ((isa(GEPLHS) || GEPLHS->hasOneUse()) && (isa(GEPRHS) || GEPRHS->hasOneUse())) { // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) Value *L = EmitGEPOffset(GEPLHS, I, *this); Value *R = EmitGEPOffset(GEPRHS, I, *this); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); } } return 0; } /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. /// Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, Constant *RHSC) { if (!isa(RHSC)) return 0; const APFloat &RHS = cast(RHSC)->getValueAPF(); // Get the width of the mantissa. We don't want to hack on conversions that // might lose information from the integer, e.g. "i64 -> float" int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); if (MantissaWidth == -1) return 0; // Unknown. // Check to see that the input is converted from an integer type that is small // enough that preserves all bits. TODO: check here for "known" sign bits. // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); // If this is a uitofp instruction, we need an extra bit to hold the sign. bool LHSUnsigned = isa(LHSI); if (LHSUnsigned) ++InputSize; // If the conversion would lose info, don't hack on this. if ((int)InputSize > MantissaWidth) return 0; // Otherwise, we can potentially simplify the comparison. We know that it // will always come through as an integer value and we know the constant is // not a NAN (it would have been previously simplified). assert(!RHS.isNaN() && "NaN comparison not already folded!"); ICmpInst::Predicate Pred; switch (I.getPredicate()) { default: assert(0 && "Unexpected predicate!"); case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break; case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_OGT: Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; break; case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OGE: Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; break; case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_OLT: Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; break; case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_OLE: Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; break; case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break; case FCmpInst::FCMP_ORD: return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case FCmpInst::FCMP_UNO: return ReplaceInstUsesWith(I, ConstantInt::getFalse()); } const IntegerType *IntTy = cast(LHSI->getOperand(0)->getType()); // Now we know that the APFloat is a normal number, zero or inf. // See if the FP constant is too large for the integer. For example, // comparing an i8 to 300.0. unsigned IntWidth = IntTy->getPrimitiveSizeInBits(); if (!LHSUnsigned) { // If the RHS value is > SignedMax, fold the comparison. This handles +INF // and large values. APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false); SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, APFloat::rmNearestTiesToEven); if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return ReplaceInstUsesWith(I, ConstantInt::getFalse()); } } else { // If the RHS value is > UnsignedMax, fold the comparison. This handles // +INF and large values. APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false); UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, APFloat::rmNearestTiesToEven); if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return ReplaceInstUsesWith(I, ConstantInt::getFalse()); } } if (!LHSUnsigned) { // See if the RHS value is < SignedMin. APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, APFloat::rmNearestTiesToEven); if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) return ReplaceInstUsesWith(I,ConstantInt::getTrue()); return ReplaceInstUsesWith(I, ConstantInt::getFalse()); } } // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or // [0, UMAX], but it may still be fractional. See if it is fractional by // casting the FP value to the integer value and back, checking for equality. // Don't do this for zero, because -0.0 is not fractional. Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy); if (!RHS.isZero() && ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) { // If we had a comparison against a fractional value, we have to adjust the // compare predicate and sometimes the value. RHSC is rounded towards zero // at this point. switch (Pred) { default: assert(0 && "Unexpected integer comparison!"); case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_ULE: // (float)int <= 4.4 --> int <= 4 // (float)int <= -4.4 --> false if (RHS.isNegative()) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_SLE: // (float)int <= 4.4 --> int <= 4 // (float)int <= -4.4 --> int < -4 if (RHS.isNegative()) Pred = ICmpInst::ICMP_SLT; break; case ICmpInst::ICMP_ULT: // (float)int < -4.4 --> false // (float)int < 4.4 --> int <= 4 if (RHS.isNegative()) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); Pred = ICmpInst::ICMP_ULE; break; case ICmpInst::ICMP_SLT: // (float)int < -4.4 --> int < -4 // (float)int < 4.4 --> int <= 4 if (!RHS.isNegative()) Pred = ICmpInst::ICMP_SLE; break; case ICmpInst::ICMP_UGT: // (float)int > 4.4 --> int > 4 // (float)int > -4.4 --> true if (RHS.isNegative()) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); break; case ICmpInst::ICMP_SGT: // (float)int > 4.4 --> int > 4 // (float)int > -4.4 --> int >= -4 if (RHS.isNegative()) Pred = ICmpInst::ICMP_SGE; break; case ICmpInst::ICMP_UGE: // (float)int >= -4.4 --> true // (float)int >= 4.4 --> int > 4 if (!RHS.isNegative()) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); Pred = ICmpInst::ICMP_UGT; break; case ICmpInst::ICMP_SGE: // (float)int >= -4.4 --> int >= -4 // (float)int >= 4.4 --> int > 4 if (!RHS.isNegative()) Pred = ICmpInst::ICMP_SGT; break; } } // Lower this FP comparison into an appropriate integer version of the // comparison. return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); } Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { bool Changed = SimplifyCompare(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Fold trivial predicates. if (I.getPredicate() == FCmpInst::FCMP_FALSE) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (I.getPredicate() == FCmpInst::FCMP_TRUE) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); // Simplify 'fcmp pred X, X' if (Op0 == Op1) { switch (I.getPredicate()) { default: assert(0 && "Unknown predicate!"); case FCmpInst::FCMP_UEQ: // True if unordered or equal case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case FCmpInst::FCMP_OGT: // True if ordered and greater than case FCmpInst::FCMP_OLT: // True if ordered and less than case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) case FCmpInst::FCMP_ULT: // True if unordered or less than case FCmpInst::FCMP_UGT: // True if unordered or greater than case FCmpInst::FCMP_UNE: // True if unordered or not equal // Canonicalize these to be 'fcmp uno %X, 0.0'. I.setPredicate(FCmpInst::FCMP_UNO); I.setOperand(1, Constant::getNullValue(Op0->getType())); return &I; case FCmpInst::FCMP_ORD: // True if ordered (no nans) case FCmpInst::FCMP_OEQ: // True if ordered and equal case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal case FCmpInst::FCMP_OLE: // True if ordered and less than or equal // Canonicalize these to be 'fcmp ord %X, 0.0'. I.setPredicate(FCmpInst::FCMP_ORD); I.setOperand(1, Constant::getNullValue(Op0->getType())); return &I; } } if (isa(Op1)) // fcmp pred X, undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); // Handle fcmp with constant RHS if (Constant *RHSC = dyn_cast(Op1)) { // If the constant is a nan, see if we can fold the comparison based on it. if (ConstantFP *CFP = dyn_cast(RHSC)) { if (CFP->getValueAPF().isNaN()) { if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and... return ReplaceInstUsesWith(I, ConstantInt::getFalse()); assert(FCmpInst::isUnordered(I.getPredicate()) && "Comparison must be either ordered or unordered!"); // True if unordered. return ReplaceInstUsesWith(I, ConstantInt::getTrue()); } } if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::PHI: // Only fold fcmp into the PHI if the phi and fcmp are in the same // block. If in the same block, we're encouraging jump threading. If // not, we are just pessimizing the code by making an i1 phi. if (LHSI->getParent() == I.getParent()) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::SIToFP: case Instruction::UIToFP: if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) return NV; break; case Instruction::Select: // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); // Insert a new FCmp of the other select operand. Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), LHSI->getOperand(2), RHSC, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); // Insert a new FCmp of the other select operand. Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), LHSI->getOperand(1), RHSC, I.getName()), I); } } if (Op1) return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); break; } } return Changed ? &I : 0; } Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { bool Changed = SimplifyCompare(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); // icmp X, X if (Op0 == Op1) return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, I.isTrueWhenEqual())); if (isa(Op1)) // X icmp undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); // icmp , - Global/Stack value // addresses never equal each other! We already know that Op0 != Op1. if ((isa(Op0) || isa(Op0) || isa(Op0)) && (isa(Op1) || isa(Op1) || isa(Op1))) return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, !I.isTrueWhenEqual())); // icmp's with boolean values can always be turned into bitwise operations if (Ty == Type::Int1Ty) { switch (I.getPredicate()) { default: assert(0 && "Invalid icmp instruction!"); case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp"); InsertNewInstBefore(Xor, I); return BinaryOperator::CreateNot(Xor); } case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B return BinaryOperator::CreateXor(Op0, Op1); case ICmpInst::ICMP_UGT: std::swap(Op0, Op1); // Change icmp ugt -> icmp ult // FALL THROUGH case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::CreateAnd(Not, Op1); } case ICmpInst::ICMP_SGT: std::swap(Op0, Op1); // Change icmp sgt -> icmp slt // FALL THROUGH case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::CreateAnd(Not, Op0); } case ICmpInst::ICMP_UGE: std::swap(Op0, Op1); // Change icmp uge -> icmp ule // FALL THROUGH case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::CreateOr(Not, Op1); } case ICmpInst::ICMP_SGE: std::swap(Op0, Op1); // Change icmp sge -> icmp sle // FALL THROUGH case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::CreateOr(Not, Op0); } } } // See if we are doing a comparison with a constant. if (ConstantInt *CI = dyn_cast(Op1)) { Value *A, *B; // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) if (I.isEquality() && CI->isNullValue() && match(Op0, m_Sub(m_Value(A), m_Value(B)))) { // (icmp cond A B) if cond is equality return new ICmpInst(I.getPredicate(), A, B); } // If we have an icmp le or icmp ge instruction, turn it into the // appropriate icmp lt or icmp gt instruction. This allows us to rely on // them being folded in the code below. switch (I.getPredicate()) { default: break; case ICmpInst::ICMP_ULE: if (CI->isMaxValue(false)) // A <=u MAX -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI)); case ICmpInst::ICMP_SLE: if (CI->isMaxValue(true)) // A <=s MAX -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI)); case ICmpInst::ICMP_UGE: if (CI->isMinValue(false)) // A >=u MIN -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI)); case ICmpInst::ICMP_SGE: if (CI->isMinValue(true)) // A >=s MIN -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI)); } // See if we can fold the comparison based on range information we can get // by checking whether bits are known to be zero or one in the input. uint32_t BitWidth = cast(Ty)->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); // If this comparison is a normal comparison, it demands all // bits, if it is a sign bit comparison, it only demands the sign bit. bool UnusedBit; bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); if (SimplifyDemandedBits(I.getOperandUse(0), isSignBit ? APInt::getSignBit(BitWidth) : APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 0)) return &I; // Given the known and unknown bits, compute a range that the LHS could be // in. Compute the Min, Max and RHS values based on the known bits. For the // EQ and NE we use unsigned values. APInt Min(BitWidth, 0), Max(BitWidth, 0); if (ICmpInst::isSignedPredicate(I.getPredicate())) ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max); else ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max); // If Min and Max are known to be the same, then SimplifyDemandedBits // figured out that the LHS is a constant. Just constant fold this now so // that code below can assume that Min != Max. if (Min == Max) return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(), ConstantInt::get(Min), CI)); // Based on the range information we know about the LHS, see if we can // simplify this comparison. For example, (x&4) < 8 is always true. const APInt &RHSVal = CI->getValue(); switch (I.getPredicate()) { // LE/GE have been folded already. default: assert(0 && "Unknown icmp opcode!"); case ICmpInst::ICMP_EQ: if (Max.ult(RHSVal) || Min.ugt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_NE: if (Max.ult(RHSVal) || Min.ugt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); break; case ICmpInst::ICMP_ULT: if (Max.ult(RHSVal)) // A true iff max(A) < C return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Min.uge(RHSVal)) // A false iff min(A) >= C return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (RHSVal == Max) // A A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (RHSVal == Min+1) // A A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); // (x (x >s -1) -> true if sign bit clear if (CI->isMinValue(true)) return new ICmpInst(ICmpInst::ICMP_SGT, Op0, ConstantInt::getAllOnesValue(Op0->getType())); break; case ICmpInst::ICMP_UGT: if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (RHSVal == Min) // A >u MIN -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); // (x >u 2147483647) -> (x true if sign bit set if (CI->isMaxValue(true)) return new ICmpInst(ICmpInst::ICMP_SLT, Op0, ConstantInt::getNullValue(Op0->getType())); break; case ICmpInst::ICMP_SLT: if (Max.slt(RHSVal)) // A true iff max(A) < C return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Min.sge(RHSVal)) // A false iff min(A) >= C return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (RHSVal == Max) // A A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (RHSVal == Min+1) // A A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); break; case ICmpInst::ICMP_SGT: if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (RHSVal == Min) // A >s MIN -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); break; } } // Test if the ICmpInst instruction is used exclusively by a select as // part of a minimum or maximum operation. If so, refrain from doing // any other folding. This helps out other analyses which understand // non-obfuscated minimum and maximum idioms, such as ScalarEvolution // and CodeGen. And in this case, at least one of the comparison // operands has at least one user besides the compare (the select), // which would often largely negate the benefit of folding anyway. if (I.hasOneUse()) if (SelectInst *SI = dyn_cast(*I.use_begin())) if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) return 0; // See if we are doing a comparison between a constant and an instruction that // can be folded into the comparison. if (ConstantInt *CI = dyn_cast(Op1)) { // Since the RHS is a ConstantInt (CI), if the left hand side is an // instruction, see if that instruction also has constants so that the // instruction can be folded into the icmp if (Instruction *LHSI = dyn_cast(Op0)) if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) return Res; } // Handle icmp with constant (but not simple integer constant) RHS if (Constant *RHSC = dyn_cast(Op1)) { if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::GetElementPtr: if (RHSC->isNullValue()) { // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null bool isAllZeros = true; for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) if (!isa(LHSI->getOperand(i)) || !cast(LHSI->getOperand(i))->isNullValue()) { isAllZeros = false; break; } if (isAllZeros) return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); } break; case Instruction::PHI: // Only fold icmp into the PHI if the phi and fcmp are in the same // block. If in the same block, we're encouraging jump threading. If // not, we are just pessimizing the code by making an i1 phi. if (LHSI->getParent() == I.getParent()) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::Select: { // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); // Insert a new ICmp of the other select operand. Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), LHSI->getOperand(2), RHSC, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); // Insert a new ICmp of the other select operand. Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), LHSI->getOperand(1), RHSC, I.getName()), I); } } if (Op1) return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); break; } case Instruction::Malloc: // If we have (malloc != null), and if the malloc has a single use, we // can assume it is successful and remove the malloc. if (LHSI->hasOneUse() && isa(RHSC)) { AddToWorkList(LHSI); return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, !I.isTrueWhenEqual())); } break; } } // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. if (User *GEP = dyn_castGetElementPtr(Op0)) if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) return NI; if (User *GEP = dyn_castGetElementPtr(Op1)) if (Instruction *NI = FoldGEPICmp(GEP, Op0, ICmpInst::getSwappedPredicate(I.getPredicate()), I)) return NI; // Test to see if the operands of the icmp are casted versions of other // values. If the ptr->ptr cast can be stripped off both arguments, we do so // now. if (BitCastInst *CI = dyn_cast(Op0)) { if (isa(Op0->getType()) && (isa(Op1) || isa(Op1))) { // We keep moving the cast from the left operand over to the right // operand, where it can often be eliminated completely. Op0 = CI->getOperand(0); // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast // so eliminate it as well. if (BitCastInst *CI2 = dyn_cast(Op1)) Op1 = CI2->getOperand(0); // If Op1 is a constant, we can fold the cast into the constant. if (Op0->getType() != Op1->getType()) { if (Constant *Op1C = dyn_cast(Op1)) { Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); } else { // Otherwise, cast the RHS right before the icmp Op1 = InsertBitCastBefore(Op1, Op0->getType(), I); } } return new ICmpInst(I.getPredicate(), Op0, Op1); } } if (isa(Op0)) { // Handle the special case of: icmp (cast bool to X), // This comes up when you have code like // int X = A < B; // if (X) ... // For generality, we handle any zero-extension of any operand comparison // with a constant or another cast from the same type. if (isa(Op1) || isa(Op1)) if (Instruction *R = visitICmpInstWithCastAndCast(I)) return R; } // See if it's the same type of instruction on the left and right. if (BinaryOperator *Op0I = dyn_cast(Op0)) { if (BinaryOperator *Op1I = dyn_cast(Op1)) { if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() && Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) { switch (Op0I->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Xor: if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b return new ICmpInst(I.getPredicate(), Op0I->getOperand(0), Op1I->getOperand(0)); // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b if (ConstantInt *CI = dyn_cast(Op0I->getOperand(1))) { if (CI->getValue().isSignBit()) { ICmpInst::Predicate Pred = I.isSignedPredicate() ? I.getUnsignedPredicate() : I.getSignedPredicate(); return new ICmpInst(Pred, Op0I->getOperand(0), Op1I->getOperand(0)); } if (CI->getValue().isMaxSignedValue()) { ICmpInst::Predicate Pred = I.isSignedPredicate() ? I.getUnsignedPredicate() : I.getSignedPredicate(); Pred = I.getSwappedPredicate(Pred); return new ICmpInst(Pred, Op0I->getOperand(0), Op1I->getOperand(0)); } } break; case Instruction::Mul: if (!I.isEquality()) break; if (ConstantInt *CI = dyn_cast(Op0I->getOperand(1))) { // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask // Mask = -1 >> count-trailing-zeros(Cst). if (!CI->isZero() && !CI->isOne()) { const APInt &AP = CI->getValue(); ConstantInt *Mask = ConstantInt::get( APInt::getLowBitsSet(AP.getBitWidth(), AP.getBitWidth() - AP.countTrailingZeros())); Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0), Mask); Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0), Mask); InsertNewInstBefore(And1, I); InsertNewInstBefore(And2, I); return new ICmpInst(I.getPredicate(), And1, And2); } } break; } } } } // ~x < ~y --> y < x { Value *A, *B; if (match(Op0, m_Not(m_Value(A))) && match(Op1, m_Not(m_Value(B)))) return new ICmpInst(I.getPredicate(), B, A); } if (I.isEquality()) { Value *A, *B, *C, *D; // -x == -y --> x == y if (match(Op0, m_Neg(m_Value(A))) && match(Op1, m_Neg(m_Value(B)))) return new ICmpInst(I.getPredicate(), A, B); if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 Value *OtherVal = A == Op1 ? B : A; return new ICmpInst(I.getPredicate(), OtherVal, Constant::getNullValue(A->getType())); } if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { // A^c1 == C^c2 --> A == C^(c1^c2) ConstantInt *C1, *C2; if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue()); Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp"); return new ICmpInst(I.getPredicate(), A, InsertNewInstBefore(Xor, I)); } // A^B == A^D -> B == D if (A == C) return new ICmpInst(I.getPredicate(), B, D); if (A == D) return new ICmpInst(I.getPredicate(), B, C); if (B == C) return new ICmpInst(I.getPredicate(), A, D); if (B == D) return new ICmpInst(I.getPredicate(), A, C); } } if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 Value *OtherVal = A == Op0 ? B : A; return new ICmpInst(I.getPredicate(), OtherVal, Constant::getNullValue(A->getType())); } // (A-B) == A -> B == 0 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B)))) return new ICmpInst(I.getPredicate(), B, Constant::getNullValue(B->getType())); // A == (A-B) -> B == 0 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B)))) return new ICmpInst(I.getPredicate(), B, Constant::getNullValue(B->getType())); // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 if (Op0->hasOneUse() && Op1->hasOneUse() && match(Op0, m_And(m_Value(A), m_Value(B))) && match(Op1, m_And(m_Value(C), m_Value(D)))) { Value *X = 0, *Y = 0, *Z = 0; if (A == C) { X = B; Y = D; Z = A; } else if (A == D) { X = B; Y = C; Z = A; } else if (B == C) { X = A; Y = D; Z = B; } else if (B == D) { X = A; Y = C; Z = B; } if (X) { // Build (X^Y) & Z Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I); Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I); I.setOperand(0, Op1); I.setOperand(1, Constant::getNullValue(Op1->getType())); return &I; } } } return Changed ? &I : 0; } /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS /// and CmpRHS are both known to be integer constants. Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS) { ConstantInt *CmpRHS = cast(ICI.getOperand(1)); const APInt &CmpRHSV = CmpRHS->getValue(); // FIXME: If the operand types don't match the type of the divide // then don't attempt this transform. The code below doesn't have the // logic to deal with a signed divide and an unsigned compare (and // vice versa). This is because (x /s C1) getOpcode() == Instruction::SDiv; if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate()) return 0; if (DivRHS->isZero()) return 0; // The ProdOV computation fails on divide by zero. if (DivIsSigned && DivRHS->isAllOnesValue()) return 0; // The overflow computation also screws up here if (DivRHS->isOne()) return 0; // Not worth bothering, and eliminates some funny cases // with INT_MIN. // Compute Prod = CI * DivRHS. We are essentially solving an equation // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and // C2 (CI). By solving for X we can turn this into a range check // instead of computing a divide. ConstantInt *Prod = Multiply(CmpRHS, DivRHS); // Determine if the product overflows by seeing if the product is // not equal to the divide. Make sure we do the same kind of divide // as in the LHS instruction that we're folding. bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; // Get the ICmp opcode ICmpInst::Predicate Pred = ICI.getPredicate(); // Figure out the interval that is being checked. For example, a comparison // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). // Compute this interval based on the constants involved and the signedness of // the compare/divide. This computes a half-open interval, keeping track of // whether either value in the interval overflows. After analysis each // overflow variable is set to 0 if it's corresponding bound variable is valid // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. int LoOverflow = 0, HiOverflow = 0; ConstantInt *LoBound = 0, *HiBound = 0; if (!DivIsSigned) { // udiv // e.g. X/5 op 3 --> [15, 20) LoBound = Prod; HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false); } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. if (CmpRHSV == 0) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) LoBound = cast(ConstantExpr::getNeg(SubOne(DivRHS))); HiBound = DivRHS; } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true); } else { // (X / pos) op neg // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) HiBound = AddOne(Prod); LoOverflow = HiOverflow = ProdOV ? -1 : 0; if (!LoOverflow) { ConstantInt* DivNeg = cast(ConstantExpr::getNeg(DivRHS)); LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; } } } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0. if (CmpRHSV == 0) { // (X / neg) op 0 // e.g. X/-5 op 0 --> [-4, 5) LoBound = AddOne(DivRHS); HiBound = cast(ConstantExpr::getNeg(DivRHS)); if (HiBound == DivRHS) { // -INTMIN = INTMIN HiOverflow = 1; // [INTMIN+1, overflow) HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN } } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos // e.g. X/-5 op 3 --> [-19, -14) HiBound = AddOne(Prod); HiOverflow = LoOverflow = ProdOV ? -1 : 0; if (!LoOverflow) LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0; } else { // (X / neg) op neg LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) LoOverflow = HiOverflow = ProdOV; if (!HiOverflow) HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true); } // Dividing by a negative swaps the condition. LT <-> GT Pred = ICmpInst::getSwappedPredicate(Pred); } Value *X = DivI->getOperand(0); switch (Pred) { default: assert(0 && "Unhandled icmp opcode!"); case ICmpInst::ICMP_EQ: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); else if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, LoBound); else if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI); case ICmpInst::ICMP_NE: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); else if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, LoBound); else if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI); case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: if (LoOverflow == +1) // Low bound is greater than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); if (LoOverflow == -1) // Low bound is less than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); return new ICmpInst(Pred, X, LoBound); case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: if (HiOverflow == +1) // High bound greater than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); else if (HiOverflow == -1) // High bound less than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); if (Pred == ICmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); else return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); } } /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". /// Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHSI, ConstantInt *RHS) { const APInt &RHSV = RHS->getValue(); switch (LHSI->getOpcode()) { case Instruction::Trunc: if (ICI.isEquality() && LHSI->hasOneUse()) { // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all // of the high bits truncated out of x are known. unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); // If all the high bits are known, we can do this xform. if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { // Pull in the high bits from known-ones set. APInt NewRHS(RHS->getValue()); NewRHS.zext(SrcBits); NewRHS |= KnownOne; return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), ConstantInt::get(NewRHS)); } } break; case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) if (ConstantInt *XorCST = dyn_cast(LHSI->getOperand(1))) { // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { Value *CompareVal = LHSI->getOperand(0); // If the sign bit of the XorCST is not set, there is no change to // the operation, just stop using the Xor. if (!XorCST->getValue().isNegative()) { ICI.setOperand(0, CompareVal); AddToWorkList(LHSI); return &ICI; } // Was the old condition true if the operand is positive? bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; // If so, the new one isn't. isTrueIfPositive ^= true; if (isTrueIfPositive) return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS)); else return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS)); } if (LHSI->hasOneUse()) { // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { const APInt &SignBit = XorCST->getValue(); ICmpInst::Predicate Pred = ICI.isSignedPredicate() ? ICI.getUnsignedPredicate() : ICI.getSignedPredicate(); return new ICmpInst(Pred, LHSI->getOperand(0), ConstantInt::get(RHSV ^ SignBit)); } // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) { const APInt &NotSignBit = XorCST->getValue(); ICmpInst::Predicate Pred = ICI.isSignedPredicate() ? ICI.getUnsignedPredicate() : ICI.getSignedPredicate(); Pred = ICI.getSwappedPredicate(Pred); return new ICmpInst(Pred, LHSI->getOperand(0), ConstantInt::get(RHSV ^ NotSignBit)); } } } break; case Instruction::And: // (icmp pred (and X, AndCST), RHS) if (LHSI->hasOneUse() && isa(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { ConstantInt *AndCST = cast(LHSI->getOperand(1)); // If the LHS is an AND of a truncating cast, we can widen the // and/compare to be the input width without changing the value // produced, eliminating a cast. if (TruncInst *Cast = dyn_cast(LHSI->getOperand(0))) { // We can do this transformation if either the AND constant does not // have its sign bit set or if it is an equality comparison. // Extending a relational comparison when we're checking the sign // bit would not work. if (Cast->hasOneUse() && (ICI.isEquality() || (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) { uint32_t BitWidth = cast(Cast->getOperand(0)->getType())->getBitWidth(); APInt NewCST = AndCST->getValue(); NewCST.zext(BitWidth); APInt NewCI = RHSV; NewCI.zext(BitWidth); Instruction *NewAnd = BinaryOperator::CreateAnd(Cast->getOperand(0), ConstantInt::get(NewCST),LHSI->getName()); InsertNewInstBefore(NewAnd, ICI); return new ICmpInst(ICI.getPredicate(), NewAnd, ConstantInt::get(NewCI)); } } // If this is: (X >> C1) & C2 != C3 (where any shift and any compare // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This // happens a LOT in code produced by the C front-end, for bitfield // access. BinaryOperator *Shift = dyn_cast(LHSI->getOperand(0)); if (Shift && !Shift->isShift()) Shift = 0; ConstantInt *ShAmt; ShAmt = Shift ? dyn_cast(Shift->getOperand(1)) : 0; const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. const Type *AndTy = AndCST->getType(); // Type of the and. // We can fold this as long as we can't shift unknown bits // into the mask. This can only happen with signed shift // rights, as they sign-extend. if (ShAmt) { bool CanFold = Shift->isLogicalShift(); if (!CanFold) { // To test for the bad case of the signed shr, see if any // of the bits shifted in could be tested after the mask. uint32_t TyBits = Ty->getPrimitiveSizeInBits(); int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & AndCST->getValue()) == 0) CanFold = true; } if (CanFold) { Constant *NewCst; if (Shift->getOpcode() == Instruction::Shl) NewCst = ConstantExpr::getLShr(RHS, ShAmt); else NewCst = ConstantExpr::getShl(RHS, ShAmt); // Check to see if we are shifting out any of the bits being // compared. if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) { // If we shifted bits out, the fold is not going to work out. // As a special case, check to see if this means that the // result is always true or false now. if (ICI.getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); if (ICI.getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); } else { ICI.setOperand(1, NewCst); Constant *NewAndCST; if (Shift->getOpcode() == Instruction::Shl) NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); else NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); LHSI->setOperand(1, NewAndCST); LHSI->setOperand(0, Shift->getOperand(0)); AddToWorkList(Shift); // Shift is dead. AddUsesToWorkList(ICI); return &ICI; } } } // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is // preferable because it allows the C<hasOneUse() && RHSV == 0 && ICI.isEquality() && !Shift->isArithmeticShift() && isa(Shift->getOperand(0))) { // Compute C << Y. Value *NS; if (Shift->getOpcode() == Instruction::LShr) { NS = BinaryOperator::CreateShl(AndCST, Shift->getOperand(1), "tmp"); } else { // Insert a logical shift. NS = BinaryOperator::CreateLShr(AndCST, Shift->getOperand(1), "tmp"); } InsertNewInstBefore(cast(NS), ICI); // Compute X & (C << Y). Instruction *NewAnd = BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); InsertNewInstBefore(NewAnd, ICI); ICI.setOperand(0, NewAnd); return &ICI; } } break; case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) ConstantInt *ShAmt = dyn_cast(LHSI->getOperand(1)); if (!ShAmt) break; uint32_t TypeBits = RHSV.getBitWidth(); // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. if (ShAmt->uge(TypeBits)) break; if (ICI.isEquality()) { // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt); if (Comp != RHS) {// Comparing against a bit that we know is zero. bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); Constant *Mask = ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal)); Instruction *AndI = BinaryOperator::CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(ICI.getPredicate(), And, ConstantInt::get(RHSV.lshr(ShAmtVal))); } } // Otherwise, if this is a comparison of the sign bit, simplify to and/test. bool TrueIfSigned = false; if (LHSI->hasOneUse() && isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { // (X << 31) (X&1) != 0 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) << (TypeBits-ShAmt->getZExtValue()-1)); Instruction *AndI = BinaryOperator::CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, And, Constant::getNullValue(And->getType())); } break; } case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) case Instruction::AShr: { // Only handle equality comparisons of shift-by-constant. ConstantInt *ShAmt = dyn_cast(LHSI->getOperand(1)); if (!ShAmt || !ICI.isEquality()) break; // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. uint32_t TypeBits = RHSV.getBitWidth(); if (ShAmt->uge(TypeBits)) break; uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); // If we are comparing against bits always shifted out, the // comparison cannot succeed. APInt Comp = RHSV << ShAmtVal; if (LHSI->getOpcode() == Instruction::LShr) Comp = Comp.lshr(ShAmtVal); else Comp = Comp.ashr(ShAmtVal); if (Comp != RHSV) { // Comparing against a bit that we know is zero. bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } // Otherwise, check to see if the bits shifted out are known to be zero. // If so, we can compare against the unshifted value: // (X & 4) >> 1 == 2 --> (X & 4) == 4. if (LHSI->hasOneUse() && MaskedValueIsZero(LHSI->getOperand(0), APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) { return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), ConstantExpr::getShl(RHS, ShAmt)); } if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); Constant *Mask = ConstantInt::get(Val); Instruction *AndI = BinaryOperator::CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(ICI.getPredicate(), And, ConstantExpr::getShl(RHS, ShAmt)); } break; } case Instruction::SDiv: case Instruction::UDiv: // Fold: icmp pred ([us]div X, C1), C2 -> range test // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. // See: InsertRangeTest above for the kinds of replacements possible. if (ConstantInt *DivRHS = dyn_cast(LHSI->getOperand(1))) if (Instruction *R = FoldICmpDivCst(ICI, cast(LHSI), DivRHS)) return R; break; case Instruction::Add: // Fold: icmp pred (add, X, C1), C2 if (!ICI.isEquality()) { ConstantInt *LHSC = dyn_cast(LHSI->getOperand(1)); if (!LHSC) break; const APInt &LHSV = LHSC->getValue(); ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) .subtract(LHSV); if (ICI.isSignedPredicate()) { if (CR.getLower().isSignBit()) { return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), ConstantInt::get(CR.getUpper())); } else if (CR.getUpper().isSignBit()) { return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), ConstantInt::get(CR.getLower())); } } else { if (CR.getLower().isMinValue()) { return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), ConstantInt::get(CR.getUpper())); } else if (CR.getUpper().isMinValue()) { return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), ConstantInt::get(CR.getLower())); } } } break; } // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. if (ICI.isEquality()) { bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; // If the first operand is (add|sub|and|or|xor|rem) with a constant, and // the second operand is a constant, simplify a bit. if (BinaryOperator *BO = dyn_cast(LHSI)) { switch (BO->getOpcode()) { case Instruction::SRem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (RHSV == 0 && isa(BO->getOperand(1)) &&BO->hasOneUse()){ const APInt &V = cast(BO->getOperand(1))->getValue(); if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) { Instruction *NewRem = BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1), BO->getName()); InsertNewInstBefore(NewRem, ICI); return new ICmpInst(ICI.getPredicate(), NewRem, Constant::getNullValue(BO->getType())); } } break; case Instruction::Add: // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. if (ConstantInt *BOp1C = dyn_cast(BO->getOperand(1))) { if (BO->hasOneUse()) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), Subtract(RHS, BOp1C)); } else if (RHSV == 0) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); if (Value *NegVal = dyn_castNegVal(BOp1)) return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); else if (Value *NegVal = dyn_castNegVal(BOp0)) return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); else if (BO->hasOneUse()) { Instruction *Neg = BinaryOperator::CreateNeg(BOp1); InsertNewInstBefore(Neg, ICI); Neg->takeName(BO); return new ICmpInst(ICI.getPredicate(), BOp0, Neg); } } break; case Instruction::Xor: // For the xor case, we can xor two constants together, eliminating // the explicit xor. if (Constant *BOC = dyn_cast(BO->getOperand(1))) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), ConstantExpr::getXor(RHS, BOC)); // FALLTHROUGH case Instruction::Sub: // Replace (([sub|xor] A, B) != 0) with (A != B) if (RHSV == 0) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), BO->getOperand(1)); break; case Instruction::Or: // If bits are being or'd in that are not present in the constant we // are comparing against, then the comparison could never succeed! if (Constant *BOC = dyn_cast(BO->getOperand(1))) { Constant *NotCI = ConstantExpr::getNot(RHS); if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, isICMP_NE)); } break; case Instruction::And: if (ConstantInt *BOC = dyn_cast(BO->getOperand(1))) { // If bits are being compared against that are and'd out, then the // comparison can never succeed! if ((RHSV & ~BOC->getValue()) != 0) return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, isICMP_NE)); // If we have ((X & C) == C), turn it into ((X & C) != 0). if (RHS == BOC && RHSV.isPowerOf2()) return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, LHSI, Constant::getNullValue(RHS->getType())); // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 if (BOC->getValue().isSignBit()) { Value *X = BO->getOperand(0); Constant *Zero = Constant::getNullValue(X->getType()); ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; return new ICmpInst(pred, X, Zero); } // ((X & ~7) == 0) --> X < 8 if (RHSV == 0 && isHighOnes(BOC)) { Value *X = BO->getOperand(0); Constant *NegX = ConstantExpr::getNeg(BOC); ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(pred, X, NegX); } } default: break; } } else if (IntrinsicInst *II = dyn_cast(LHSI)) { // Handle icmp {eq|ne} , intcst. if (II->getIntrinsicID() == Intrinsic::bswap) { AddToWorkList(II); ICI.setOperand(0, II->getOperand(1)); ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap())); return &ICI; } } } return 0; } /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). /// We only handle extending casts so far. /// Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { const CastInst *LHSCI = cast(ICI.getOperand(0)); Value *LHSCIOp = LHSCI->getOperand(0); const Type *SrcTy = LHSCIOp->getType(); const Type *DestTy = LHSCI->getType(); Value *RHSCIOp; // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. if (LHSCI->getOpcode() == Instruction::PtrToInt && getTargetData().getPointerSizeInBits() == cast(DestTy)->getBitWidth()) { Value *RHSOp = 0; if (Constant *RHSC = dyn_cast(ICI.getOperand(1))) { RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); } else if (PtrToIntInst *RHSC = dyn_cast(ICI.getOperand(1))) { RHSOp = RHSC->getOperand(0); // If the pointer types don't match, insert a bitcast. if (LHSCIOp->getType() != RHSOp->getType()) RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI); } if (RHSOp) return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); } // The code below only handles extension cast instructions, so far. // Enforce this. if (LHSCI->getOpcode() != Instruction::ZExt && LHSCI->getOpcode() != Instruction::SExt) return 0; bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; bool isSignedCmp = ICI.isSignedPredicate(); if (CastInst *CI = dyn_cast(ICI.getOperand(1))) { // Not an extension from the same type? RHSCIOp = CI->getOperand(0); if (RHSCIOp->getType() != LHSCIOp->getType()) return 0; // If the signedness of the two casts doesn't agree (i.e. one is a sext // and the other is a zext), then we can't handle this. if (CI->getOpcode() != LHSCI->getOpcode()) return 0; // Deal with equality cases early. if (ICI.isEquality()) return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); // A signed comparison of sign extended values simplifies into a // signed comparison. if (isSignedCmp && isSignedExt) return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); // The other three cases all fold into an unsigned comparison. return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); } // If we aren't dealing with a constant on the RHS, exit early ConstantInt *CI = dyn_cast(ICI.getOperand(1)); if (!CI) return 0; // Compute the constant that would happen if we truncated to SrcTy then // reextended to DestTy. Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); // If the re-extended constant didn't change... if (Res2 == CI) { // Make sure that sign of the Cmp and the sign of the Cast are the same. // For example, we might have: // %A = sext short %X to uint // %B = icmp ugt uint %A, 1330 // It is incorrect to transform this into // %B = icmp ugt short %X, 1330 // because %A may have negative value. // // However, we allow this when the compare is EQ/NE, because they are // signless. if (isSignedExt == isSignedCmp || ICI.isEquality()) return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); return 0; } // The re-extended constant changed so the constant cannot be represented // in the shorter type. Consequently, we cannot emit a simple comparison. // First, handle some easy cases. We know the result cannot be equal at this // point so handle the ICI.isEquality() cases if (ICI.getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); if (ICI.getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); // Evaluate the comparison for LT (we invert for GT below). LE and GE cases // should have been folded away previously and not enter in here. Value *Result; if (isSignedCmp) { // We're performing a signed comparison. if (cast(CI)->getValue().isNegative()) Result = ConstantInt::getFalse(); // X < (small) --> false else Result = ConstantInt::getTrue(); // X < (large) --> true } else { // We're performing an unsigned comparison. if (isSignedExt) { // We're performing an unsigned comp with a sign extended value. // This is true if the input is >= 0. [aka >s -1] Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy); Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp, NegOne, ICI.getName()), ICI); } else { // Unsigned extend & unsigned compare -> always true. Result = ConstantInt::getTrue(); } } // Finally, return the value computed. if (ICI.getPredicate() == ICmpInst::ICMP_ULT || ICI.getPredicate() == ICmpInst::ICMP_SLT) return ReplaceInstUsesWith(ICI, Result); assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || ICI.getPredicate()==ICmpInst::ICMP_SGT) && "ICmp should be folded!"); if (Constant *CI = dyn_cast(Result)) return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); return BinaryOperator::CreateNot(Result); } Instruction *InstCombiner::visitShl(BinaryOperator &I) { return commonShiftTransforms(I); } Instruction *InstCombiner::visitLShr(BinaryOperator &I) { return commonShiftTransforms(I); } Instruction *InstCombiner::visitAShr(BinaryOperator &I) { if (Instruction *R = commonShiftTransforms(I)) return R; Value *Op0 = I.getOperand(0); // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) if (ConstantInt *CSI = dyn_cast(Op0)) if (CSI->isAllOnesValue()) return ReplaceInstUsesWith(I, CSI); // See if we can turn a signed shr into an unsigned shr. if (!isa(I.getType()) && MaskedValueIsZero(Op0, APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()))) return BinaryOperator::CreateLShr(Op0, I.getOperand(1)); return 0; } Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Op1->getType()) || Op0 == Constant::getNullValue(Op0->getType())) return ReplaceInstUsesWith(I, Op0); if (isa(Op0)) { if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef return ReplaceInstUsesWith(I, Op0); else // undef << X -> 0, undef >>u X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (isa(Op1)) { if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X return ReplaceInstUsesWith(I, Op0); else // X << undef, X >>u undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // Try to fold constant and into select arguments. if (isa(Op0)) if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (ConstantInt *CUI = dyn_cast(Op1)) if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) return Res; return 0; } Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, BinaryOperator &I) { bool isLeftShift = I.getOpcode() == Instruction::Shl; // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits(); if (SimplifyDemandedInstructionBits(I)) return &I; // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr // of a signed value. // if (Op1->uge(TypeBits)) { if (I.getOpcode() != Instruction::AShr) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); else { I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); return &I; } } // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast(BO->getOperand(1))) return BinaryOperator::CreateMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, Op1)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) if (TruncInst *TI = dyn_cast(Op0)) { Instruction *TrOp = dyn_cast(TI->getOperand(0)); // If 'shift2' is an ashr, we would have to get the sign bit into a funny // place. Don't try to do this transformation in this case. Also, we // require that the input operand is a shift-by-constant so that we have // confidence that the shifts will get folded together. We could do this // xform in more cases, but it is unlikely to be profitable. if (TrOp && I.isLogicalShift() && TrOp->isShift() && isa(TrOp->getOperand(1))) { // Okay, we'll do this xform. Make the shift of shift. Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt, I.getName()); InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2) // For logical shifts, the truncation has the effect of making the high // part of the register be zeros. Emulate this by inserting an AND to // clear the top bits as needed. This 'and' will usually be zapped by // other xforms later if dead. unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits(); unsigned DstSize = TI->getType()->getPrimitiveSizeInBits(); APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); // The mask we constructed says what the trunc would do if occurring // between the shifts. We want to know the effect *after* the second // shift. We know that it is a logical shift by a constant, so adjust the // mask as appropriate. if (I.getOpcode() == Instruction::Shl) MaskV <<= Op1->getZExtValue(); else { assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); MaskV = MaskV.lshr(Op1->getZExtValue()); } Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV), TI->getName()); InsertNewInstBefore(And, I); // shift1 & 0x00FF // Return the value truncated to the interesting size. return new TruncInst(And, I.getType()); } } if (Op0->hasOneUse()) { if (BinaryOperator *Op0BO = dyn_cast(Op0)) { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) Value *V1, *V2; ConstantInt *CC; switch (Op0BO->getOpcode()) { default: break; case Instruction::Add: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // These operators commute. // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){ Instruction *YS = BinaryOperator::CreateShl( Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::Create(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(1)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::CreateAnd(X, ConstantInt::get( APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) Value *Op0BOOp1 = Op0BO->getOperand(1); if (isLeftShift && Op0BOOp1->hasOneUse() && match(Op0BOOp1, m_And(m_Shr(m_Value(V1), m_Specific(Op1)), m_ConstantInt(CC))) && cast(Op0BOOp1)->getOperand(0)->hasOneUse()) { Instruction *YS = BinaryOperator::CreateShl( Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); } } // FALL THROUGH. case Instruction::Sub: { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){ Instruction *YS = BinaryOperator::CreateShl( Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::Create(Op0BO->getOpcode(), V1, YS, Op0BO->getOperand(0)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::CreateAnd(X, ConstantInt::get( APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_And(m_Shr(m_Value(V1), m_Value(V2)), m_ConstantInt(CC))) && V2 == Op1 && cast(Op0BO->getOperand(0)) ->getOperand(0)->hasOneUse()) { Instruction *YS = BinaryOperator::CreateShl( Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); } break; } } // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (ConstantInt *Op0C = dyn_cast(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && I.getOpcode() == Instruction::AShr) isValid = Op0C->getValue()[TypeBits-1] == highBitSet; if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); Instruction *NewShift = BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1); InsertNewInstBefore(NewShift, I); NewShift->takeName(Op0BO); return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); } } } } // Find out if this is a shift of a shift by a constant. BinaryOperator *ShiftOp = dyn_cast(Op0); if (ShiftOp && !ShiftOp->isShift()) ShiftOp = 0; if (ShiftOp && isa(ShiftOp->getOperand(1))) { ConstantInt *ShiftAmt1C = cast(ShiftOp->getOperand(1)); uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. Value *X = ShiftOp->getOperand(0); uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. if (AmtSum > TypeBits) AmtSum = TypeBits; const IntegerType *Ty = cast(I.getType()); // Check for (X << c1) << c2 and (X >> c1) >> c2 if (I.getOpcode() == ShiftOp->getOpcode()) { return BinaryOperator::Create(I.getOpcode(), X, ConstantInt::get(Ty, AmtSum)); } else if (ShiftOp->getOpcode() == Instruction::LShr && I.getOpcode() == Instruction::AShr) { // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0. return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); } else if (ShiftOp->getOpcode() == Instruction::AShr && I.getOpcode() == Instruction::LShr) { // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. Instruction *Shift = BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); } // Okay, if we get here, one shift must be left, and the other shift must be // right. See if the amounts are equal. if (ShiftAmt1 == ShiftAmt2) { // If we have ((X >>? C) << C), turn this into X & (-1 << C). if (I.getOpcode() == Instruction::Shl) { APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask)); } // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). if (I.getOpcode() == Instruction::LShr) { APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask)); } // We can simplify ((X << C) >>s C) into a trunc + sext. // NOTE: we could do this for any C, but that would make 'unusual' integer // types. For now, just stick to ones well-supported by the code // generators. const Type *SExtType = 0; switch (Ty->getBitWidth() - ShiftAmt1) { case 1 : case 8 : case 16 : case 32 : case 64 : case 128: SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1); break; default: break; } if (SExtType) { Instruction *NewTrunc = new TruncInst(X, SExtType, "sext"); InsertNewInstBefore(NewTrunc, I); return new SExtInst(NewTrunc, Ty); } // Otherwise, we can't handle it yet. } else if (ShiftAmt1 < ShiftAmt2) { uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) if (I.getOpcode() == Instruction::Shl) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); Instruction *Shift = BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); } // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr) { assert(ShiftOp->getOpcode() == Instruction::Shl); Instruction *Shift = BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. } else { assert(ShiftAmt2 < ShiftAmt1); uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) if (I.getOpcode() == Instruction::Shl) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); Instruction *Shift = BinaryOperator::Create(ShiftOp->getOpcode(), X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); } // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr) { assert(ShiftOp->getOpcode() == Instruction::Shl); Instruction *Shift = BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); } // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. } } return 0; } /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear /// expression. If so, decompose it, returning some value X, such that Val is /// X*Scale+Offset. /// static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, int &Offset) { assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!"); if (ConstantInt *CI = dyn_cast(Val)) { Offset = CI->getZExtValue(); Scale = 0; return ConstantInt::get(Type::Int32Ty, 0); } else if (BinaryOperator *I = dyn_cast(Val)) { if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { if (I->getOpcode() == Instruction::Shl) { // This is a value scaled by '1 << the shift amt'. Scale = 1U << RHS->getZExtValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Mul) { // This value is scaled by 'RHS'. Scale = RHS->getZExtValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Add) { // We have X+C. Check to see if we really have (X*C2)+C1, // where C1 is divisible by C2. unsigned SubScale; Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); Offset += RHS->getZExtValue(); Scale = SubScale; return SubVal; } } } // Otherwise, we can't look past this. Scale = 1; Offset = 0; return Val; } /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, /// try to eliminate the cast by moving the type information into the alloc. Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI) { const PointerType *PTy = cast(CI.getType()); // Remove any uses of AI that are dead. assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { Instruction *User = cast(*UI++); if (isInstructionTriviallyDead(User)) { while (UI != E && *UI == User) ++UI; // If this instruction uses AI more than once, don't break UI. ++NumDeadInst; DOUT << "IC: DCE: " << *User; EraseInstFromFunction(*User); } } // Get the type really allocated and the type casted to. const Type *AllocElTy = AI.getAllocatedType(); const Type *CastElTy = PTy->getElementType(); if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); if (CastElTyAlign < AllocElTyAlign) return 0; // If the allocation has multiple uses, only promote it if we are strictly // increasing the alignment of the resultant allocation. If we keep it the // same, we open the door to infinite loops of various kinds. if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; uint64_t AllocElTySize = TD->getTypePaddedSize(AllocElTy); uint64_t CastElTySize = TD->getTypePaddedSize(CastElTy); if (CastElTySize == 0 || AllocElTySize == 0) return 0; // See if we can satisfy the modulus by pulling a scale out of the array // size argument. unsigned ArraySizeScale; int ArrayOffset; Value *NumElements = // See if the array size is a decomposable linear expr. DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); // If we can now satisfy the modulus, by using a non-1 scale, we really can // do the xform. if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; Value *Amt = 0; if (Scale == 1) { Amt = NumElements; } else { // If the allocation size is constant, form a constant mul expression Amt = ConstantInt::get(Type::Int32Ty, Scale); if (isa(NumElements)) Amt = Multiply(cast(NumElements), cast(Amt)); // otherwise multiply the amount and the number of elements else if (Scale != 1) { Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } } if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true); Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } AllocationInst *New; if (isa(AI)) New = new MallocInst(CastElTy, Amt, AI.getAlignment()); else New = new AllocaInst(CastElTy, Amt, AI.getAlignment()); InsertNewInstBefore(New, AI); New->takeName(&AI); // If the allocation has multiple uses, insert a cast and change all things // that used it to use the new cast. This will also hack on CI, but it will // die soon. if (!AI.hasOneUse()) { AddUsesToWorkList(AI); // New is the allocation instruction, pointer typed. AI is the original // allocation instruction, also pointer typed. Thus, cast to use is BitCast. CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast"); InsertNewInstBefore(NewCast, AI); AI.replaceAllUsesWith(NewCast); } return ReplaceInstUsesWith(CI, New); } /// CanEvaluateInDifferentType - Return true if we can take the specified value /// and return it as type Ty without inserting any new casts and without /// changing the computed value. This is used by code that tries to decide /// whether promoting or shrinking integer operations to wider or smaller types /// will allow us to eliminate a truncate or extend. /// /// This is a truncation operation if Ty is smaller than V->getType(), or an /// extension operation if Ty is larger. /// /// If CastOpc is a truncation, then Ty will be a type smaller than V. We /// should return true if trunc(V) can be computed by computing V in the smaller /// type. If V is an instruction, then trunc(inst(x,y)) can be computed as /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be /// efficiently truncated. /// /// If CastOpc is a sext or zext, we are asking if the low bits of the value can /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get /// the final result. bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, unsigned CastOpc, int &NumCastsRemoved){ // We can always evaluate constants in another type. if (isa(V)) return true; Instruction *I = dyn_cast(V); if (!I) return false; const IntegerType *OrigTy = cast(V->getType()); // If this is an extension or truncate, we can often eliminate it. if (isa(I) || isa(I) || isa(I)) { // If this is a cast from the destination type, we can trivially eliminate // it, and this will remove a cast overall. if (I->getOperand(0)->getType() == Ty) { // If the first operand is itself a cast, and is eliminable, do not count // this as an eliminable cast. We would prefer to eliminate those two // casts first. if (!isa(I->getOperand(0)) && I->hasOneUse()) ++NumCastsRemoved; return true; } } // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; unsigned Opc = I->getOpcode(); switch (Opc) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: // These operators can all arbitrarily be extended or truncated. return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved) && CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, NumCastsRemoved); case Instruction::Shl: // If we are truncating the result of this SHL, and if it's a shift of a // constant amount, we can always perform a SHL in a smaller type. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint32_t BitWidth = Ty->getBitWidth(); if (BitWidth < OrigTy->getBitWidth() && CI->getLimitedValue(BitWidth) < BitWidth) return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved); } break; case Instruction::LShr: // If this is a truncate of a logical shr, we can truncate it to a smaller // lshr iff we know that the bits we would otherwise be shifting in are // already zeros. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint32_t OrigBitWidth = OrigTy->getBitWidth(); uint32_t BitWidth = Ty->getBitWidth(); if (BitWidth < OrigBitWidth && MaskedValueIsZero(I->getOperand(0), APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && CI->getLimitedValue(BitWidth) < BitWidth) { return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved); } } break; case Instruction::ZExt: case Instruction::SExt: case Instruction::Trunc: // If this is the same kind of case as our original (e.g. zext+zext), we // can safely replace it. Note that replacing it does not reduce the number // of casts in the input. if (Opc == CastOpc) return true; // sext (zext ty1), ty2 -> zext ty2 if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt) return true; break; case Instruction::Select: { SelectInst *SI = cast(I); return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc, NumCastsRemoved) && CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc, NumCastsRemoved); } case Instruction::PHI: { // We can change a phi if we can change all operands. PHINode *PN = cast(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc, NumCastsRemoved)) return false; return true; } default: // TODO: Can handle more cases here. break; } return false; } /// EvaluateInDifferentType - Given an expression that /// CanEvaluateInDifferentType returns true for, actually insert the code to /// evaluate the expression. Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned) { if (Constant *C = dyn_cast(V)) return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); // Otherwise, it must be an instruction. Instruction *I = cast(V); Instruction *Res = 0; unsigned Opc = I->getOpcode(); switch (Opc) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::AShr: case Instruction::LShr: case Instruction::Shl: { Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); break; } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: // If the source type of the cast is the type we're trying for then we can // just return the source. There's no need to insert it because it is not // new. if (I->getOperand(0)->getType() == Ty) return I->getOperand(0); // Otherwise, must be the same type of cast, so just reinsert a new one. Res = CastInst::Create(cast(I)->getOpcode(), I->getOperand(0), Ty); break; case Instruction::Select: { Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); Res = SelectInst::Create(I->getOperand(0), True, False); break; } case Instruction::PHI: { PHINode *OPN = cast(I); PHINode *NPN = PHINode::Create(Ty); for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); NPN->addIncoming(V, OPN->getIncomingBlock(i)); } Res = NPN; break; } default: // TODO: Can handle more cases here. assert(0 && "Unreachable!"); break; } Res->takeName(I); return InsertNewInstBefore(Res, *I); } /// @brief Implement the transforms common to all CastInst visitors. Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); // Many cases of "cast of a cast" are eliminable. If it's eliminable we just // eliminate it now. if (CastInst *CSrc = dyn_cast(Src)) { // A->B->C cast if (Instruction::CastOps opc = isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { // The first cast (CSrc) is eliminable so we need to fix up or replace // the second cast (CI). CSrc will then have a good chance of being dead. return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); } } // If we are casting a select then fold the cast into the select if (SelectInst *SI = dyn_cast(Src)) if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) return NV; // If we are casting a PHI then fold the cast into the PHI if (isa(Src)) if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; return 0; } /// FindElementAtOffset - Given a type and a constant offset, determine whether /// or not there is a sequence of GEP indices into the type that will land us at /// the specified offset. If so, fill them into NewIndices and return the /// resultant element type, otherwise return null. static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, SmallVectorImpl &NewIndices, const TargetData *TD) { if (!Ty->isSized()) return 0; // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] const Type *IntPtrTy = TD->getIntPtrType(); int64_t FirstIdx = 0; if (int64_t TySize = TD->getTypePaddedSize(Ty)) { FirstIdx = Offset/TySize; Offset -= FirstIdx*TySize; // Handle hosts where % returns negative instead of values [0..TySize). if (Offset < 0) { --FirstIdx; Offset += TySize; assert(Offset >= 0); } assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); } NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); // Index into the types. If we fail, set OrigBase to null. while (Offset) { // Indexing into tail padding between struct/array elements. if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) return 0; if (const StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = TD->getStructLayout(STy); assert(Offset < (int64_t)SL->getSizeInBytes() && "Offset must stay within the indexed type"); unsigned Elt = SL->getElementContainingOffset(Offset); NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt)); Offset -= SL->getElementOffset(Elt); Ty = STy->getElementType(Elt); } else if (const ArrayType *AT = dyn_cast(Ty)) { uint64_t EltSize = TD->getTypePaddedSize(AT->getElementType()); assert(EltSize && "Cannot index into a zero-sized array"); NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); Offset %= EltSize; Ty = AT->getElementType(); } else { // Otherwise, we can't index into the middle of this atomic type, bail. return 0; } } return Ty; } /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); if (GetElementPtrInst *GEP = dyn_cast(Src)) { // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! if (GEP->hasAllZeroIndices()) { // Changing the cast operand is usually not a good idea but it is safe // here because the pointer operand is being replaced with another // pointer operand so the opcode doesn't need to change. AddToWorkList(GEP); CI.setOperand(0, GEP->getOperand(0)); return &CI; } // If the GEP has a single use, and the base pointer is a bitcast, and the // GEP computes a constant offset, see if we can convert these three // instructions into fewer. This typically happens with unions and other // non-type-safe code. if (GEP->hasOneUse() && isa(GEP->getOperand(0))) { if (GEP->hasAllConstantIndices()) { // We are guaranteed to get a constant from EmitGEPOffset. ConstantInt *OffsetV = cast(EmitGEPOffset(GEP, CI, *this)); int64_t Offset = OffsetV->getSExtValue(); // Get the base pointer input of the bitcast, and the type it points to. Value *OrigBase = cast(GEP->getOperand(0))->getOperand(0); const Type *GEPIdxTy = cast(OrigBase->getType())->getElementType(); SmallVector NewIndices; if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD)) { // If we were able to index down into an element, create the GEP // and bitcast the result. This eliminates one bitcast, potentially // two. Instruction *NGEP = GetElementPtrInst::Create(OrigBase, NewIndices.begin(), NewIndices.end(), ""); InsertNewInstBefore(NGEP, CI); NGEP->takeName(GEP); if (isa(CI)) return new BitCastInst(NGEP, CI.getType()); assert(isa(CI)); return new PtrToIntInst(NGEP, CI.getType()); } } } } return commonCastTransforms(CI); } /// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as /// integer types. This function implements the common transforms for all those /// cases. /// @brief Implement the transforms common to CastInst with integer operands Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { if (Instruction *Result = commonCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI.getType(); uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits(); uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits(); // See if we can simplify any instructions used by the LHS whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; // If the source isn't an instruction or has more than one use then we // can't do anything more. Instruction *SrcI = dyn_cast(Src); if (!SrcI || !Src->hasOneUse()) return 0; // Attempt to propagate the cast into the instruction for int->int casts. int NumCastsRemoved = 0; if (!isa(CI) && CanEvaluateInDifferentType(SrcI, cast(DestTy), CI.getOpcode(), NumCastsRemoved)) { // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. If this is a zero-extension, // we need to do an AND to maintain the clear top-part of the computation, // so we require that the input have eliminated at least one cast. If this // is a sign extension, we insert two new casts (to do the extension) so we // require that two casts have been eliminated. bool DoXForm = false; bool JustReplace = false; switch (CI.getOpcode()) { default: // All the others use floating point so we shouldn't actually // get here because of the check above. assert(0 && "Unknown cast type"); case Instruction::Trunc: DoXForm = true; break; case Instruction::ZExt: { DoXForm = NumCastsRemoved >= 1; if (!DoXForm && 0) { // If it's unnecessary to issue an AND to clear the high bits, it's // always profitable to do this xform. Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false); APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); if (MaskedValueIsZero(TryRes, Mask)) return ReplaceInstUsesWith(CI, TryRes); if (Instruction *TryI = dyn_cast(TryRes)) if (TryI->use_empty()) EraseInstFromFunction(*TryI); } break; } case Instruction::SExt: { DoXForm = NumCastsRemoved >= 2; if (!DoXForm && !isa(SrcI) && 0) { // If we do not have to emit the truncate + sext pair, then it's always // profitable to do this xform. // // It's not safe to eliminate the trunc + sext pair if one of the // eliminated cast is a truncate. e.g. // t2 = trunc i32 t1 to i16 // t3 = sext i16 t2 to i32 // != // i32 t1 Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true); unsigned NumSignBits = ComputeNumSignBits(TryRes); if (NumSignBits > (DestBitSize - SrcBitSize)) return ReplaceInstUsesWith(CI, TryRes); if (Instruction *TryI = dyn_cast(TryRes)) if (TryI->use_empty()) EraseInstFromFunction(*TryI); } break; } } if (DoXForm) { DOUT << "ICE: EvaluateInDifferentType converting expression type to avoid" << " cast: " << CI; Value *Res = EvaluateInDifferentType(SrcI, DestTy, CI.getOpcode() == Instruction::SExt); if (JustReplace) // Just replace this cast with the result. return ReplaceInstUsesWith(CI, Res); assert(Res->getType() == DestTy); switch (CI.getOpcode()) { default: assert(0 && "Unknown cast type!"); case Instruction::Trunc: case Instruction::BitCast: // Just replace this cast with the result. return ReplaceInstUsesWith(CI, Res); case Instruction::ZExt: { assert(SrcBitSize < DestBitSize && "Not a zext?"); // If the high bits are already zero, just replace this cast with the // result. APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); if (MaskedValueIsZero(Res, Mask)) return ReplaceInstUsesWith(CI, Res); // We need to emit an AND to clear the high bits. Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize, SrcBitSize)); return BinaryOperator::CreateAnd(Res, C); } case Instruction::SExt: { // If the high bits are already filled with sign bit, just replace this // cast with the result. unsigned NumSignBits = ComputeNumSignBits(Res); if (NumSignBits > (DestBitSize - SrcBitSize)) return ReplaceInstUsesWith(CI, Res); // We need to emit a cast to truncate, then a cast to sext. return CastInst::Create(Instruction::SExt, InsertCastBefore(Instruction::Trunc, Res, Src->getType(), CI), DestTy); } } } } Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; switch (SrcI->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: // If we are discarding information, rewrite. if (DestBitSize <= SrcBitSize && DestBitSize != 1) { // Don't insert two casts if they cannot be eliminated. We allow // two casts to be inserted if the sizes are the same. This could // only be converting signedness, which is a noop. if (DestBitSize == SrcBitSize || !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) || !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { Instruction::CastOps opcode = CI.getOpcode(); Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI); Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI); return BinaryOperator::Create( cast(SrcI)->getOpcode(), Op0c, Op1c); } } // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 if (isa(CI) && SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor && Op1 == ConstantInt::getTrue() && (!Op0->hasOneUse() || !isa(Op0))) { Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI); return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); } break; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: // If we are just changing the sign, rewrite. if (DestBitSize == SrcBitSize) { // Don't insert two casts if they cannot be eliminated. We allow // two casts to be inserted if the sizes are the same. This could // only be converting signedness, which is a noop. if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { Value *Op0c = InsertCastBefore(Instruction::BitCast, Op0, DestTy, *SrcI); Value *Op1c = InsertCastBefore(Instruction::BitCast, Op1, DestTy, *SrcI); return BinaryOperator::Create( cast(SrcI)->getOpcode(), Op0c, Op1c); } } break; case Instruction::Shl: // Allow changing the sign of the source operand. Do not allow // changing the size of the shift, UNLESS the shift amount is a // constant. We must not change variable sized shifts to a smaller // size, because it is undefined to shift more bits out than exist // in the value. if (DestBitSize == SrcBitSize || (DestBitSize < SrcBitSize && isa(Op1))) { Instruction::CastOps opcode = (DestBitSize == SrcBitSize ? Instruction::BitCast : Instruction::Trunc); Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI); Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI); return BinaryOperator::CreateShl(Op0c, Op1c); } break; case Instruction::AShr: // If this is a signed shr, and if all bits shifted in are about to be // truncated off, turn it into an unsigned shr to allow greater // simplifications. if (DestBitSize < SrcBitSize && isa(Op1)) { uint32_t ShiftAmt = cast(Op1)->getLimitedValue(SrcBitSize); if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) { // Insert the new logical shift right. return BinaryOperator::CreateLShr(Op0, Op1); } } break; } return 0; } Instruction *InstCombiner::visitTrunc(TruncInst &CI) { if (Instruction *Result = commonIntCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); const Type *Ty = CI.getType(); uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits(); uint32_t SrcBitWidth = cast(Src->getType())->getBitWidth(); if (Instruction *SrcI = dyn_cast(Src)) { switch (SrcI->getOpcode()) { default: break; case Instruction::LShr: // We can shrink lshr to something smaller if we know the bits shifted in // are already zeros. if (ConstantInt *ShAmtV = dyn_cast(SrcI->getOperand(1))) { uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); // Get a mask for the bits shifting in. APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); Value* SrcIOp0 = SrcI->getOperand(0); if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) { if (ShAmt >= DestBitWidth) // All zeros. return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); // Okay, we can shrink this. Truncate the input, then return a new // shift. Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI); Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1), Ty, CI); return BinaryOperator::CreateLShr(V1, V2); } } else { // This is a variable shr. // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is // more LLVM instructions, but allows '1 << Y' to be hoisted if // loop-invariant and CSE'd. if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) { Value *One = ConstantInt::get(SrcI->getType(), 1); Value *V = InsertNewInstBefore( BinaryOperator::CreateShl(One, SrcI->getOperand(1), "tmp"), CI); V = InsertNewInstBefore(BinaryOperator::CreateAnd(V, SrcI->getOperand(0), "tmp"), CI); Value *Zero = Constant::getNullValue(V->getType()); return new ICmpInst(ICmpInst::ICMP_NE, V, Zero); } } break; } } return 0; } /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations /// in order to eliminate the icmp. Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, bool DoXform) { // If we are just checking for a icmp eq of a single bit and zext'ing it // to an integer, then shift the bit to the appropriate place and then // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast(ICI->getOperand(1))) { const APInt &Op1CV = Op1C->getValue(); // zext (x x>>u31 true if signbit set. // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { if (!DoXform) return ICI; Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), In->getType()->getPrimitiveSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh, In->getName()+".lobit"), CI); if (In->getType() != CI.getType()) In = CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/, "tmp", &CI); if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { Constant *One = ConstantInt::get(In->getType(), 1); In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One, In->getName()+".not"), CI); } return ReplaceInstUsesWith(CI, In); } // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. // zext (X == 1) to i32 --> X iff X has only the low bit set. // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 0) to i32 --> X iff X has only the low bit set. // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. if ((Op1CV == 0 || Op1CV.isPowerOf2()) && // This only works for EQ and NE ICI->isEquality()) { // If Op1C some other power of two, convert: uint32_t BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); APInt TypeMask(APInt::getAllOnesValue(BitWidth)); ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? if (!DoXform) return ICI; bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { // (X&4) == 2 --> false // (X&4) != 2 --> true Constant *Res = ConstantInt::get(Type::Int1Ty, isNE); Res = ConstantExpr::getZExt(Res, CI.getType()); return ReplaceInstUsesWith(CI, Res); } uint32_t ShiftAmt = KnownZeroMask.logBase2(); Value *In = ICI->getOperand(0); if (ShiftAmt) { // Perform a logical shr by shiftamt. // Insert the shift to put the result in the low bit. In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, ConstantInt::get(In->getType(), ShiftAmt), In->getName()+".lobit"), CI); } if ((Op1CV != 0) == isNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = BinaryOperator::CreateXor(In, One, "tmp"); InsertNewInstBefore(cast(In), CI); } if (CI.getType() == In->getType()) return ReplaceInstUsesWith(CI, In); else return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); } } } return 0; } Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // If one of the common conversion will work .. if (Instruction *Result = commonIntCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); // If this is a TRUNC followed by a ZEXT then we are dealing with integral // types and if the sizes are just right we can convert this into a logical // 'and' which will be much cheaper than the pair of casts. if (TruncInst *CSrc = dyn_cast(Src)) { // A->B->C cast // Get the sizes of the types involved. We know that the intermediate type // will be smaller than A or C, but don't know the relation between A and C. Value *A = CSrc->getOperand(0); unsigned SrcSize = A->getType()->getPrimitiveSizeInBits(); unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits(); unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); // If we're actually extending zero bits, then if // SrcSize < DstSize: zext(a & mask) // SrcSize == DstSize: a & mask // SrcSize > DstSize: trunc(a) & mask if (SrcSize < DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); Constant *AndConst = ConstantInt::get(AndValue); Instruction *And = BinaryOperator::CreateAnd(A, AndConst, CSrc->getName()+".mask"); InsertNewInstBefore(And, CI); return new ZExtInst(And, CI.getType()); } else if (SrcSize == DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); return BinaryOperator::CreateAnd(A, ConstantInt::get(AndValue)); } else if (SrcSize > DstSize) { Instruction *Trunc = new TruncInst(A, CI.getType(), "tmp"); InsertNewInstBefore(Trunc, CI); APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(AndValue)); } } if (ICmpInst *ICI = dyn_cast(Src)) return transformZExtICmp(ICI, CI); BinaryOperator *SrcI = dyn_cast(Src); if (SrcI && SrcI->getOpcode() == Instruction::Or) { // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one // of the (zext icmp) will be transformed. ICmpInst *LHS = dyn_cast(SrcI->getOperand(0)); ICmpInst *RHS = dyn_cast(SrcI->getOperand(1)); if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && (transformZExtICmp(LHS, CI, false) || transformZExtICmp(RHS, CI, false))) { Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI); Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI); return BinaryOperator::Create(Instruction::Or, LCast, RCast); } } return 0; } Instruction *InstCombiner::visitSExt(SExtInst &CI) { if (Instruction *I = commonIntCastTransforms(CI)) return I; Value *Src = CI.getOperand(0); // Canonicalize sign-extend from i1 to a select. if (Src->getType() == Type::Int1Ty) return SelectInst::Create(Src, ConstantInt::getAllOnesValue(CI.getType()), Constant::getNullValue(CI.getType())); // See if the value being truncated is already sign extended. If so, just // eliminate the trunc/sext pair. if (getOpcode(Src) == Instruction::Trunc) { Value *Op = cast(Src)->getOperand(0); unsigned OpBits = cast(Op->getType())->getBitWidth(); unsigned MidBits = cast(Src->getType())->getBitWidth(); unsigned DestBits = cast(CI.getType())->getBitWidth(); unsigned NumSignBits = ComputeNumSignBits(Op); if (OpBits == DestBits) { // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign // bits, it is already ready. if (NumSignBits > DestBits-MidBits) return ReplaceInstUsesWith(CI, Op); } else if (OpBits < DestBits) { // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign // bits, just sext from i32. if (NumSignBits > OpBits-MidBits) return new SExtInst(Op, CI.getType(), "tmp"); } else { // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign // bits, just truncate to i32. if (NumSignBits > OpBits-MidBits) return new TruncInst(Op, CI.getType(), "tmp"); } } // If the input is a shl/ashr pair of a same constant, then this is a sign // extension from a smaller value. If we could trust arbitrary bitwidth // integers, we could turn this into a truncate to the smaller bit and then // use a sext for the whole extension. Since we don't, look deeper and check // for a truncate. If the source and dest are the same type, eliminate the // trunc and extend and just do shifts. For example, turn: // %a = trunc i32 %i to i8 // %b = shl i8 %a, 6 // %c = ashr i8 %b, 6 // %d = sext i8 %c to i32 // into: // %a = shl i32 %i, 30 // %d = ashr i32 %a, 30 Value *A = 0; ConstantInt *BA = 0, *CA = 0; if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)), m_ConstantInt(CA))) && BA == CA && isa(A)) { Value *I = cast(A)->getOperand(0); if (I->getType() == CI.getType()) { unsigned MidSize = Src->getType()->getPrimitiveSizeInBits(); unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits(); unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV, CI.getName()), CI); return BinaryOperator::CreateAShr(I, ShAmtV); } } return 0; } /// FitsInFPType - Return a Constant* for the specified FP constant if it fits /// in the specified FP type without changing its value. static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { bool losesInfo; APFloat F = CFP->getValueAPF(); (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); if (!losesInfo) return ConstantFP::get(F); return 0; } /// LookThroughFPExtensions - If this is an fp extension instruction, look /// through it until we get the source value. static Value *LookThroughFPExtensions(Value *V) { if (Instruction *I = dyn_cast(V)) if (I->getOpcode() == Instruction::FPExt) return LookThroughFPExtensions(I->getOperand(0)); // If this value is a constant, return the constant in the smallest FP type // that can accurately represent it. This allows us to turn // (float)((double)X+2.0) into x+2.0f. if (ConstantFP *CFP = dyn_cast(V)) { if (CFP->getType() == Type::PPC_FP128Ty) return V; // No constant folding of this. // See if the value can be truncated to float and then reextended. if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) return V; if (CFP->getType() == Type::DoubleTy) return V; // Won't shrink. if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) return V; // Don't try to shrink to various long double types. } return V; } Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { if (Instruction *I = commonCastTransforms(CI)) return I; // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are // smaller than the destination type, we can eliminate the truncate by doing // the add as the smaller type. This applies to add/sub/mul/div as well as // many builtins (sqrt, etc). BinaryOperator *OpI = dyn_cast(CI.getOperand(0)); if (OpI && OpI->hasOneUse()) { switch (OpI->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::FDiv: case Instruction::FRem: const Type *SrcTy = OpI->getType(); Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); if (LHSTrunc->getType() != SrcTy && RHSTrunc->getType() != SrcTy) { unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); // If the source types were both smaller than the destination type of // the cast, do this xform. if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize && RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) { LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc, CI.getType(), CI); RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc, CI.getType(), CI); return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); } } break; } } return 0; } Instruction *InstCombiner::visitFPExt(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { Instruction *OpI = dyn_cast(FI.getOperand(0)); if (OpI == 0) return commonCastTransforms(FI); // fptoui(uitofp(X)) --> X // fptoui(sitofp(X)) --> X // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative // 'X' value would cause an undefined result for the fptoui. if ((isa(OpI) || isa(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */ OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); return commonCastTransforms(FI); } Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { Instruction *OpI = dyn_cast(FI.getOperand(0)); if (OpI == 0) return commonCastTransforms(FI); // fptosi(sitofp(X)) --> X // fptosi(uitofp(X)) --> X // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative // 'X' value would cause an undefined result for the fptoui. if ((isa(OpI) || isa(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getPrimitiveSizeInBits() <= OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); return commonCastTransforms(FI); } Instruction *InstCombiner::visitUIToFP(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitSIToFP(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitPtrToInt(CastInst &CI) { return commonPointerCastTransforms(CI); } Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { if (Instruction *I = commonCastTransforms(CI)) return I; const Type *DestPointee = cast(CI.getType())->getElementType(); if (!DestPointee->isSized()) return 0; // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP. ConstantInt *Cst; Value *X; if (match(CI.getOperand(0), m_Add(m_Cast(m_Value(X)), m_ConstantInt(Cst)))) { // If the source and destination operands have the same type, see if this // is a single-index GEP. if (X->getType() == CI.getType()) { // Get the size of the pointee type. uint64_t Size = TD->getTypePaddedSize(DestPointee); // Convert the constant to intptr type. APInt Offset = Cst->getValue(); Offset.sextOrTrunc(TD->getPointerSizeInBits()); // If Offset is evenly divisible by Size, we can do this xform. if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){ Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size)); return GetElementPtrInst::Create(X, ConstantInt::get(Offset)); } } // TODO: Could handle other cases, e.g. where add is indexing into field of // struct etc. } else if (CI.getOperand(0)->hasOneUse() && match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) { // Otherwise, if this is inttoptr(add x, cst), try to turn this into an // "inttoptr+GEP" instead of "add+intptr". // Get the size of the pointee type. uint64_t Size = TD->getTypePaddedSize(DestPointee); // Convert the constant to intptr type. APInt Offset = Cst->getValue(); Offset.sextOrTrunc(TD->getPointerSizeInBits()); // If Offset is evenly divisible by Size, we can do this xform. if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){ Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size)); Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(), "tmp"), CI); return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp"); } } return 0; } Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { // If the operands are integer typed then apply the integer transforms, // otherwise just apply the common ones. Value *Src = CI.getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI.getType(); if (SrcTy->isInteger() && DestTy->isInteger()) { if (Instruction *Result = commonIntCastTransforms(CI)) return Result; } else if (isa(SrcTy)) { if (Instruction *I = commonPointerCastTransforms(CI)) return I; } else { if (Instruction *Result = commonCastTransforms(CI)) return Result; } // Get rid of casts from one type to the same type. These are useless and can // be replaced by the operand. if (DestTy == Src->getType()) return ReplaceInstUsesWith(CI, Src); if (const PointerType *DstPTy = dyn_cast(DestTy)) { const PointerType *SrcPTy = cast(SrcTy); const Type *DstElTy = DstPTy->getElementType(); const Type *SrcElTy = SrcPTy->getElementType(); // If the address spaces don't match, don't eliminate the bitcast, which is // required for changing types. if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) return 0; // If we are casting a malloc or alloca to a pointer to a type of the same // size, rewrite the allocation instruction to allocate the "right" type. if (AllocationInst *AI = dyn_cast(Src)) if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) return V; // If the source and destination are pointers, and this cast is equivalent // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. // This can enhance SROA and other transforms that want type-safe pointers. Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty); unsigned NumZeros = 0; while (SrcElTy != DstElTy && isa(SrcElTy) && !isa(SrcElTy) && SrcElTy->getNumContainedTypes() /* not "{}" */) { SrcElTy = cast(SrcElTy)->getTypeAtIndex(ZeroUInt); ++NumZeros; } // If we found a path from the src to dest, create the getelementptr now. if (SrcElTy == DstElTy) { SmallVector Idxs(NumZeros+1, ZeroUInt); return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "", ((Instruction*) NULL)); } } if (ShuffleVectorInst *SVI = dyn_cast(Src)) { if (SVI->hasOneUse()) { // Okay, we have (bitconvert (shuffle ..)). Check to see if this is // a bitconvert to a vector with the same # elts. if (isa(DestTy) && cast(DestTy)->getNumElements() == SVI->getType()->getNumElements() && SVI->getType()->getNumElements() == cast(SVI->getOperand(0)->getType())->getNumElements()) { CastInst *Tmp; // If either of the operands is a cast from CI.getType(), then // evaluating the shuffle in the casted destination's type will allow // us to eliminate at least one cast. if (((Tmp = dyn_cast(SVI->getOperand(0))) && Tmp->getOperand(0)->getType() == DestTy) || ((Tmp = dyn_cast(SVI->getOperand(1))) && Tmp->getOperand(0)->getType() == DestTy)) { Value *LHS = InsertCastBefore(Instruction::BitCast, SVI->getOperand(0), DestTy, CI); Value *RHS = InsertCastBefore(Instruction::BitCast, SVI->getOperand(1), DestTy, CI); // Return a new shuffle vector. Use the same element ID's, as we // know the vector types match #elts. return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); } } } } return 0; } /// GetSelectFoldableOperands - We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned GetSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::LShr: case Instruction::AShr: return 1; default: return 0; // Cannot fold } } /// GetSelectFoldableConstant - For the same transformation as the previous /// function, return the identity constant that goes into the select. static Constant *GetSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: assert(0 && "This cannot happen!"); abort(); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return Constant::getNullValue(I->getType()); case Instruction::And: return Constant::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI /// have the same opcode and only one use each. Try to simplify this. Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { if (TI->getNumOperands() == 1) { // If this is a non-volatile load or a cast from the same type, // merge. if (TI->isCast()) { if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) return 0; } else { return 0; // unknown unary op. } // Fold this by inserting a select from the input values. SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0), FI->getOperand(0), SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, TI->getType()); } // Only handle binary operators here. if (!isa(TI)) return 0; // Figure out if the operations have any operands in common. Value *MatchOp, *OtherOpT, *OtherOpF; bool MatchIsOpZero; if (TI->getOperand(0) == FI->getOperand(0)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(1)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; } else if (!TI->isCommutative()) { return 0; } else if (TI->getOperand(0) == FI->getOperand(1)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(0)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else { return 0; } // If we reach here, they do have operations in common. SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT, OtherOpF, SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); if (BinaryOperator *BO = dyn_cast(TI)) { if (MatchIsOpZero) return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); else return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); } assert(0 && "Shouldn't get here"); return 0; } /// visitSelectInstWithICmp - Visit a SelectInst that has an /// ICmpInst as its first operand. /// Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI) { bool Changed = false; ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // Check cases where the comparison is with a constant that // can be adjusted to fit the min/max idiom. We may edit ICI in // place here, so make sure the select is the only user. if (ICI->hasOneUse()) if (ConstantInt *CI = dyn_cast(CmpRHS)) { switch (Pred) { default: break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: { // X < MIN ? T : F --> F if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) return ReplaceInstUsesWith(SI, FalseVal); // X < C ? X : C-1 --> X > C-1 ? C-1 : X Constant *AdjustedRHS = SubOne(CI); if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { Pred = ICmpInst::getSwappedPredicate(Pred); CmpRHS = AdjustedRHS; std::swap(FalseVal, TrueVal); ICI->setPredicate(Pred); ICI->setOperand(1, CmpRHS); SI.setOperand(1, TrueVal); SI.setOperand(2, FalseVal); Changed = true; } break; } case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: { // X > MAX ? T : F --> F if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) return ReplaceInstUsesWith(SI, FalseVal); // X > C ? X : C+1 --> X < C+1 ? C+1 : X Constant *AdjustedRHS = AddOne(CI); if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { Pred = ICmpInst::getSwappedPredicate(Pred); CmpRHS = AdjustedRHS; std::swap(FalseVal, TrueVal); ICI->setPredicate(Pred); ICI->setOperand(1, CmpRHS); SI.setOperand(1, TrueVal); SI.setOperand(2, FalseVal); Changed = true; } break; } } // (x ashr x, 31 -> all ones if signed // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; if (match(TrueVal, m_ConstantInt<-1>()) && match(FalseVal, m_ConstantInt<0>())) Pred = ICI->getPredicate(); else if (match(TrueVal, m_ConstantInt<0>()) && match(FalseVal, m_ConstantInt<-1>())) Pred = CmpInst::getInversePredicate(ICI->getPredicate()); if (Pred != CmpInst::BAD_ICMP_PREDICATE) { // If we are just checking for a icmp eq of a single bit and zext'ing it // to an integer, then shift the bit to the appropriate place and then // cast to integer to avoid the comparison. const APInt &Op1CV = CI->getValue(); // sext (x x>>s31 true if signbit set. // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear. if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) || (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), In->getType()->getPrimitiveSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, In->getName()+".lobit"), *ICI); if (In->getType() != SI.getType()) In = CastInst::CreateIntegerCast(In, SI.getType(), true/*SExt*/, "tmp", ICI); if (Pred == ICmpInst::ICMP_SGT) In = InsertNewInstBefore(BinaryOperator::CreateNot(In, In->getName()+".not"), *ICI); return ReplaceInstUsesWith(SI, In); } } } if (CmpLHS == TrueVal && CmpRHS == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (Pred == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? X : Y -> X if (Pred == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(SI, TrueVal); /// NOTE: if we wanted to, this is where to detect integer MIN/MAX } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) { // Transform (X == Y) ? Y : X -> X if (Pred == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? Y : X -> Y if (Pred == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(SI, TrueVal); /// NOTE: if we wanted to, this is where to detect integer MIN/MAX } /// NOTE: if we wanted to, this is where to detect integer ABS return Changed ? &SI : 0; } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // select true, X, Y -> X // select false, X, Y -> Y if (ConstantInt *C = dyn_cast(CondVal)) return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); // select C, X, X -> X if (TrueVal == FalseVal) return ReplaceInstUsesWith(SI, TrueVal); if (isa(TrueVal)) // select C, undef, X -> X return ReplaceInstUsesWith(SI, FalseVal); if (isa(FalseVal)) // select C, X, undef -> X return ReplaceInstUsesWith(SI, TrueVal); if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return ReplaceInstUsesWith(SI, TrueVal); else return ReplaceInstUsesWith(SI, FalseVal); } if (SI.getType() == Type::Int1Ty) { if (ConstantInt *C = dyn_cast(TrueVal)) { if (C->getZExtValue()) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::CreateOr(CondVal, FalseVal); } else { // Change: A = select B, false, C --> A = and !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::CreateAnd(NotCond, FalseVal); } } else if (ConstantInt *C = dyn_cast(FalseVal)) { if (C->getZExtValue() == false) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::CreateAnd(CondVal, TrueVal); } else { // Change: A = select B, C, true --> A = or !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::CreateOr(NotCond, TrueVal); } } // select a, b, a -> a&b // select a, a, b -> a|b if (CondVal == TrueVal) return BinaryOperator::CreateOr(CondVal, FalseVal); else if (CondVal == FalseVal) return BinaryOperator::CreateAnd(CondVal, TrueVal); } // Selecting between two integer constants? if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { // select C, 1, 0 -> zext C to int if (FalseValC->isZero() && TrueValC->getValue() == 1) { return CastInst::Create(Instruction::ZExt, CondVal, SI.getType()); } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { // select C, 0, 1 -> zext !C to int Value *NotCond = InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, "not."