//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integral // constant values and operations on them. // //===----------------------------------------------------------------------===// #ifndef LLVM_APINT_H #define LLVM_APINT_H #include "llvm/Support/DataTypes.h" #include "llvm/Support/MathExtras.h" #include #include #include namespace llvm { class Serializer; class Deserializer; class FoldingSetNodeID; class raw_ostream; template class SmallVectorImpl; /* An unsigned host type used as a single part of a multi-part bignum. */ typedef uint64_t integerPart; const unsigned int host_char_bit = 8; const unsigned int integerPartWidth = host_char_bit * static_cast(sizeof(integerPart)); //===----------------------------------------------------------------------===// // APInt Class //===----------------------------------------------------------------------===// /// APInt - This class represents arbitrary precision constant integral values. /// It is a functional replacement for common case unsigned integer type like /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width /// integer sizes and large integer value types such as 3-bits, 15-bits, or more /// than 64-bits of precision. APInt provides a variety of arithmetic operators /// and methods to manipulate integer values of any bit-width. It supports both /// the typical integer arithmetic and comparison operations as well as bitwise /// manipulation. /// /// The class has several invariants worth noting: /// * All bit, byte, and word positions are zero-based. /// * Once the bit width is set, it doesn't change except by the Truncate, /// SignExtend, or ZeroExtend operations. /// * All binary operators must be on APInt instances of the same bit width. /// Attempting to use these operators on instances with different bit /// widths will yield an assertion. /// * The value is stored canonically as an unsigned value. For operations /// where it makes a difference, there are both signed and unsigned variants /// of the operation. For example, sdiv and udiv. However, because the bit /// widths must be the same, operations such as Mul and Add produce the same /// results regardless of whether the values are interpreted as signed or /// not. /// * In general, the class tries to follow the style of computation that LLVM /// uses in its IR. This simplifies its use for LLVM. /// /// @brief Class for arbitrary precision integers. class APInt { uint32_t BitWidth; ///< The number of bits in this APInt. /// This union is used to store the integer value. When the /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; /// This enum is used to hold the constants we needed for APInt. enum { /// Bits in a word APINT_BITS_PER_WORD = static_cast(sizeof(uint64_t)) * 8, /// Byte size of a word APINT_WORD_SIZE = static_cast(sizeof(uint64_t)) }; /// This constructor is used only internally for speed of construction of /// temporaries. It is unsafe for general use so it is not public. /// @brief Fast internal constructor APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { } /// @returns true if the number of bits <= 64, false otherwise. /// @brief Determine if this APInt just has one word to store value. bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } /// @returns the word position for the specified bit position. /// @brief Determine which word a bit is in. static uint32_t whichWord(uint32_t bitPosition) { return bitPosition / APINT_BITS_PER_WORD; } /// @returns the bit position in a word for the specified bit position /// in the APInt. /// @brief Determine which bit in a word a bit is in. static uint32_t whichBit(uint32_t bitPosition) { return bitPosition % APINT_BITS_PER_WORD; } /// This method generates and returns a uint64_t (word) mask for a single /// bit at a specific bit position. This is used to mask the bit in the /// corresponding word. /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set /// @brief Get a single bit mask. static uint64_t maskBit(uint32_t bitPosition) { return 1ULL << whichBit(bitPosition); } /// This method is used internally to clear the to "N" bits in the high order /// word that are not used by the APInt. This is needed after the most /// significant word is assigned a value to ensure that those bits are /// zero'd out. /// @brief Clear unused high order bits APInt& clearUnusedBits() { // Compute how many bits are used in the final word uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; if (wordBits == 0) // If all bits are used, we want to leave the value alone. This also // avoids the undefined behavior of >> when the shift is the same size as // the word size (64). return *this; // Mask out the high bits. uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); if (isSingleWord()) VAL &= mask; else pVal[getNumWords() - 1] &= mask; return *this; } /// @returns the corresponding word for the specified bit position. /// @brief Get the word corresponding to a bit position uint64_t getWord(uint32_t bitPosition) const { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// This is used by the constructors that take string arguments. /// @brief Convert a char