+CondVal->getName()), SI); return CastInst::Create(Instruction::ZExt, NotCond, SI.getType()); } if (ICmpInst *IC = dyn_cast(SI.getCondition())) { // (x ashr x, 31 if (TrueValC->isAllOnesValue() && FalseValC->isZero()) if (ConstantInt *CmpCst = dyn_cast(IC->getOperand(1))) { if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) { // The comparison constant and the result are not neccessarily the // same width. Make an all-ones value by inserting a AShr. Value *X = IC->getOperand(0); uint32_t Bits = X->getType()->getPrimitiveSizeInBits(); Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1); Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X, ShAmt, "ones"); InsertNewInstBefore(SRA, SI); // Then cast to the appropriate width. return CastInst::CreateIntegerCast(SRA, SI.getType(), true); } } // If one of the constants is zero (we know they can't both be) and we // have an icmp instruction with zero, and we have an 'and' with the // non-constant value, eliminate this whole mess. This corresponds to // cases like this: ((X & 27) ? 27 : 0) if (TrueValC->isZero() || FalseValC->isZero()) if (IC->isEquality() && isa(IC->getOperand(1)) && cast(IC->getOperand(1))->isNullValue()) if (Instruction *ICA = dyn_cast(IC->getOperand(0))) if (ICA->getOpcode() == Instruction::And && isa(ICA->getOperand(1)) && (ICA->getOperand(1) == TrueValC || ICA->getOperand(1) == FalseValC) && isOneBitSet(cast(ICA->getOperand(1)))) { // Okay, now we know that everything is set up, we just don't // know whether we have a icmp_ne or icmp_eq and whether the // true or false val is the zero. bool ShouldNotVal = !TrueValC->isZero(); ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; Value *V = ICA; if (ShouldNotVal) V = InsertNewInstBefore(BinaryOperator::Create( Instruction::Xor, V, ICA->getOperand(1)), SI); return ReplaceInstUsesWith(SI, V); } } } // See if we are selecting two values based on a comparison of the two values. if (FCmpInst *FCI = dyn_cast(CondVal)) { if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, FalseVal); } // Transform (X != Y) ? X : Y -> X if (FCI->getPredicate() == FCmpInst::FCMP_ONE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, FalseVal); } // Transform (X != Y) ? Y : X -> Y if (FCI->getPredicate() == FCmpInst::FCMP_ONE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX } // NOTE: if we wanted to, this is where to detect ABS } // See if we are selecting two values based on a comparison of the two values. if (ICmpInst *ICI = dyn_cast(CondVal)) if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) return Result; if (Instruction *TI = dyn_cast(TrueVal)) if (Instruction *FI = dyn_cast(FalseVal)) if (TI->hasOneUse() && FI->hasOneUse()) { Instruction *AddOp = 0, *SubOp = 0; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) if (TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) return IV; // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is // even legal for FP. if (TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) { AddOp = FI; SubOp = TI; } else if (FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = 0; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (Constant *C = dyn_cast(SubOp->getOperand(1))) { NegVal = ConstantExpr::getNeg(C); } else { NegVal = InsertNewInstBefore( BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Instruction *NewSel = SelectInst::Create(CondVal, NewTrueOp, NewFalseOp, SI.getName() + ".p"); NewSel = InsertNewInstBefore(NewSel, SI); return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); } } } // See if we can fold the select into one of our operands. if (SI.getType()->isInteger()) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast(TrueVal)) if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa(FalseVal)) if (unsigned SFO = GetSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(TVI); Instruction *NewSel = SelectInst::Create(SI.getCondition(), TVI->getOperand(2-OpToFold), C); InsertNewInstBefore(NewSel, SI); NewSel->takeName(TVI); if (BinaryOperator *BO = dyn_cast(TVI)) return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } if (Instruction *FVI = dyn_cast(FalseVal)) if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa(TrueVal)) if (unsigned SFO = GetSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(FVI); Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, FVI->getOperand(2-OpToFold)); InsertNewInstBefore(NewSel, SI); NewSel->takeName(FVI); if (BinaryOperator *BO = dyn_cast(FVI)) return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel); else assert(0 && "Unknown instruction!!"); } } } if (BinaryOperator::isNot(CondVal)) { SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); SI.setOperand(1, FalseVal); SI.setOperand(2, TrueVal); return &SI; } return 0; } /// EnforceKnownAlignment - If the specified pointer points to an object that /// we control, modify the object's alignment to PrefAlign. This isn't /// often possible though. If alignment is important, a more reliable approach /// is to simply align all global variables and allocation instructions to /// their preferred alignment from the beginning. /// static unsigned EnforceKnownAlignment(Value *V, unsigned Align, unsigned PrefAlign) { User *U = dyn_cast(V); if (!U) return Align; switch (getOpcode(U)) { default: break; case Instruction::BitCast: return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); case Instruction::GetElementPtr: { // If all indexes are zero, it is just the alignment of the base pointer. bool AllZeroOperands = true; for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) if (!isa(*i) || !cast(*i)->isNullValue()) { AllZeroOperands = false; break; } if (AllZeroOperands) { // Treat this like a bitcast. return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); } break; } } if (GlobalValue *GV = dyn_cast(V)) { // If there is a large requested alignment and we can, bump up the alignment // of the global. if (!GV->isDeclaration()) { if (GV->getAlignment() >= PrefAlign) Align = GV->getAlignment(); else { GV->setAlignment(PrefAlign); Align = PrefAlign; } } } else if (AllocationInst *AI = dyn_cast(V)) { // If there is a requested alignment and if this is an alloca, round up. We // don't do this for malloc, because some systems can't respect the request. if (isa(AI)) { if (AI->getAlignment() >= PrefAlign) Align = AI->getAlignment(); else { AI->setAlignment(PrefAlign); Align = PrefAlign; } } } return Align; } /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that /// we can determine, return it, otherwise return 0. If PrefAlign is specified, /// and it is more than the alignment of the ultimate object, see if we can /// increase the alignment of the ultimate object, making this check succeed. unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, unsigned PrefAlign) { unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : sizeof(PrefAlign) * CHAR_BIT; APInt Mask = APInt::getAllOnesValue(BitWidth); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(V, Mask, KnownZero, KnownOne); unsigned TrailZ = KnownZero.countTrailingOnes(); unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); if (PrefAlign > Align) Align = EnforceKnownAlignment(V, Align, PrefAlign); // We don't need to make any adjustment. return Align; } Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); unsigned MinAlign = std::min(DstAlign, SrcAlign); unsigned CopyAlign = MI->getAlignment()->getZExtValue(); if (CopyAlign < MinAlign) { MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign)); return MI; } // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with // load/store. ConstantInt *MemOpLength = dyn_cast(MI->getOperand(3)); if (MemOpLength == 0) return 0; // Source and destination pointer types are always "i8*" for intrinsic. See // if the size is something we can handle with a single primitive load/store. // A single load+store correctly handles overlapping memory in the memmove // case. unsigned Size = MemOpLength->getZExtValue(); if (Size == 0) return MI; // Delete this mem transfer. if (Size > 8 || (Size&(Size-1))) return 0; // If not 1/2/4/8 bytes, exit. // Use an integer load+store unless we can find something better. Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3)); // Memcpy forces the use of i8* for the source and destination. That means // that if you're using memcpy to move one double around, you'll get a cast // from double* to i8*. We'd much rather use a double load+store rather than // an i64 load+store, here because this improves the odds that the source or // dest address will be promotable. See if we can find a better type than the // integer datatype. if (Value *Op = getBitCastOperand(MI->getOperand(1))) { const Type *SrcETy = cast(Op->getType())->getElementType(); if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { // The SrcETy might be something like {{{double}}} or [1 x double]. Rip // down through these levels if so. while (!SrcETy->isSingleValueType()) { if (const StructType *STy = dyn_cast(SrcETy)) { if (STy->getNumElements() == 1) SrcETy = STy->getElementType(0); else break; } else if (const ArrayType *ATy = dyn_cast(SrcETy)) { if (ATy->getNumElements() == 1) SrcETy = ATy->getElementType(); else break; } else break; } if (SrcETy->isSingleValueType()) NewPtrTy = PointerType::getUnqual(SrcETy); } } // If the memcpy/memmove provides better alignment info than we can // infer, use it. SrcAlign = std::max(SrcAlign, CopyAlign); DstAlign = std::max(DstAlign, CopyAlign); Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI); Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI); Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); InsertNewInstBefore(L, *MI); InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); return MI; } Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); if (MI->getAlignment()->getZExtValue() < Alignment) { MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment)); return MI; } // Extract the length and alignment and fill if they are constant. ConstantInt *LenC = dyn_cast(MI->getLength()); ConstantInt *FillC = dyn_cast(MI->getValue()); if (!LenC || !FillC || FillC->getType() != Type::Int8Ty) return 0; uint64_t Len = LenC->getZExtValue(); Alignment = MI->getAlignment()->getZExtValue(); // If the length is zero, this is a no-op if (Len == 0) return MI; // memset(d,c,0,a) -> noop // memset(s,c,n) -> store s, c (for n=1,2,4,8) if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8. Value *Dest = MI->getDest(); Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI); // Alignment 0 is identity for alignment 1 for memset, but not store. if (Alignment == 0) Alignment = 1; // Extract the fill value and store. uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false, Alignment), *MI); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(LenC->getType())); return MI; } return 0; } /// visitCallInst - CallInst simplification. This mostly only handles folding /// of intrinsic instructions. For normal calls, it allows visitCallSite to do /// the heavy lifting. /// Instruction *InstCombiner::visitCallInst(CallInst &CI) { IntrinsicInst *II = dyn_cast(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast(MI)) { if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getParent()->getParent()->getParent(); Intrinsic::ID MemCpyID = Intrinsic::memcpy; const Type *Tys[1]; Tys[0] = CI.getOperand(3)->getType(); CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); Changed = true; } // memmove(x,x,size) -> noop. if (MMI->getSource() == MMI->getDest()) return EraseInstFromFunction(CI); } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (isa(MI) || isa(MI)) { if (Instruction *I = SimplifyMemTransfer(MI)) return I; } else if (MemSetInst *MSI = dyn_cast(MI)) { if (Instruction *I = SimplifyMemSet(MSI)) return I; } if (Changed) return II; } switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: // bswap(bswap(x)) -> x if (IntrinsicInst *Operand = dyn_cast(II->getOperand(1))) if (Operand->getIntrinsicID() == Intrinsic::bswap) return ReplaceInstUsesWith(CI, Operand->getOperand(1)); break; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: case Intrinsic::x86_sse_loadu_ps: case Intrinsic::x86_sse2_loadu_pd: case Intrinsic::x86_sse2_loadu_dq: // Turn PPC lvx -> load if the pointer is known aligned. // Turn X86 loadups -> load if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { Value *Ptr = InsertBitCastBefore(II->getOperand(1), PointerType::getUnqual(II->getType()), CI); return new LoadInst(Ptr); } break; case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { const Type *OpPtrTy = PointerType::getUnqual(II->getOperand(1)->getType()); Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI); return new StoreInst(II->getOperand(1), Ptr); } break; case Intrinsic::x86_sse_storeu_ps: case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: // Turn X86 storeu -> store if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { const Type *OpPtrTy = PointerType::getUnqual(II->getOperand(2)->getType()); Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI); return new StoreInst(II->getOperand(2), Ptr); } break; case Intrinsic::x86_sse_cvttss2si: { // These intrinsics only demands the 0th element of its input vector. If // we can simplify the input based on that, do so now. unsigned VWidth = cast(II->getOperand(1)->getType())->getNumElements(); APInt DemandedElts(VWidth, 1); APInt UndefElts(VWidth, 0); if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, UndefElts)) { II->setOperand(1, V); return II; } break; } case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. if (ConstantVector *Mask = dyn_cast(II->getOperand(3))) { assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { if (!isa(Mask->getOperand(i)) && !isa(Mask->getOperand(i))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI); Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa(Mask->getOperand(i))) continue; unsigned Idx=cast(Mask->getOperand(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (ExtractedElts[Idx] == 0) { Instruction *Elt = new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp"); InsertNewInstBefore(Elt, CI); ExtractedElts[Idx] = Elt; } // Insert this value into the result vector. Result = InsertElementInst::Create(Result, ExtractedElts[Idx], i, "tmp"); InsertNewInstBefore(cast(Result), CI); } return CastInst::Create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast(II->getOperand(1))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { BasicBlock::iterator BI = SS; if (&*++BI == II) return EraseInstFromFunction(CI); } } // Scan down this block to see if there is another stack restore in the // same block without an intervening call/alloca. BasicBlock::iterator BI = II; TerminatorInst *TI = II->getParent()->getTerminator(); bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa(BI)) { CannotRemove = true; break; } if (CallInst *BCI = dyn_cast(BI)) { if (IntrinsicInst *II = dyn_cast(BCI)) { // If there is a stackrestore below this one, remove this one. if (II->getIntrinsicID() == Intrinsic::stackrestore) return EraseInstFromFunction(CI); // Otherwise, ignore the intrinsic. } else { // If we found a non-intrinsic call, we can't remove the stack // restore. CannotRemove = true; break; } } } // If the stack restore is in a return/unwind block and if there are no // allocas or calls between the restore and the return, nuke the restore. if (!CannotRemove && (isa(TI) || isa(TI))) return EraseInstFromFunction(CI); break; } } return visitCallSite(II); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } /// isSafeToEliminateVarargsCast - If this cast does not affect the value /// passed through the varargs area, we can eliminate the use of the cast. static bool isSafeToEliminateVarargsCast(const CallSite CS, const CastInst * const CI, const TargetData * const TD, const int ix) { if (!CI->isLosslessCast()) return false; // The size of ByVal arguments is derived from the type, so we // can't change to a type with a different size. If the size were // passed explicitly we could avoid this check. if (!CS.paramHasAttr(ix, Attribute::ByVal)) return true; const Type* SrcTy = cast(CI->getOperand(0)->getType())->getElementType(); const Type* DstTy = cast(CI->getType())->getElementType(); if (!SrcTy->isSized() || !DstTy->isSized()) return false; if (TD->getTypePaddedSize(SrcTy) != TD->getTypePaddedSize(DstTy)) return false; return true; } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { bool Changed = false; // If the callee is a constexpr cast of a function, attempt to move the cast // to the arguments of the call/invoke. if (transformConstExprCastCall(CS)) return 0; Value *Callee = CS.getCalledValue(); if (Function *CalleeF = dyn_cast(Callee)) if (CalleeF->getCallingConv() != CS.getCallingConv()) { Instruction *OldCall = CS.getInstruction(); // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), OldCall); if (!OldCall->use_empty()) OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); if (isa(OldCall)) // Not worth removing an invoke here. return EraseInstFromFunction(*OldCall); return 0; } if (isa(Callee) || isa(Callee)) { // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), CS.getInstruction()); if (!CS.getInstruction()->use_empty()) CS.getInstruction()-> replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); if (InvokeInst *II = dyn_cast(CS.getInstruction())) { // Don't break the CFG, insert a dummy cond branch. BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), ConstantInt::getTrue(), II); } return EraseInstFromFunction(*CS.getInstruction()); } if (BitCastInst *BC = dyn_cast(Callee)) if (IntrinsicInst *In = dyn_cast(BC->getOperand(0))) if (In->getIntrinsicID() == Intrinsic::init_trampoline) return transformCallThroughTrampoline(CS); const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { int ix = FTy->getNumParams() + (isa(Callee) ? 3 : 1); // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), E = CS.arg_end(); I != E; ++I, ++ix) { CastInst *CI = dyn_cast(*I); if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { *I = CI->getOperand(0); Changed = true; } } } if (isa(Callee) && !CS.doesNotThrow()) { // Inline asm calls cannot throw - mark them 'nounwind'. CS.setDoesNotThrow(); Changed = true; } return Changed ? CS.getInstruction() : 0; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { if (!isa(CS.getCalledValue())) return false; ConstantExpr *CE = cast(CS.getCalledValue()); if (CE->getOpcode() != Instruction::BitCast || !isa(CE->getOperand(0))) return false; Function *Callee = cast(CE->getOperand(0)); Instruction *Caller = CS.getInstruction(); const AttrListPtr &CallerPAL = CS.getAttributes(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // const FunctionType *FT = Callee->getFunctionType(); const Type *OldRetTy = Caller->getType(); const Type *NewRetTy = FT->getReturnType(); if (isa(NewRetTy)) return false; // TODO: Handle multiple return values. // Check to see if we are changing the return type... if (OldRetTy != NewRetTy) { if (Callee->isDeclaration() && // Conversion is ok if changing from one pointer type to another or from // a pointer to an integer of the same size. !((isa(OldRetTy) || OldRetTy == TD->getIntPtrType()) && (isa(NewRetTy) || NewRetTy == TD->getIntPtrType()))) return false; // Cannot transform this return value. if (!Caller->use_empty() && // void -> non-void is handled specially NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy)) return false; // Cannot transform this return value. if (!CallerPAL.isEmpty() && !Caller->use_empty()) { Attributes RAttrs = CallerPAL.getRetAttributes(); if (RAttrs & Attribute::typeIncompatible(NewRetTy)) return false; // Attribute not compatible with transformed value. } // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast(Caller)) for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); UI != E; ++UI) if (PHINode *PN = dyn_cast(*UI)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); const Type *ActTy = (*AI)->getType(); if (!CastInst::isCastable(ActTy, ParamTy)) return false; // Cannot transform this parameter value. if (CallerPAL.getParamAttributes(i + 1) & Attribute::typeIncompatible(ParamTy)) return false; // Attribute not compatible with transformed value. // Converting from one pointer type to another or between a pointer and an // integer of the same size is safe even if we do not have a body. bool isConvertible = ActTy == ParamTy || ((isa(ParamTy) || ParamTy == TD->getIntPtrType()) && (isa(ActTy) || ActTy == TD->getIntPtrType())); if (Callee->isDeclaration() && !isConvertible) return false; } if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && Callee->isDeclaration()) return false; // Do not delete arguments unless we have a function body. if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && !CallerPAL.isEmpty()) // In this case we have more arguments than the new function type, but we // won't be dropping them. Check that these extra arguments have attributes // that are compatible with being a vararg call argument. for (unsigned i = CallerPAL.getNumSlots(); i; --i) { if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) break; Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; if (PAttrs & Attribute::VarArgsIncompatible) return false; } // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary... std::vector Args; Args.reserve(NumActualArgs); SmallVector attrVec; attrVec.reserve(NumCommonArgs); // Get any return attributes. Attributes RAttrs = CallerPAL.getRetAttributes(); // If the return value is not being used, the type may not be compatible // with the existing attributes. Wipe out any problematic attributes. RAttrs &= ~Attribute::typeIncompatible(NewRetTy); // Add the new return attributes. if (RAttrs) attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, ParamTy, false); CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp"); Args.push_back(InsertNewInstBefore(NewCast, *Caller)); } // Add any parameter attributes. if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); } // If the function takes more arguments than the call was taking, add them // now... for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning... if (FT->getNumParams() < NumActualArgs) { if (!FT->isVarArg()) { cerr << "WARNING: While resolving call to function '" << Callee->getName() << "' arguments were dropped!\n"; } else { // Add all of the arguments in their promoted form to the arg list... for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { const Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp"); InsertNewInstBefore(Cast, *Caller); Args.push_back(Cast); } else { Args.push_back(*AI); } // Add any parameter attributes. if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); } } } if (Attributes FnAttrs = CallerPAL.getFnAttributes()) attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); if (NewRetTy == Type::VoidTy) Caller->setName(""); // Void type should not have a name. const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end()); Instruction *NC; if (InvokeInst *II = dyn_cast(Caller)) { NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), Args.begin(), Args.end(), Caller->getName(), Caller); cast(NC)->setCallingConv(II->getCallingConv()); cast(NC)->setAttributes(NewCallerPAL); } else { NC = CallInst::Create(Callee, Args.begin(), Args.end(), Caller->getName(), Caller); CallInst *CI = cast(Caller); if (CI->isTailCall()) cast(NC)->setTailCall(); cast(NC)->setCallingConv(CI->getCallingConv()); cast(NC)->setAttributes(NewCallerPAL); } // Insert a cast of the return type as necessary. Value *NV = NC; if (OldRetTy != NV->getType() && !Caller->use_empty()) { if (NV->getType() != Type::VoidTy) { Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, OldRetTy, false); NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call instr InsertNewInstBefore(NC, *Caller); } AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NV); Caller->eraseFromParent(); RemoveFromWorkList(Caller); return true; } // transformCallThroughTrampoline - Turn a call to a function created by the // init_trampoline intrinsic into a direct call to the underlying function. // Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { Value *Callee = CS.getCalledValue(); const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); const AttrListPtr &Attrs = CS.getAttributes(); // If the call already has the 'nest' attribute somewhere then give up - // otherwise 'nest' would occur twice after splicing in the chain. if (Attrs.hasAttrSomewhere(Attribute::Nest)) return 0; IntrinsicInst *Tramp = cast(cast(Callee)->getOperand(0)); Function *NestF = cast(Tramp->getOperand(2)->stripPointerCasts()); const PointerType *NestFPTy = cast(NestF->getType()); const FunctionType *NestFTy = cast(NestFPTy->getElementType()); const AttrListPtr &NestAttrs = NestF->getAttributes(); if (!NestAttrs.isEmpty()) { unsigned NestIdx = 1; const Type *NestTy = 0; Attributes NestAttr = Attribute::None; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestIdx, ++I) if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = NestAttrs.getParamAttributes(NestIdx); break; } if (NestTy) { Instruction *Caller = CS.getInstruction(); std::vector NewArgs; NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); SmallVector NewAttrs; NewAttrs.reserve(Attrs.getNumSlots() + 1); // Insert the nest argument into the call argument list, which may // mean appending it. Likewise for attributes. // Add any result attributes. if (Attributes Attr = Attrs.getRetAttributes()) NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); { unsigned Idx = 1; CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); do { if (Idx == NestIdx) { // Add the chain argument and attributes. Value *NestVal = Tramp->getOperand(3); if (NestVal->getType() != NestTy) NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); NewArgs.push_back(NestVal); NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); } if (I == E) break; // Add the original argument and attributes. NewArgs.push_back(*I); if (Attributes Attr = Attrs.getParamAttributes(Idx)) NewAttrs.push_back (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); ++Idx, ++I; } while (1); } // Add any function attributes. if (Attributes Attr = Attrs.getFnAttributes()) NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. std::vector NewTypes; NewTypes.reserve(FTy->getNumParams()+1); // Insert the chain's type into the list of parameter types, which may // mean appending it. { unsigned Idx = 1; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (Idx == NestIdx) // Add the chain's type. NewTypes.push_back(NestTy); if (I == E) break; // Add the original type. NewTypes.push_back(*I); ++Idx, ++I; } while (1); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end()); Instruction *NewCaller; if (InvokeInst *II = dyn_cast(Caller)) { NewCaller = InvokeInst::Create(NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs.begin(), NewArgs.end(), Caller->getName(), Caller); cast(NewCaller)->setCallingConv(II->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } else { NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), Caller->getName(), Caller); if (cast(Caller)->isTailCall()) cast(NewCaller)->setTailCall(); cast(NewCaller)-> setCallingConv(cast(Caller)->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NewCaller); Caller->eraseFromParent(); RemoveFromWorkList(Caller); return 0; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); CS.setCalledFunction(NewCallee); return CS.getInstruction(); } /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)] /// and if a/b/c/d and the add's all have a single use, turn this into two phi's /// and a single binop. Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); assert(isa(FirstInst) || isa(FirstInst)); unsigned Opc = FirstInst->getOpcode(); Value *LHSVal = FirstInst->getOperand(0); Value *RHSVal = FirstInst->getOperand(1); const Type *LHSType = LHSVal->getType(); const Type *RHSType = RHSVal->getType(); // Scan to see if all operands are the same opcode, all have one use, and all // kill their operands (i.e. the operands have one use). for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { Instruction *I = dyn_cast(PN.getIncomingValue(i)); if (!I || I->getOpcode() != Opc || !I->hasOneUse() || // Verify type of the LHS matches so we don't fold cmp's of different // types or GEP's with different index types. I->getOperand(0)->getType() != LHSType || I->getOperand(1)->getType() != RHSType) return 0; // If they are CmpInst instructions, check their predicates if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) if (cast(I)->getPredicate() != cast(FirstInst)->getPredicate()) return 0; // Keep track of which operand needs a phi node. if (I->getOperand(0) != LHSVal) LHSVal = 0; if (I->getOperand(1) != RHSVal) RHSVal = 0; } // Otherwise, this is safe to transform! Value *InLHS = FirstInst->getOperand(0); Value *InRHS = FirstInst->getOperand(1); PHINode *NewLHS = 0, *NewRHS = 0; if (LHSVal == 0) { NewLHS = PHINode::Create(LHSType, FirstInst->getOperand(0)->getName() + ".pn"); NewLHS->reserveOperandSpace(PN.getNumOperands()/2); NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewLHS, PN); LHSVal = NewLHS; } if (RHSVal == 0) { NewRHS = PHINode::Create(RHSType, FirstInst->getOperand(1)->getName() + ".pn"); NewRHS->reserveOperandSpace(PN.getNumOperands()/2); NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewRHS, PN); RHSVal = NewRHS; } // Add all operands to the new PHIs. if (NewLHS || NewRHS) { for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { Instruction *InInst = cast(PN.getIncomingValue(i)); if (NewLHS) { Value *NewInLHS = InInst->getOperand(0); NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); } if (NewRHS) { Value *NewInRHS = InInst->getOperand(1); NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); } } } if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); CmpInst *CIOp = cast(FirstInst); return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, RHSVal); } Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { GetElementPtrInst *FirstInst =cast(PN.getIncomingValue(0)); SmallVector FixedOperands(FirstInst->op_begin(), FirstInst->op_end()); // This is true if all GEP bases are allocas and if all indices into them are // constants. bool AllBasePointersAreAllocas = true; // Scan to see if all operands are the same opcode, all have one use, and all // kill their operands (i.e. the operands have one use). for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { GetElementPtrInst *GEP= dyn_cast(PN.getIncomingValue(i)); if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || GEP->getNumOperands() != FirstInst->getNumOperands()) return 0; // Keep track of whether or not all GEPs are of alloca pointers. if (AllBasePointersAreAllocas && (!isa(GEP->getOperand(0)) || !GEP->hasAllConstantIndices())) AllBasePointersAreAllocas = false; // Compare the operand lists. for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { if (FirstInst->getOperand(op) == GEP->getOperand(op)) continue; // Don't merge two GEPs when two operands differ (introducing phi nodes) // if one of the PHIs has a constant for the index. The index may be // substantially cheaper to compute for the constants, so making it a // variable index could pessimize the path. This also handles the case // for struct indices, which must always be constant. if (isa(FirstInst->getOperand(op)) || isa(GEP->getOperand(op))) return 0; if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) return 0; FixedOperands[op] = 0; // Needs a PHI. } } // If all of the base pointers of the PHI'd GEPs are from allocas, don't // bother doing this transformation. At best, this will just save a bit of // offset calculation, but all the predecessors will have to materialize the // stack address into a register anyway. We'd actually rather *clone* the // load up into the predecessors so that we have a load of a gep of an alloca, // which can usually all be folded into the load. if (AllBasePointersAreAllocas) return 0; // Otherwise, this is safe to transform. Insert PHI nodes for each operand // that is variable. SmallVector OperandPhis(FixedOperands.size()); bool HasAnyPHIs = false; for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { if (FixedOperands[i]) continue; // operand doesn't need a phi. Value *FirstOp = FirstInst->getOperand(i); PHINode *NewPN = PHINode::Create(FirstOp->getType(), FirstOp->getName()+".pn"); InsertNewInstBefore(NewPN, PN); NewPN->reserveOperandSpace(e); NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); OperandPhis[i] = NewPN; FixedOperands[i] = NewPN; HasAnyPHIs = true; } // Add all operands to the new PHIs. if (HasAnyPHIs) { for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { GetElementPtrInst *InGEP =cast(PN.getIncomingValue(i)); BasicBlock *InBB = PN.getIncomingBlock(i); for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) if (PHINode *OpPhi = OperandPhis[op]) OpPhi->addIncoming(InGEP->getOperand(op), InBB); } } Value *Base = FixedOperands[0]; return GetElementPtrInst::Create(Base, FixedOperands.begin()+1, FixedOperands.end()); } /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to /// sink the load out of the block that defines it. This means that it must be /// obvious the value of the load is not changed from the point of the load to /// the end of the block it is in. /// /// Finally, it is safe, but not profitable, to sink a load targetting a /// non-address-taken alloca. Doing so will cause us to not promote the alloca /// to a register. static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { BasicBlock::iterator BBI = L, E = L->getParent()->end(); for (++BBI; BBI != E; ++BBI) if (BBI->mayWriteToMemory()) return false; // Check for non-address taken alloca. If not address-taken already, it isn't // profitable to do this xform. if (AllocaInst *AI = dyn_cast(L->getOperand(0))) { bool isAddressTaken = false; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) { if (isa(UI)) continue; if (StoreInst *SI = dyn_cast(*UI)) { // If storing TO the alloca, then the address isn't taken. if (SI->getOperand(1) == AI) continue; } isAddressTaken = true; break; } if (!isAddressTaken && AI->isStaticAlloca()) return false; } // If this load is a load from a GEP with a constant offset from an alloca, // then we don't want to sink it. In its present form, it will be // load [constant stack offset]. Sinking it will cause us to have to // materialize the stack addresses in each predecessor in a register only to // do a shared load from register in the successor. if (GetElementPtrInst *GEP = dyn_cast(L->getOperand(0))) if (AllocaInst *AI = dyn_cast(GEP->getOperand(0))) if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) return false; return true; } // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); // Scan the instruction, looking for input operations that can be folded away. // If all input operands to the phi are the same instruction (e.g. a cast from // the same type or "+42") we can pull the operation through the PHI, reducing // code size and simplifying code. Constant *ConstantOp = 0; const Type *CastSrcTy = 0; bool isVolatile = false; if (isa(FirstInst)) { CastSrcTy = FirstInst->getOperand(0)->getType(); } else if (isa(FirstInst) || isa(FirstInst)) { // Can fold binop, compare or shift here if the RHS is a constant, // otherwise call FoldPHIArgBinOpIntoPHI. ConstantOp = dyn_cast(FirstInst->getOperand(1)); if (ConstantOp == 0) return FoldPHIArgBinOpIntoPHI(PN); } else if (LoadInst *LI = dyn_cast(FirstInst)) { isVolatile = LI->isVolatile(); // We can't sink the load if the loaded value could be modified between the // load and the PHI. if (LI->getParent() != PN.getIncomingBlock(0) || !isSafeAndProfitableToSinkLoad(LI)) return 0; // If the PHI is of volatile loads and the load block has multiple // successors, sinking it would remove a load of the volatile value from // the path through the other successor. if (isVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) return 0; } else if (isa(FirstInst)) { return FoldPHIArgGEPIntoPHI(PN); } else { return 0; // Cannot fold this operation. } // Check to see if all arguments are the same operation. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isa(PN.getIncomingValue(i))) return 0; Instruction *I = cast(PN.getIncomingValue(i)); if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst)) return 0; if (CastSrcTy) { if (I->getOperand(0)->getType() != CastSrcTy) return 0; // Cast operation must match. } else if (LoadInst *LI = dyn_cast(I)) { // We can't sink the load if the loaded value could be modified between // the load and the PHI. if (LI->isVolatile() != isVolatile || LI->getParent() != PN.getIncomingBlock(i) || !isSafeAndProfitableToSinkLoad(LI)) return 0; // If the PHI is of volatile loads and the load block has multiple // successors, sinking it would remove a load of the volatile value from // the path through the other successor. if (isVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) return 0; } else if (I->getOperand(1) != ConstantOp) { return 0; } } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), PN.getName()+".in"); NewPN->reserveOperandSpace(PN.getNumOperands()/2); Value *InVal = FirstInst->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); // Add all operands to the new PHI. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { Value *NewInVal = cast(PN.getIncomingValue(i))->getOperand(0); if (NewInVal != InVal) InVal = 0; NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); } Value *PhiVal; if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. PhiVal = InVal; delete NewPN; } else { InsertNewInstBefore(NewPN, PN); PhiVal = NewPN; } // Insert and return the new operation. if (CastInst* FirstCI = dyn_cast(FirstInst)) return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); if (CmpInst *CIOp = dyn_cast(FirstInst)) return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), PhiVal, ConstantOp); assert(isa(FirstInst) && "Unknown operation"); // If this was a volatile load that we are merging, make sure to loop through // and mark all the input loads as non-volatile. If we don't do this, we will // insert a new volatile load and the old ones will not be deletable. if (isVolatile) for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) cast(PN.getIncomingValue(i))->setVolatile(false); return new LoadInst(PhiVal, "", isVolatile); } /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle /// that is dead. static bool DeadPHICycle(PHINode *PN, SmallPtrSet &PotentiallyDeadPHIs) { if (PN->use_empty()) return true; if (!PN->hasOneUse()) return false; // Remember this node, and if we find the cycle, return. if (!PotentiallyDeadPHIs.insert(PN)) return true; // Don't scan crazily complex things. if (PotentiallyDeadPHIs.size() == 16) return false; if (PHINode *PU = dyn_cast(PN->use_back())) return DeadPHICycle(PU, PotentiallyDeadPHIs); return false; } /// PHIsEqualValue - Return true if this phi node is always equal to /// NonPhiInVal. This happens with mutually cyclic phi nodes like: /// z = some value; x = phi (y, z); y = phi (x, z) static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, SmallPtrSet &ValueEqualPHIs) { // See if we already saw this PHI node. if (!ValueEqualPHIs.insert(PN)) return true; // Don't scan crazily complex things. if (ValueEqualPHIs.size() == 16) return false; // Scan the operands to see if they are either phi nodes or are equal to // the value. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Op = PN->getIncomingValue(i); if (PHINode *OpPN = dyn_cast(Op)) { if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) return false; } else if (Op != NonPhiInVal) return false; } return true; } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode &PN) { // If LCSSA is around, don't mess with Phi nodes if (MustPreserveLCSSA) return 0; if (Value *V = PN.hasConstantValue()) return ReplaceInstUsesWith(PN, V); // If all PHI operands are the same operation, pull them through the PHI, // reducing code size. if (isa(PN.getIncomingValue(0)) && isa(PN.getIncomingValue(1)) && cast(PN.getIncomingValue(0))->getOpcode() == cast(PN.getIncomingValue(1))->getOpcode() && // FIXME: The hasOneUse check will fail for PHIs that use the value more // than themselves more than once. PN.getIncomingValue(0)->hasOneUse()) if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) return Result; // If this is a trivial cycle in the PHI node graph, remove it. Basically, if // this PHI only has a single use (a PHI), and if that PHI only has one use (a // PHI)... break the cycle. if (PN.hasOneUse()) { Instruction *PHIUser = cast(PN.use_back()); if (PHINode *PU = dyn_cast(PHIUser)) { SmallPtrSet PotentiallyDeadPHIs; PotentiallyDeadPHIs.insert(&PN); if (DeadPHICycle(PU, PotentiallyDeadPHIs)) return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); } // If this phi has a single use, and if that use just computes a value for // the next iteration of a loop, delete the phi. This occurs with unused // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this // common case here is good because the only other things that catch this // are induction variable analysis (sometimes) and ADCE, which is only run // late. if (PHIUser->hasOneUse() && (isa(PHIUser) || isa(PHIUser)) && PHIUser->use_back() == &PN) { return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); } } // We sometimes end up with phi cycles that non-obviously end up being the // same value, for example: // z = some value; x = phi (y, z); y = phi (x, z) // where the phi nodes don't necessarily need to be in the same block. Do a // quick check to see if the PHI node only contains a single non-phi value, if // so, scan to see if the phi cycle is actually equal to that value. { unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); // Scan for the first non-phi operand. while (InValNo != NumOperandVals && isa(PN.getIncomingValue(InValNo))) ++InValNo; if (InValNo != NumOperandVals) { Value *NonPhiInVal = PN.getOperand(InValNo); // Scan the rest of the operands to see if there are any conflicts, if so // there is no need to recursively scan other phis. for (++InValNo; InValNo != NumOperandVals; ++InValNo) { Value *OpVal = PN.getIncomingValue(InValNo); if (OpVal != NonPhiInVal && !isa(OpVal)) break; } // If we scanned over all operands, then we have one unique value plus // phi values. Scan PHI nodes to see if they all merge in each other or // the value. if (InValNo == NumOperandVals) { SmallPtrSet ValueEqualPHIs; if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) return ReplaceInstUsesWith(PN, NonPhiInVal); } } } return 0; } static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy, Instruction *InsertPoint, InstCombiner *IC) { unsigned PtrSize = DTy->getPrimitiveSizeInBits(); unsigned VTySize = V->getType()->getPrimitiveSizeInBits(); // We must cast correctly to the pointer type. Ensure that we // sign extend the integer value if it is smaller as this is // used for address computation. Instruction::CastOps opcode = (VTySize < PtrSize ? Instruction::SExt : (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc)); return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint); } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); // Is it 'getelementptr %P, i32 0' or 'getelementptr %P' // If so, eliminate the noop. if (GEP.getNumOperands() == 1) return ReplaceInstUsesWith(GEP, PtrOp); if (isa(GEP.getOperand(0))) return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); bool HasZeroPointerIndex = false; if (Constant *C = dyn_cast(GEP.getOperand(1))) HasZeroPointerIndex = C->isNullValue(); if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) return ReplaceInstUsesWith(GEP, PtrOp); // Eliminate unneeded casts for indices. bool MadeChange = false; gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end(); i != e; ++i, ++GTI) { if (isa(*GTI)) { if (CastInst *CI = dyn_cast(*i)) { if (CI->getOpcode() == Instruction::ZExt || CI->getOpcode() == Instruction::SExt) { const Type *SrcTy = CI->getOperand(0)->getType(); // We can eliminate a cast from i32 to i64 iff the target // is a 32-bit pointer target. if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { MadeChange = true; *i = CI->getOperand(0); } } } // If we are using a wider index than needed for this platform, shrink it // to what we need. If narrower, sign-extend it to what we need. // If the incoming value needs a cast instruction, // insert it. This explicit cast can make subsequent optimizations more // obvious. Value *Op = *i; if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) { if (Constant *C = dyn_cast(Op)) { *i = ConstantExpr::getTrunc(C, TD->getIntPtrType()); MadeChange = true; } else { Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(), GEP); *i = Op; MadeChange = true; } } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) { if (Constant *C = dyn_cast(Op)) { *i = ConstantExpr::getSExt(C, TD->getIntPtrType()); MadeChange = true; } else { Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(), GEP); *i = Op; MadeChange = true; } } } } if (MadeChange) return &GEP; // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // SmallVector SrcGEPOperands; if (User *Src = dyn_castGetElementPtr(PtrOp)) SrcGEPOperands.append(Src->op_begin(), Src->op_end()); if (!SrcGEPOperands.empty()) { // Note that if our source is a gep chain itself that we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. // if (isa(SrcGEPOperands[0]) && cast(SrcGEPOperands[0])->getNumOperands() == 2) return 0; // Wait until our source is folded to completion. SmallVector Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*cast(PtrOp)), E = gep_type_end(*cast(PtrOp)); I != E; ++I) EndsWithSequential = !isa(*I); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... // Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); if (SO1 == Constant::getNullValue(SO1->getType())) { Sum = GO1; } else if (GO1 == Constant::getNullValue(GO1->getType())) { Sum = SO1; } else { // If they aren't the same type, convert both to an integer of the // target's pointer size. if (SO1->getType() != GO1->getType()) { if (Constant *SO1C = dyn_cast(SO1)) { SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true); } else if (Constant *GO1C = dyn_cast(GO1)) { GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true); } else { unsigned PS = TD->getPointerSizeInBits(); if (TD->getTypeSizeInBits(SO1->getType()) == PS) { // Convert GO1 to SO1's type. GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this); } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) { // Convert SO1 to GO1's type. SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this); } else { const Type *PT = TD->getIntPtrType(); SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this); GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this); } } } if (isa(SO1) && isa(GO1)) Sum = ConstantExpr::getAdd(cast(SO1), cast(GO1)); else { Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); InsertNewInstBefore(cast(Sum), GEP); } } // Recycle the GEP we already have if possible. if (SrcGEPOperands.size() == 2) { GEP.setOperand(0, SrcGEPOperands[0]); GEP.setOperand(1, Sum); return &GEP; } else { Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()-1); Indices.push_back(Sum); Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); } } else if (isa(*GEP.idx_begin()) && cast(*GEP.idx_begin())->isNullValue() && SrcGEPOperands.size() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()); Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(), Indices.end(), GEP.getName()); } else if (GlobalValue *GV = dyn_cast(PtrOp)) { // GEP of global variable. If all of the indices for this GEP are // constants, we can promote this to a constexpr instead of an instruction. // Scan for nonconstants... SmallVector Indices; User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); for (; I != E && isa(*I); ++I) Indices.push_back(cast(*I)); if (I == E) { // If they are all constants... Constant *CE = ConstantExpr::getGetElementPtr(GV, &Indices[0],Indices.size()); // Replace all uses of the GEP with the new constexpr... return ReplaceInstUsesWith(GEP, CE); } } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast? if (!isa(X->getType())) { // Not interesting. Source pointer must be a cast from pointer. } else if (HasZeroPointerIndex) { // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... // into : GEP [10 x i8]* X, i32 0, ... // // This occurs when the program declares an array extern like "int X[];" // const PointerType *CPTy = cast(PtrOp->getType()); const PointerType *XTy = cast(X->getType()); if (const ArrayType *XATy = dyn_cast(XTy->getElementType())) if (const ArrayType *CATy = dyn_cast(CPTy->getElementType())) if (CATy->getElementType() == XATy->getElementType()) { // At this point, we know that the cast source type is a pointer // to an array of the same type as the destination pointer // array. Because the array type is never stepped over (there // is a leading zero) we can fold the cast into this GEP. GEP.setOperand(0, X); return &GEP; } } else if (GEP.getNumOperands() == 2) { // Transform things like: // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast const Type *SrcElTy = cast(X->getType())->getElementType(); const Type *ResElTy=cast(PtrOp->getType())->getElementType(); if (isa(SrcElTy) && TD->getTypePaddedSize(cast(SrcElTy)->getElementType()) == TD->getTypePaddedSize(ResElTy)) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::Int32Ty); Idx[1] = GEP.getOperand(1); Value *V = InsertNewInstBefore( GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP); // V and GEP are both pointer types --> BitCast return new BitCastInst(V, GEP.getType()); } // Transform things like: // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast if (isa(SrcElTy) && ResElTy == Type::Int8Ty) { uint64_t ArrayEltSize = TD->getTypePaddedSize(cast(SrcElTy)->getElementType()); // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We // allow either a mul, shift, or constant here. Value *NewIdx = 0; ConstantInt *Scale = 0; if (ArrayEltSize == 1) { NewIdx = GEP.getOperand(1); Scale = ConstantInt::get(NewIdx->getType(), 1); } else if (ConstantInt *CI = dyn_cast(GEP.getOperand(1))) { NewIdx = ConstantInt::get(CI->getType(), 1); Scale = CI; } else if (Instruction *Inst =dyn_cast(GEP.getOperand(1))){ if (Inst->getOpcode() == Instruction::Shl && isa(Inst->getOperand(1))) { ConstantInt *ShAmt = cast(Inst->getOperand(1)); uint32_t ShAmtVal = ShAmt->getLimitedValue(64); Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal); NewIdx = Inst->getOperand(0); } else if (Inst->getOpcode() == Instruction::Mul && isa(Inst->getOperand(1))) { Scale = cast(Inst->getOperand(1)); NewIdx = Inst->getOperand(0); } } // If the index will be to exactly the right offset with the scale taken // out, perform the transformation. Note, we don't know whether Scale is // signed or not. We'll use unsigned version of division/modulo // operation after making sure Scale doesn't have the sign bit set. if (Scale && Scale->getSExtValue() >= 0LL && Scale->getZExtValue() % ArrayEltSize == 0) { Scale = ConstantInt::get(Scale->getType(), Scale->getZExtValue() / ArrayEltSize); if (Scale->getZExtValue() != 1) { Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), false /*ZExt*/); Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale"); NewIdx = InsertNewInstBefore(Sc, GEP); } // Insert the new GEP instruction. Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::Int32Ty); Idx[1] = NewIdx; Instruction *NewGEP = GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()); NewGEP = InsertNewInstBefore(NewGEP, GEP); // The NewGEP must be pointer typed, so must the old one -> BitCast return new BitCastInst(NewGEP, GEP.getType()); } } } } /// See if we can simplify: /// X = bitcast A to B* /// Y = gep X, <...constant indices...> /// into a gep of the original struct. This is important for SROA and alias /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. if (BitCastInst *BCI = dyn_cast(PtrOp)) { if (!isa(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) { // Determine how much the GEP moves the pointer. We are guaranteed to get // a constant back from EmitGEPOffset. ConstantInt *OffsetV = cast(EmitGEPOffset(&GEP, GEP, *this)); int64_t Offset = OffsetV->getSExtValue(); // If this GEP instruction doesn't move the pointer, just replace the GEP // with a bitcast of the real input to the dest type. if (Offset == 0) { // If the bitcast is of an allocation, and the allocation will be // converted to match the type of the cast, don't touch this. if (isa(BCI->getOperand(0))) { // See if the bitcast simplifies, if so, don't nuke this GEP yet. if (Instruction *I = visitBitCast(*BCI)) { if (I != BCI) { I->takeName(BCI); BCI->getParent()->getInstList().insert(BCI, I); ReplaceInstUsesWith(*BCI, I); } return &GEP; } } return new BitCastInst(BCI->getOperand(0), GEP.getType()); } // Otherwise, if the offset is non-zero, we need to find out if there is a // field at Offset in 'A's type. If so, we can pull the cast through the // GEP. SmallVector NewIndices; const Type *InTy = cast(BCI->getOperand(0)->getType())->getElementType(); if (FindElementAtOffset(InTy, Offset, NewIndices, TD)) { Instruction *NGEP = GetElementPtrInst::Create(BCI->getOperand(0), NewIndices.begin(), NewIndices.end()); if (NGEP->getType() == GEP.getType()) return NGEP; InsertNewInstBefore(NGEP, GEP); NGEP->takeName(&GEP); return new BitCastInst(NGEP, GEP.getType()); } } } return 0; } Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 if (AI.isArrayAllocation()) { // Check C != 1 if (const ConstantInt *C = dyn_cast(AI.getArraySize())) { const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); AllocationInst *New = 0; // Create and insert the replacement instruction... if (isa(AI)) New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName()); else { assert(isa(AI) && "Unknown type of allocation inst!"); New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName()); } InsertNewInstBefore(New, AI); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible... // BasicBlock::iterator It = New; while (isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // Value *NullIdx = Constant::getNullValue(Type::Int32Ty); Value *Idx[2]; Idx[0] = NullIdx; Idx[1] = NullIdx; Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2, New->getName()+".sub", It); // Now make everything use the getelementptr instead of the original // allocation. return ReplaceInstUsesWith(AI, V); } else if (isa(AI.getArraySize())) { return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); } } if (isa(AI) && AI.getAllocatedType()->isSized()) { // If alloca'ing a zero byte object, replace the alloca with a null pointer. // Note that we only do this for alloca's, because malloc should allocate and // return a unique pointer, even for a zero byte allocation. if (TD->getTypePaddedSize(AI.getAllocatedType()) == 0) return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); // If the alignment is 0 (unspecified), assign it the preferred alignment. if (AI.getAlignment() == 0) AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); } return 0; } Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { Value *Op = FI.getOperand(0); // free undef -> unreachable. if (isa(Op)) { // Insert a new store to null because we cannot modify the CFG here. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI); return EraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa(Op)) return EraseInstFromFunction(FI); // Change free * (cast * X to *) into free * X if (BitCastInst *CI = dyn_cast(Op)) { FI.setOperand(0, CI->getOperand(0)); return &FI; } // Change free (gep X, 0,0,0,0) into free(X) if (GetElementPtrInst *GEPI = dyn_cast(Op)) { if (GEPI->hasAllZeroIndices()) { AddToWorkList(GEPI); FI.setOperand(0, GEPI->getOperand(0)); return &FI; } } // Change free(malloc) into nothing, if the malloc has a single use. if (MallocInst *MI = dyn_cast(Op)) if (MI->hasOneUse()) { EraseInstFromFunction(FI); return EraseInstFromFunction(*MI); } return 0; } /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, const TargetData *TD) { User *CI = cast(LI.getOperand(0)); Value *CastOp = CI->getOperand(0); if (ConstantExpr *CE = dyn_cast(CI)) { // Instead of loading constant c string, use corresponding integer value // directly if string length is small enough. std::string Str; if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) { unsigned len = Str.length(); const Type *Ty = cast(CE->getType())->getElementType(); unsigned numBits = Ty->getPrimitiveSizeInBits(); // Replace LI with immediate integer store. if ((numBits >> 3) == len + 1) { APInt StrVal(numBits, 0); APInt SingleChar(numBits, 0); if (TD->isLittleEndian()) { for (signed i = len-1; i >= 0; i--) { SingleChar = (uint64_t) Str[i] & UCHAR_MAX; StrVal = (StrVal << 8) | SingleChar; } } else { for (unsigned i = 0; i < len; i++) { SingleChar = (uint64_t) Str[i] & UCHAR_MAX; StrVal = (StrVal << 8) | SingleChar; } // Append NULL at the end. SingleChar = 0; StrVal = (StrVal << 8) | SingleChar; } Value *NL = ConstantInt::get(StrVal); return IC.ReplaceInstUsesWith(LI, NL); } } } const PointerType *DestTy = cast(CI->getType()); const Type *DestPTy = DestTy->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { // If the address spaces don't match, don't eliminate the cast. if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) return 0; const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isInteger() || isa(DestPTy) || isa(DestPTy)) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { Value *Idxs[2]; Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty); CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if ((SrcPTy->isInteger() || isa(SrcPTy) || isa(SrcPTy)) && // Do not allow turning this into a load of an integer, which is then // casted to a pointer, this pessimizes pointer analysis a lot. (isa(SrcPTy) == isa(LI.getType())) && IC.getTargetData().getTypeSizeInBits(SrcPTy) == IC.getTargetData().getTypeSizeInBits(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp, CI->getName(), LI.isVolatile()),LI); // Now cast the result of the load. return new BitCastInst(NewLoad, LI.getType()); } } } return 0; } /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca it is always safe to load from. if (isa(V)) return true; // If it is a global variable it is mostly safe to load from. if (const GlobalValue *GV = dyn_cast(V)) // Don't try to evaluate aliases. External weak GV can be null. return !isa(GV) && !GV->hasExternalWeakLinkage(); // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; // If we see a free or a call (which might do a free) the pointer could be // marked invalid. if (isa(BBI) || isa(BBI)) return false; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) { if (SI->getOperand(1) == V) return true; } } return false; } Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); // Attempt to improve the alignment. unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); if (KnownAlign > (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : LI.getAlignment())) LI.setAlignment(KnownAlign); // load (cast X) --> cast (load X) iff safe if (isa(Op)) if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) return Res; // None of the following transforms are legal for volatile loads. if (LI.isVolatile()) return 0; // Do really simple store-to-load forwarding and load CSE, to catch cases // where there are several consequtive memory accesses to the same location, // separated by a few arithmetic operations. BasicBlock::iterator BBI = &LI; if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) return ReplaceInstUsesWith(LI, AvailableVal); if (GetElementPtrInst *GEPI = dyn_cast(Op)) { const Value *GEPI0 = GEPI->getOperand(0); // TODO: Consider a target hook for valid address spaces for this xform. if (isa(GEPI0) && cast(GEPI0->getType())->getAddressSpace() == 0) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } if (Constant *C = dyn_cast(Op)) { // load null/undef -> undef // TODO: Consider a target hook for valid address spaces for this xform. if (isa(C) || (C->isNullValue() && cast(Op->getType())->getAddressSpace() == 0)) { // Insert a new store to null instruction before the load to indicate that // this code is not reachable. We do this instead of inserting an // unreachable instruction directly because we cannot modify the CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } // Instcombine load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Op)) if (GV->isConstant() && !GV->isDeclaration()) return ReplaceInstUsesWith(LI, GV->getInitializer()); // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. if (ConstantExpr *CE = dyn_cast(Op)) { if (CE->getOpcode() == Instruction::GetElementPtr) { if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) if (GV->isConstant() && !GV->isDeclaration()) if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) return ReplaceInstUsesWith(LI, V); if (CE->getOperand(0)->isNullValue()) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } else if (CE->isCast()) { if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) return Res; } } } // If this load comes from anywhere in a constant global, and if the global // is all undef or zero, we know what it loads. if (GlobalVariable *GV = dyn_cast(Op->getUnderlyingObject())){ if (GV->isConstant() && GV->hasInitializer()) { if (GV->getInitializer()->isNullValue()) return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType())); else if (isa(GV->getInitializer())) return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), SI->getOperand(1)->getName()+".val"), LI); Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), SI->getOperand(2)->getName()+".val"), LI); return SelectInst::Create(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (Constant *C = dyn_cast(SI->getOperand(1))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(2)); return &LI; } // load (select (cond, P, null)) -> load P if (Constant *C = dyn_cast(SI->getOperand(2))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(1)); return &LI; } } } return 0; } /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P /// when possible. This makes it generally easy to do alias analysis and/or /// SROA/mem2reg of the memory object. static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { User *CI = cast(SI.getOperand(1)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); const PointerType *SrcTy = dyn_cast(CastOp->getType()); if (SrcTy == 0) return 0; const Type *SrcPTy = SrcTy->getElementType(); if (!DestPTy->isInteger() && !isa(DestPTy)) return 0; /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" /// to its first element. This allows us to handle things like: /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) /// on 32-bit hosts. SmallVector NewGEPIndices; // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (isa(SrcPTy) || isa(SrcPTy)) { // Index through pointer. Constant *Zero = Constant::getNullValue(Type::Int32Ty); NewGEPIndices.push_back(Zero); while (1) { if (const StructType *STy = dyn_cast(SrcPTy)) { if (!STy->getNumElements()) /* Struct can be empty {} */ break; NewGEPIndices.push_back(Zero); SrcPTy = STy->getElementType(0); } else if (const ArrayType *ATy = dyn_cast(SrcPTy)) { NewGEPIndices.push_back(Zero); SrcPTy = ATy->getElementType(); } else { break; } } SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); } if (!SrcPTy->isInteger() && !isa(SrcPTy)) return 0; // If the pointers point into different address spaces or if they point to // values with different sizes, we can't do the transformation. if (SrcTy->getAddressSpace() != cast(CI->getType())->getAddressSpace() || IC.getTargetData().getTypeSizeInBits(SrcPTy) != IC.getTargetData().getTypeSizeInBits(DestPTy)) return 0; // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before // the store, cast the value to be stored. Value *NewCast; Value *SIOp0 = SI.getOperand(0); Instruction::CastOps opcode = Instruction::BitCast; const Type* CastSrcTy = SIOp0->getType(); const Type* CastDstTy = SrcPTy; if (isa(CastDstTy)) { if (CastSrcTy->isInteger()) opcode = Instruction::IntToPtr; } else if (isa(CastDstTy)) { if (isa(SIOp0->getType())) opcode = Instruction::PtrToInt; } // SIOp0 is a pointer to aggregate and this is a store to the first field, // emit a GEP to index into its first field. if (!NewGEPIndices.empty()) { if (Constant *C = dyn_cast(CastOp)) CastOp = ConstantExpr::getGetElementPtr(C, &NewGEPIndices[0], NewGEPIndices.size()); else CastOp = IC.InsertNewInstBefore( GetElementPtrInst::Create(CastOp, NewGEPIndices.begin(), NewGEPIndices.end()), SI); } if (Constant *C = dyn_cast(SIOp0)) NewCast = ConstantExpr::getCast(opcode, C, CastDstTy); else NewCast = IC.InsertNewInstBefore( CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), SI); return new StoreInst(NewCast, CastOp); } /// equivalentAddressValues - Test if A and B will obviously have the same /// value. This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// %t0 = getelementptr @a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr @a, 0, 3 /// %t2 = load i32* %t1 /// static bool equivalentAddressValues(Value *A, Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come form identical arithmetic instructions. if (isa(A) || isa(A) || isa(A) || isa(A)) if (Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalTo(BI)) return true; // Otherwise they may not be equivalent. return false; } Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); if (isa(Ptr)) { // store X, undef -> noop (even if volatile) EraseInstFromFunction(SI); ++NumCombined; return 0; } // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. if (Ptr->hasOneUse() && !SI.isVolatile()) { if (isa(Ptr)) { EraseInstFromFunction(SI); ++NumCombined; return 0; } if (GetElementPtrInst *GEP = dyn_cast(Ptr)) if (isa(GEP->getOperand(0)) && GEP->getOperand(0)->hasOneUse()) { EraseInstFromFunction(SI); ++NumCombined; return 0; } } // Attempt to improve the alignment. unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); if (KnownAlign > (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : SI.getAlignment())) SI.setAlignment(KnownAlign); // Do really simple DSE, to catch cases where there are several consequtive // stores to the same location, separated by a few arithmetic operations. This // situation often occurs with bitfield accesses. BasicBlock::iterator BBI = &SI; for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; --ScanInsts) { --BBI; if (StoreInst *PrevSI = dyn_cast(BBI)) { // Prev store isn't volatile, and stores to the same location? if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1))) { ++NumDeadStore; ++BBI; EraseInstFromFunction(*PrevSI); continue; } break; } // If this is a load, we have to stop. However, if the loaded value is from // the pointer we're loading and is producing the pointer we're storing, // then *this* store is dead (X = load P; store X -> P). if (LoadInst *LI = dyn_cast(BBI)) { if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && !SI.isVolatile()) { EraseInstFromFunction(SI); ++NumCombined; return 0; } // Otherwise, this is a load from some other location. Stores before it // may not be dead. break; } // Don't skip over loads or things that can modify memory. if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) break; } if (SI.isVolatile()) return 0; // Don't hack volatile stores. // store X, null -> turns into 'unreachable' in SimplifyCFG if (isa(Ptr)) { if (!isa(Val)) { SI.setOperand(0, UndefValue::get(Val->getType())); if (Instruction *U = dyn_cast(Val)) AddToWorkList(U); // Dropped a use. ++NumCombined; } return 0; // Do not modify these! } // store undef, Ptr -> noop if (isa(Val)) { EraseInstFromFunction(SI); ++NumCombined; return 0; } // If the pointer destination is a cast, see if we can fold the cast into the // source instead. if (isa(Ptr)) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->isCast()) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; // If this store is the last instruction in the basic block, and if the block // ends with an unconditional branch, try to move it to the successor block. BBI = &SI; ++BBI; if (BranchInst *BI = dyn_cast(BBI)) if (BI->isUnconditional()) if (SimplifyStoreAtEndOfBlock(SI)) return 0; // xform done! return 0; } /// SimplifyStoreAtEndOfBlock - Turn things like: /// if () { *P = v1; } else { *P = v2 } /// into a phi node with a store in the successor. /// /// Simplify things like: /// *P = v1; if () { *P = v2; } /// into a phi node with a store in the successor. /// bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BasicBlock *StoreBB = SI.getParent(); // Check to see if the successor block has exactly two incoming edges. If // so, see if the other predecessor contains a store to the same location. // if so, insert a PHI node (if needed) and move the stores down. BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); // Determine whether Dest has exactly two predecessors and, if so, compute // the other predecessor. pred_iterator PI = pred_begin(DestBB); BasicBlock *OtherBB = 0; if (*PI != StoreBB) OtherBB = *PI; ++PI; if (PI == pred_end(DestBB)) return false; if (*PI != StoreBB) { if (OtherBB) return false; OtherBB = *PI; } if (++PI != pred_end(DestBB)) return false; // Bail out if all the relevant blocks aren't distinct (this can happen, // for example, if SI is in an infinite loop) if (StoreBB == DestBB || OtherBB == DestBB) return false; // Verify that the other block ends in a branch and is not otherwise empty. BasicBlock::iterator BBI = OtherBB->getTerminator(); BranchInst *OtherBr = dyn_cast(BBI); if (!OtherBr || BBI == OtherBB->begin()) return false; // If the other block ends in an unconditional branch, check for the 'if then // else' case. there is an instruction before the branch. StoreInst *OtherStore = 0; if (OtherBr->isUnconditional()) { // If this isn't a store, or isn't a store to the same location, bail out. --BBI; OtherStore = dyn_cast(BBI); if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1)) return false; } else { // Otherwise, the other block ended with a conditional branch. If one of the // destinations is StoreBB, then we have the if/then case. if (OtherBr->getSuccessor(0) != StoreBB && OtherBr->getSuccessor(1) != StoreBB) return false; // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an // if/then triangle. See if there is a store to the same ptr as SI that // lives in OtherBB. for (;; --BBI) { // Check to see if we find the matching store. if ((OtherStore = dyn_cast(BBI))) { if (OtherStore->getOperand(1) != SI.getOperand(1)) return false; break; } // If we find something that may be using or overwriting the stored // value, or if we run out of instructions, we can't do the xform. if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || BBI == OtherBB->begin()) return false; } // In order to eliminate the store in OtherBr, we have to // make sure nothing reads or overwrites the stored value in // StoreBB. for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { // FIXME: This should really be AA driven. if (I->mayReadFromMemory() || I->mayWriteToMemory()) return false; } } // Insert a PHI node now if we need it. Value *MergedVal = OtherStore->getOperand(0); if (MergedVal != SI.getOperand(0)) { PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); PN->reserveOperandSpace(2); PN->addIncoming(SI.getOperand(0), SI.getParent()); PN->addIncoming(OtherStore->getOperand(0), OtherBB); MergedVal = InsertNewInstBefore(PN, DestBB->front()); } // Advance to a place where it is safe to insert the new store and // insert it. BBI = DestBB->getFirstNonPHI(); InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), OtherStore->isVolatile()), *BBI); // Nuke the old stores. EraseInstFromFunction(SI); EraseInstFromFunction(*OtherStore); ++NumCombined; return true; } Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Change br (not X), label True, label False to: br X, label False, True Value *X = 0; BasicBlock *TrueDest; BasicBlock *FalseDest; if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && !isa(X)) { // Swap Destinations and condition... BI.setCondition(X); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); return &BI; } // Cannonicalize fcmp_one -> fcmp_oeq FCmpInst::Predicate FPred; Value *Y; if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) { FCmpInst *I = cast(BI.getCondition()); FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred); Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I); NewSCC->takeName(I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); RemoveFromWorkList(I); I->eraseFromParent(); AddToWorkList(NewSCC); return &BI; } // Cannonicalize icmp_ne -> icmp_eq ICmpInst::Predicate IPred; if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) { ICmpInst *I = cast(BI.getCondition()); ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred); Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I); NewSCC->takeName(I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); RemoveFromWorkList(I); I->eraseFromParent();; AddToWorkList(NewSCC); return &BI; } return 0; } Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); if (Instruction *I = dyn_cast(Cond)) { if (I->getOpcode() == Instruction::Add) if (ConstantInt *AddRHS = dyn_cast(I->getOperand(1))) { // change 'switch (X+4) case 1:' into 'switch (X) case -3' for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) SI.setOperand(i,ConstantExpr::getSub(cast(SI.getOperand(i)), AddRHS)); SI.setOperand(0, I->getOperand(0)); AddToWorkList(I); return &SI; } } return 0; } Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { Value *Agg = EV.getAggregateOperand(); if (!EV.hasIndices()) return ReplaceInstUsesWith(EV, Agg); if (Constant *C = dyn_cast(Agg)) { if (isa(C)) return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); if (isa(C)) return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); if (isa(C) || isa(C)) { // Extract the element indexed by the first index out of the constant Value *V = C->getOperand(*EV.idx_begin()); if (EV.getNumIndices() > 1) // Extract the remaining indices out of the constant indexed by the // first index return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end()); else return ReplaceInstUsesWith(EV, V); } return 0; // Can't handle other constants } if (InsertValueInst *IV = dyn_cast(Agg)) { // We're extracting from an insertvalue instruction, compare the indices const unsigned *exti, *exte, *insi, *inse; for (exti = EV.idx_begin(), insi = IV->idx_begin(), exte = EV.idx_end(), inse = IV->idx_end(); exti != exte && insi != inse; ++exti, ++insi) { if (*insi != *exti) // The insert and extract both reference distinctly different elements. // This means the extract is not influenced by the insert, and we can // replace the aggregate operand of the extract with the aggregate // operand of the insert. i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 0 // with // %E = extractvalue { i32, { i32 } } %A, 0 return ExtractValueInst::Create(IV->getAggregateOperand(), EV.idx_begin(), EV.idx_end()); } if (exti == exte && insi == inse) // Both iterators are at the end: Index lists are identical. Replace // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %C = extractvalue { i32, { i32 } } %B, 1, 0 // with "i32 42" return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); if (exti == exte) { // The extract list is a prefix of the insert list. i.e. replace // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %E = extractvalue { i32, { i32 } } %I, 1 // with // %X = extractvalue { i32, { i32 } } %A, 1 // %E = insertvalue { i32 } %X, i32 42, 0 // by switching the order of the insert and extract (though the // insertvalue should be left in, since it may have other uses). Value *NewEV = InsertNewInstBefore( ExtractValueInst::Create(IV->getAggregateOperand(), EV.idx_begin(), EV.idx_end()), EV); return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), insi, inse); } if (insi == inse) // The insert list is a prefix of the extract list // We can simply remove the common indices from the extract and make it // operate on the inserted value instead of the insertvalue result. // i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 1, 0 // with // %E extractvalue { i32 } { i32 42 }, 0 return ExtractValueInst::Create(IV->getInsertedValueOperand(), exti, exte); } // Can't simplify extracts from other values. Note that nested extracts are // already simplified implicitely by the above (extract ( extract (insert) ) // will be translated into extract ( insert ( extract ) ) first and then just // the value inserted, if appropriate). return 0; } /// CheapToScalarize - Return true if the value is cheaper to scalarize than it /// is to leave as a vector operation. static bool CheapToScalarize(Value *V, bool isConstant) { if (isa(V)) return true; if (ConstantVector *C = dyn_cast(V)) { if (isConstant) return true; // If all elts are the same, we can extract. Constant *Op0 = C->getOperand(0); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != Op0) return false; return true; } Instruction *I = dyn_cast(V); if (!I) return false; // Insert element gets simplified to the inserted element or is deleted if // this is constant idx extract element and its a constant idx insertelt. if (I->getOpcode() == Instruction::InsertElement && isConstant && isa(I->getOperand(2))) return true; if (I->getOpcode() == Instruction::Load && I->hasOneUse()) return true; if (BinaryOperator *BO = dyn_cast(I)) if (BO->hasOneUse() && (CheapToScalarize(BO->getOperand(0), isConstant) || CheapToScalarize(BO->getOperand(1), isConstant))) return true; if (CmpInst *CI = dyn_cast(I)) if (CI->hasOneUse() && (CheapToScalarize(CI->getOperand(0), isConstant) || CheapToScalarize(CI->getOperand(1), isConstant))) return true; return false; } /// Read and decode a shufflevector mask. /// /// It turns undef elements into values that are larger than the number of /// elements in the input. static std::vector getShuffleMask(const ShuffleVectorInst *SVI) { unsigned NElts = SVI->getType()->getNumElements(); if (isa(SVI->getOperand(2))) return std::vector(NElts, 0); if (isa(SVI->getOperand(2))) return std::vector(NElts, 2*NElts); std::vector Result; const ConstantVector *CP = cast(SVI->getOperand(2)); for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i) if (isa(*i)) Result.push_back(NElts*2); // undef -> 8 else Result.push_back(cast(*i)->getZExtValue()); return Result; } /// FindScalarElement - Given a vector and an element number, see if the scalar /// value is already around as a register, for example if it were inserted then /// extracted from the vector. static Value *FindScalarElement(Value *V, unsigned EltNo) { assert(isa(V->getType()) && "Not looking at a vector?"); const VectorType *PTy = cast(V->getType()); unsigned Width = PTy->getNumElements(); if (EltNo >= Width) // Out of range access. return UndefValue::get(PTy->getElementType()); if (isa(V)) return UndefValue::get(PTy->getElementType()); else if (isa(V)) return Constant::getNullValue(PTy->getElementType()); else if (ConstantVector *CP = dyn_cast(V)) return CP->getOperand(EltNo); else if (InsertElementInst *III = dyn_cast(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa(III->getOperand(2))) return 0; unsigned IIElt = cast(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the // inserted value. if (EltNo == IIElt) return III->getOperand(1); // Otherwise, the insertelement doesn't modify the value, recurse on its // vector input. return FindScalarElement(III->getOperand(0), EltNo); } else if (ShuffleVectorInst *SVI = dyn_cast(V)) { unsigned LHSWidth = cast(SVI->getOperand(0)->getType())->getNumElements(); unsigned InEl = getShuffleMask(SVI)[EltNo]; if (InEl < LHSWidth) return FindScalarElement(SVI->getOperand(0), InEl); else if (InEl < LHSWidth*2) return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth); else return UndefValue::get(PTy->getElementType()); } // Otherwise, we don't know. return 0; } Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { // If vector val is undef, replace extract with scalar undef. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // If vector val is constant 0, replace extract with scalar 0. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); if (ConstantVector *C = dyn_cast(EI.getOperand(0))) { // If vector val is constant with all elements the same, replace EI with // that element. When the elements are not identical, we cannot replace yet // (we do that below, but only when the index is constant). Constant *op0 = C->getOperand(0); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != op0) { op0 = 0; break; } if (op0) return ReplaceInstUsesWith(EI, op0); } // If extracting a specified index from the vector, see if we can recursively // find a previously computed scalar that was inserted into the vector. if (ConstantInt *IdxC = dyn_cast(EI.getOperand(1))) { unsigned IndexVal = IdxC->getZExtValue(); unsigned VectorWidth = cast(EI.getOperand(0)->getType())->getNumElements(); // If this is extracting an invalid index, turn this into undef, to avoid // crashing the code below. if (IndexVal >= VectorWidth) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // This instruction only demands the single element from the input vector. // If the input vector has a single use, simplify it based on this use // property. if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { APInt UndefElts(VectorWidth, 0); APInt DemandedMask(VectorWidth, 1 << IndexVal); if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, UndefElts)) { EI.setOperand(0, V); return &EI; } } if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) return ReplaceInstUsesWith(EI, Elt); // If the this extractelement is directly using a bitcast from a vector of // the same number of elements, see if we can find the source element from // it. In this case, we will end up needing to bitcast the scalars. if (BitCastInst *BCI = dyn_cast(EI.getOperand(0))) { if (const VectorType *VT = dyn_cast(BCI->getOperand(0)->getType())) if (VT->getNumElements() == VectorWidth) if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal)) return new BitCastInst(Elt, EI.getType()); } } if (Instruction *I = dyn_cast(EI.getOperand(0))) { if (I->hasOneUse()) { // Push extractelement into predecessor operation if legal and // profitable to do so if (BinaryOperator *BO = dyn_cast(I)) { bool isConstantElt = isa(EI.getOperand(1)); if (CheapToScalarize(BO, isConstantElt)) { ExtractElementInst *newEI0 = new ExtractElementInst(BO->getOperand(0), EI.getOperand(1), EI.getName()+".lhs"); ExtractElementInst *newEI1 = new ExtractElementInst(BO->getOperand(1), EI.getOperand(1), EI.getName()+".rhs"); InsertNewInstBefore(newEI0, EI); InsertNewInstBefore(newEI1, EI); return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); } } else if (isa(I)) { unsigned AS = cast(I->getOperand(0)->getType())->getAddressSpace(); Value *Ptr = InsertBitCastBefore(I->getOperand(0), PointerType::get(EI.getType(), AS),EI); GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep"); InsertNewInstBefore(GEP, EI); return new LoadInst(GEP); } } if (InsertElementInst *IE = dyn_cast(I)) { // Extracting the inserted element? if (IE->getOperand(2) == EI.getOperand(1)) return ReplaceInstUsesWith(EI, IE->getOperand(1)); // If the inserted and extracted elements are constants, they must not // be the same value, extract from the pre-inserted value instead. if (isa(IE->getOperand(2)) && isa(EI.getOperand(1))) { AddUsesToWorkList(EI); EI.setOperand(0, IE->getOperand(0)); return &EI; } } else if (ShuffleVectorInst *SVI = dyn_cast(I)) { // If this is extracting an element from a shufflevector, figure out where // it came from and extract from the appropriate input element instead. if (ConstantInt *Elt = dyn_cast(EI.getOperand(1))) { unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; Value *Src; unsigned LHSWidth = cast(SVI->getOperand(0)->getType())->getNumElements(); if (SrcIdx < LHSWidth) Src = SVI->getOperand(0); else if (SrcIdx < LHSWidth*2) { SrcIdx -= LHSWidth; Src = SVI->getOperand(1); } else { return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); } return new ExtractElementInst(Src, SrcIdx); } } } return 0; } /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns /// elements from either LHS or RHS, return the shuffle mask and true. /// Otherwise, return false. static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, std::vector &Mask) { assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && "Invalid CollectSingleShuffleElements"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); return true; } else if (V == LHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); return true; } else if (V == RHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts)); return true; } else if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (!isa(IdxOp)) return false; unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (isa(ScalarOp)) { // inserting undef into vector. // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted undef. Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty); return true; } } else if (ExtractElementInst *EI = dyn_cast(ScalarOp)){ if (isa(EI->getOperand(1)) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); // This must be extracting from either LHS or RHS. if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted value. if (EI->getOperand(0) == LHS) { Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); } else { assert(EI->getOperand(0) == RHS); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts); } return true; } } } } } // TODO: Handle shufflevector here! return false; } /// CollectShuffleElements - We are building a shuffle of V, using RHS as the /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask /// that computes V and the LHS value of the shuffle. static Value *CollectShuffleElements(Value *V, std::vector &Mask, Value *&RHS) { assert(isa(V->getType()) && (RHS == 0 || V->getType() == RHS->getType()) && "Invalid shuffle!"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); return V; } else if (isa(V)) { Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0)); return V; } else if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); // Either the extracted from or inserted into vector must be RHSVec, // otherwise we'd end up with a shuffle of three inputs. if (EI->getOperand(0) == RHS || RHS == 0) { RHS = EI->getOperand(0); Value *V = CollectShuffleElements(VecOp, Mask, RHS); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx); return V; } if (VecOp == RHS) { Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); // Everything but the extracted element is replaced with the RHS. for (unsigned i = 0; i != NumElts; ++i) { if (i != InsertedIdx) Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i); } return V; } // If this insertelement is a chain that comes from exactly these two // vectors, return the vector and the effective shuffle. if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) return EI->getOperand(0); } } } // TODO: Handle shufflevector here! // Otherwise, can't do anything fancy. Return an identity vector. for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); return V; } Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { Value *VecOp = IE.getOperand(0); Value *ScalarOp = IE.getOperand(1); Value *IdxOp = IE.getOperand(2); // Inserting an undef or into an undefined place, remove this. if (isa(ScalarOp) || isa(IdxOp)) ReplaceInstUsesWith(IE, VecOp); // If the inserted element was extracted from some other vector, and if the // indexes are constant, try to turn this into a shufflevector operation. if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == IE.getType()) { unsigned NumVectorElts = IE.getType()->getNumElements(); unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (ExtractedIdx >= NumVectorElts) // Out of range extract. return ReplaceInstUsesWith(IE, VecOp); if (InsertedIdx >= NumVectorElts) // Out of range insert. return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); // If we are extracting a value from a vector, then inserting it right // back into the same place, just use the input vector. if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) return ReplaceInstUsesWith(IE, VecOp); // We could theoretically do this for ANY input. However, doing so could // turn chains of insertelement instructions into a chain of shufflevector // instructions, and right now we do not merge shufflevectors. As such, // only do this in a situation where it is clear that there is benefit. if (isa(VecOp) || isa(VecOp)) { // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of // the values of VecOp, except then one read from EIOp0. // Build a new shuffle mask. std::vector Mask; if (isa(VecOp)) Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty)); else { assert(isa(VecOp) && "Unknown thing"); Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty, NumVectorElts)); } Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); return new ShuffleVectorInst(EI->getOperand(0), VecOp, ConstantVector::get(Mask)); } // If this insertelement isn't used by some other insertelement, turn it // (and any insertelements it points to), into one big shuffle. if (!IE.hasOneUse() || !isa(IE.use_back())) { std::vector Mask; Value *RHS = 0; Value *LHS = CollectShuffleElements(&IE, Mask, RHS); if (RHS == 0) RHS = UndefValue::get(LHS->getType()); // We now have a shuffle of LHS, RHS, Mask. return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); } } } return 0; } Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Value *LHS = SVI.getOperand(0); Value *RHS = SVI.getOperand(1); std::vector Mask = getShuffleMask(&SVI); bool MadeChange = false; // Undefined shuffle mask -> undefined value. if (isa(SVI.getOperand(2))) return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); unsigned VWidth = cast(SVI.getType())->getNumElements(); if (VWidth != cast(LHS->getType())->getNumElements()) return 0; APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { LHS = SVI.getOperand(0); RHS = SVI.getOperand(1); MadeChange = true; } // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). if (LHS == RHS || isa(LHS)) { if (isa(LHS) && LHS == RHS) { // shuffle(undef,undef,mask) -> undef. return ReplaceInstUsesWith(SVI, LHS); } // Remap any references to RHS to use LHS. std::vector Elts; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] >= 2*e) Elts.push_back(UndefValue::get(Type::Int32Ty)); else { if ((Mask[i] >= e && isa(RHS)) || (Mask[i] < e && isa(LHS))) { Mask[i] = 2*e; // Turn into undef. Elts.push_back(UndefValue::get(Type::Int32Ty)); } else { Mask[i] = Mask[i] % e; // Force to LHS. Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); } } } SVI.setOperand(0, SVI.getOperand(1)); SVI.setOperand(1, UndefValue::get(RHS->getType())); SVI.setOperand(2, ConstantVector::get(Elts)); LHS = SVI.getOperand(0); RHS = SVI.getOperand(1); MadeChange = true; } // Analyze the shuffle, are the LHS or RHS and identity shuffles? bool isLHSID = true, isRHSID = true; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] >= e*2) continue; // Ignore undef values. // Is this an identity shuffle of the LHS value? isLHSID &= (Mask[i] == i); // Is this an identity shuffle of the RHS value? isRHSID &= (Mask[i]-e == i); } // Eliminate identity shuffles. if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); // If the LHS is a shufflevector itself, see if we can combine it with this // one without producing an unusual shuffle. Here we are really conservative: // we are absolutely afraid of producing a shuffle mask not in the input // program, because the code gen may not be smart enough to turn a merged // shuffle into two specific shuffles: it may produce worse code. As such, // we only merge two shuffles if the result is one of the two input shuffle // masks. In this case, merging the shuffles just removes one instruction, // which we know is safe. This is good for things like turning: // (splat(splat)) -> splat. if (ShuffleVectorInst *LHSSVI = dyn_cast(LHS)) { if (isa(RHS)) { std::vector LHSMask = getShuffleMask(LHSSVI); std::vector NewMask; for (unsigned i = 0, e = Mask.size(); i != e; ++i) if (Mask[i] >= 2*e) NewMask.push_back(2*e); else NewMask.push_back(LHSMask[Mask[i]]); // If the result mask is equal to the src shuffle or this shuffle mask, do // the replacement. if (NewMask == LHSMask || NewMask == Mask) { unsigned LHSInNElts = cast(LHSSVI->getOperand(0)->getType())->getNumElements(); std::vector Elts; for (unsigned i = 0, e = NewMask.size(); i != e; ++i) { if (NewMask[i] >= LHSInNElts*2) { Elts.push_back(UndefValue::get(Type::Int32Ty)); } else { Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i])); } } return new ShuffleVectorInst(LHSSVI->getOperand(0), LHSSVI->getOperand(1), ConstantVector::get(Elts)); } } } return MadeChange ? &SVI : 0; } /// TryToSinkInstruction - Try to move the specified instruction from its /// current block into the beginning of DestBlock, which can only happen if it's /// safe to move the instruction past all of the instructions between it and the /// end of its block. static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { assert(I->hasOneUse() && "Invariants didn't hold!"); // Cannot move control-flow-involving, volatile loads, vaarg, etc. if (isa(I) || I->mayWriteToMemory() || isa(I)) return false; // Do not sink alloca instructions out of the entry block. if (isa(I) && I->getParent() == &DestBlock->getParent()->getEntryBlock()) return false; // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (I->mayReadFromMemory()) { for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI(); I->moveBefore(InsertPos); ++NumSunkInst; return true; } /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding /// all reachable code to the worklist. /// /// This has a couple of tricks to make the code faster and more powerful. In /// particular, we constant fold and DCE instructions as we go, to avoid adding /// them to the worklist (this significantly speeds up instcombine on code where /// many instructions are dead or constant). Additionally, if we find a branch /// whose condition is a known constant, we only visit the reachable successors. /// static void AddReachableCodeToWorklist(BasicBlock *BB, SmallPtrSet &Visited, InstCombiner &IC, const TargetData *TD) { SmallVector Worklist; Worklist.push_back(BB); while (!Worklist.empty()) { BB = Worklist.back(); Worklist.pop_back(); // We have now visited this block! If we've already been here, ignore it. if (!Visited.insert(BB)) continue; DbgInfoIntrinsic *DBI_Prev = NULL; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *Inst = BBI++; // DCE instruction if trivially dead. if (isInstructionTriviallyDead(Inst)) { ++NumDeadInst; DOUT << "IC: DCE: " << *Inst; Inst->eraseFromParent(); continue; } // ConstantProp instruction if trivially constant. if (Constant *C = ConstantFoldInstruction(Inst, TD)) { DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst; Inst->replaceAllUsesWith(C); ++NumConstProp; Inst->eraseFromParent(); continue; } // If there are two consecutive llvm.dbg.stoppoint calls then // it is likely that the optimizer deleted code in between these // two intrinsics. DbgInfoIntrinsic *DBI_Next = dyn_cast(Inst); if (DBI_Next) { if (DBI_Prev && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) { IC.RemoveFromWorkList(DBI_Prev); DBI_Prev->eraseFromParent(); } DBI_Prev = DBI_Next; } else { DBI_Prev = 0; } IC.AddToWorkList(Inst); } // Recursively visit successors. If this is a branch or switch on a // constant, only visit the reachable successor. TerminatorInst *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional() && isa(BI->getCondition())) { bool CondVal = cast(BI->getCondition())->getZExtValue(); BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); Worklist.push_back(ReachableBB); continue; } } else if (SwitchInst *SI = dyn_cast(TI)) { if (ConstantInt *Cond = dyn_cast(SI->getCondition())) { // See if this is an explicit destination. for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) if (SI->getCaseValue(i) == Cond) { BasicBlock *ReachableBB = SI->getSuccessor(i); Worklist.push_back(ReachableBB); continue; } // Otherwise it is the default destination. Worklist.push_back(SI->getSuccessor(0)); continue; } } for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) Worklist.push_back(TI->getSuccessor(i)); } } bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { bool Changed = false; TD = &getAnalysis(); DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " << F.getNameStr() << "\n"); { // Do a depth-first traversal of the function, populate the worklist with // the reachable instructions. Ignore blocks that are not reachable. Keep // track of which blocks we visit. SmallPtrSet Visited; AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); // Do a quick scan over the function. If we find any blocks that are // unreachable, remove any instructions inside of them. This prevents // the instcombine code from having to deal with some bad special cases. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (!Visited.count(BB)) { Instruction *Term = BB->getTerminator(); while (Term != BB->begin()) { // Remove instrs bottom-up BasicBlock::iterator I = Term; --I; DOUT << "IC: DCE: " << *I; ++NumDeadInst; if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); Changed = true; } } } while (!Worklist.empty()) { Instruction *I = RemoveOneFromWorkList(); if (I == 0) continue; // skip null values. // Check to see if we can DCE the instruction. if (isInstructionTriviallyDead(I)) { // Add operands to the worklist. if (I->getNumOperands() < 4) AddUsesToWorkList(*I); ++NumDeadInst; DOUT << "IC: DCE: " << *I; I->eraseFromParent(); RemoveFromWorkList(I); Changed = true; continue; } // Instruction isn't dead, see if we can constant propagate it. if (Constant *C = ConstantFoldInstruction(I, TD)) { DOUT << "IC: ConstFold to: " << *C << " from: " << *I; // Add operands to the worklist. AddUsesToWorkList(*I); ReplaceInstUsesWith(*I, C); ++NumConstProp; I->eraseFromParent(); RemoveFromWorkList(I); Changed = true; continue; } if (TD && I->getType()->getTypeID() == Type::VoidTyID) { // See if we can constant fold its operands. for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) if (ConstantExpr *CE = dyn_cast(i)) if (Constant *NewC = ConstantFoldConstantExpression(CE, TD)) if (NewC != CE) { i->set(NewC); Changed = true; } } // See if we can trivially sink this instruction to a successor basic block. if (I->hasOneUse()) { BasicBlock *BB = I->getParent(); BasicBlock *UserParent = cast(I->use_back())->getParent(); if (UserParent != BB) { bool UserIsSuccessor = false; // See if the user is one of our successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) if (*SI == UserParent) { UserIsSuccessor = true; break; } // If the user is one of our immediate successors, and if that successor // only has us as a predecessors (we'd have to split the critical edge // otherwise), we can keep going. if (UserIsSuccessor && !isa(I->use_back()) && next(pred_begin(UserParent)) == pred_end(UserParent)) // Okay, the CFG is simple enough, try to sink this instruction. Changed |= TryToSinkInstruction(I, UserParent); } } // Now that we have an instruction, try combining it to simplify it... #ifndef NDEBUG std::string OrigI; #endif DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str();); if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { DOUT << "IC: Old = " << *I << " New = " << *Result; // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Push the new instruction and any users onto the worklist. AddToWorkList(Result); AddUsersToWorkList(*Result); // Move the name to the new instruction first. Result->takeName(I); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I; if (!isa(Result)) // If combining a PHI, don't insert while (isa(InsertPos)) // middle of a block of PHIs. ++InsertPos; InstParent->getInstList().insert(InsertPos, Result); // Make sure that we reprocess all operands now that we reduced their // use counts. AddUsesToWorkList(*I); // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. RemoveFromWorkList(I); // Erase the old instruction. InstParent->getInstList().erase(I); } else { #ifndef NDEBUG DOUT << "IC: Mod = " << OrigI << " New = " << *I; #endif // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I)) { // Make sure we process all operands now that we are reducing their // use counts. AddUsesToWorkList(*I); // Instructions may end up in the worklist more than once. Erase all // occurrences of this instruction. RemoveFromWorkList(I); I->eraseFromParent(); } else { AddToWorkList(I); AddUsersToWorkList(*I); } } Changed = true; } } assert(WorklistMap.empty() && "Worklist empty, but map not?"); // Do an explicit clear, this shrinks the map if needed. WorklistMap.clear(); return Changed; } bool InstCombiner::runOnFunction(Function &F) { MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); bool EverMadeChange = false; // Iterate while there is work to do. unsigned Iteration = 0; while (DoOneIteration(F, Iteration++)) EverMadeChange = true; return EverMadeChange; } FunctionPass *llvm::createInstructionCombiningPass() { return new InstCombiner(); }