array into an APInt void fromString(uint32_t numBits, const char *strStart, uint32_t slen, uint8_t radix); /// This is used by the toString method to divide by the radix. It simply /// provides a more convenient form of divide for internal use since KnuthDiv /// has specific constraints on its inputs. If those constraints are not met /// then it provides a simpler form of divide. /// @brief An internal division function for dividing APInts. static void divide(const APInt LHS, uint32_t lhsWords, const APInt &RHS, uint32_t rhsWords, APInt *Quotient, APInt *Remainder); /// out-of-line slow case for inline constructor void initSlowCase(uint32_t numBits, uint64_t val, bool isSigned); /// out-of-line slow case for inline copy constructor void initSlowCase(const APInt& that); /// out-of-line slow case for shl APInt shlSlowCase(uint32_t shiftAmt) const; /// out-of-line slow case for operator& APInt AndSlowCase(const APInt& RHS) const; /// out-of-line slow case for operator| APInt OrSlowCase(const APInt& RHS) const; /// out-of-line slow case for operator^ APInt XorSlowCase(const APInt& RHS) const; /// out-of-line slow case for operator= APInt& AssignSlowCase(const APInt& RHS); /// out-of-line slow case for operator== bool EqualSlowCase(const APInt& RHS) const; /// out-of-line slow case for operator== bool EqualSlowCase(uint64_t Val) const; /// out-of-line slow case for countLeadingZeros uint32_t countLeadingZerosSlowCase() const; /// out-of-line slow case for countTrailingOnes uint32_t countTrailingOnesSlowCase() const; /// out-of-line slow case for countPopulation uint32_t countPopulationSlowCase() const; public: /// @name Constructors /// @{ /// If isSigned is true then val is treated as if it were a signed value /// (i.e. as an int64_t) and the appropriate sign extension to the bit width /// will be done. Otherwise, no sign extension occurs (high order bits beyond /// the range of val are zero filled). /// @param numBits the bit width of the constructed APInt /// @param val the initial value of the APInt /// @param isSigned how to treat signedness of val /// @brief Create a new APInt of numBits width, initialized as val. APInt(uint32_t numBits, uint64_t val, bool isSigned = false) : BitWidth(numBits), VAL(0) { assert(BitWidth && "bitwidth too small"); if (isSingleWord()) VAL = val; else initSlowCase(numBits, val, isSigned); clearUnusedBits(); } /// Note that numWords can be smaller or larger than the corresponding bit /// width but any extraneous bits will be dropped. /// @param numBits the bit width of the constructed APInt /// @param numWords the number of words in bigVal /// @param bigVal a sequence of words to form the initial value of the APInt /// @brief Construct an APInt of numBits width, initialized as bigVal[]. APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]); /// This constructor interprets the slen characters starting at StrStart as /// a string in the given radix. The interpretation stops when the first /// character that is not suitable for the radix is encountered. Acceptable /// radix values are 2, 8, 10 and 16. It is an error for the value implied by /// the string to require more bits than numBits. /// @param numBits the bit width of the constructed APInt /// @param strStart the start of the string to be interpreted /// @param slen the maximum number of characters to interpret /// @param radix the radix to use for the conversion /// @brief Construct an APInt from a string representation. APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix); /// Simply makes *this a copy of that. /// @brief Copy Constructor. APInt(const APInt& that) : BitWidth(that.BitWidth), VAL(0) { assert(BitWidth && "bitwidth too small"); if (isSingleWord()) VAL = that.VAL; else initSlowCase(that); } /// @brief Destructor. ~APInt() { if (!isSingleWord()) delete [] pVal; } /// Default constructor that creates an uninitialized APInt. This is useful /// for object deserialization (pair this with the static method Read). explicit APInt() : BitWidth(1) {} /// Profile - Used to insert APInt objects, or objects that contain APInt /// objects, into FoldingSets. void Profile(FoldingSetNodeID& id) const; /// @brief Used by the Bitcode serializer to emit APInts to Bitcode. void Emit(Serializer& S) const; /// @brief Used by the Bitcode deserializer to deserialize APInts. void Read(Deserializer& D); /// @} /// @name Value Tests /// @{ /// This tests the high bit of this APInt to determine if it is set. /// @returns true if this APInt is negative, false otherwise /// @brief Determine sign of this APInt. bool isNegative() const { return (*this)[BitWidth - 1]; } /// This tests the high bit of the APInt to determine if it is unset. /// @brief Determine if this APInt Value is non-negative (>= 0) bool isNonNegative() const { return !isNegative(); } /// This tests if the value of this APInt is positive (> 0). Note /// that 0 is not a positive value. /// @returns true if this APInt is positive. /// @brief Determine if this APInt Value is positive. bool isStrictlyPositive() const { return isNonNegative() && (*this) != 0; } /// This checks to see if the value has all bits of the APInt are set or not. /// @brief Determine if all bits are set bool isAllOnesValue() const { return countPopulation() == BitWidth; } /// This checks to see if the value of this APInt is the maximum unsigned /// value for the APInt's bit width. /// @brief Determine if this is the largest unsigned value. bool isMaxValue() const { return countPopulation() == BitWidth; } /// This checks to see if the value of this APInt is the maximum signed /// value for the APInt's bit width. /// @brief Determine if this is the largest signed value. bool isMaxSignedValue() const { return BitWidth == 1 ? VAL == 0 : !isNegative() && countPopulation() == BitWidth - 1; } /// This checks to see if the value of this APInt is the minimum unsigned /// value for the APInt's bit width. /// @brief Determine if this is the smallest unsigned value. bool isMinValue() const { return countPopulation() == 0; } /// This checks to see if the value of this APInt is the minimum signed /// value for the APInt's bit width. /// @brief Determine if this is the smallest signed value. bool isMinSignedValue() const { return BitWidth == 1 ? VAL == 1 : isNegative() && countPopulation() == 1; } /// @brief Check if this APInt has an N-bits unsigned integer value. bool isIntN(uint32_t N) const { assert(N && "N == 0 ???"); if (isSingleWord()) { return VAL == (VAL & (~0ULL >> (64 - N))); } else { APInt Tmp(N, getNumWords(), pVal); return Tmp == (*this); } } /// @brief Check if this APInt has an N-bits signed integer value. bool isSignedIntN(uint32_t N) const { assert(N && "N == 0 ???"); return getMinSignedBits() <= N; } /// @returns true if the argument APInt value is a power of two > 0. bool isPowerOf2() const; /// isSignBit - Return true if this is the value returned by getSignBit. bool isSignBit() const { return isMinSignedValue(); } /// This converts the APInt to a boolean value as a test against zero. /// @brief Boolean conversion function. bool getBoolValue() const { return *this != 0; } /// getLimitedValue - If this value is smaller than the specified limit, /// return it, otherwise return the limit value. This causes the value /// to saturate to the limit. uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit : getZExtValue(); } /// @} /// @name Value Generators /// @{ /// @brief Gets maximum unsigned value of APInt for specific bit width. static APInt getMaxValue(uint32_t numBits) { return APInt(numBits, 0).set(); } /// @brief Gets maximum signed value of APInt for a specific bit width. static APInt getSignedMaxValue(uint32_t numBits) { return APInt(numBits, 0).set().clear(numBits - 1); } /// @brief Gets minimum unsigned value of APInt for a specific bit width. static APInt getMinValue(uint32_t numBits) { return APInt(numBits, 0); } /// @brief Gets minimum signed value of APInt for a specific bit width. static APInt getSignedMinValue(uint32_t numBits) { return APInt(numBits, 0).set(numBits - 1); } /// getSignBit - This is just a wrapper function of getSignedMinValue(), and /// it helps code readability when we want to get a SignBit. /// @brief Get the SignBit for a specific bit width. static APInt getSignBit(uint32_t BitWidth) { return getSignedMinValue(BitWidth); } /// @returns the all-ones value for an APInt of the specified bit-width. /// @brief Get the all-ones value. static APInt getAllOnesValue(uint32_t numBits) { return APInt(numBits, 0).set(); } /// @returns the '0' value for an APInt of the specified bit-width. /// @brief Get the '0' value. static APInt getNullValue(uint32_t numBits) { return APInt(numBits, 0); } /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the low bits and right shift to the least significant bit. /// @returns the high "numBits" bits of this APInt. APInt getHiBits(uint32_t numBits) const; /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the high bits. /// @returns the low "numBits" bits of this APInt. APInt getLoBits(uint32_t numBits) const; /// Constructs an APInt value that has a contiguous range of bits set. The /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other /// bits will be zero. For example, with parameters(32, 0, 16) you would get /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For /// example, with parameters (32, 28, 4), you would get 0xF000000F. /// @param numBits the intended bit width of the result /// @param loBit the index of the lowest bit set. /// @param hiBit the index of the highest bit set. /// @returns An APInt value with the requested bits set. /// @brief Get a value with a block of bits set. static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) { assert(hiBit <= numBits && "hiBit out of range"); assert(loBit < numBits && "loBit out of range"); if (hiBit < loBit) return getLowBitsSet(numBits, hiBit) | getHighBitsSet(numBits, numBits-loBit); return getLowBitsSet(numBits, hiBit-loBit).shl(loBit); } /// Constructs an APInt value that has the top hiBitsSet bits set. /// @param numBits the bitwidth of the result /// @param hiBitsSet the number of high-order bits set in the result. /// @brief Get a value with high bits set static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) { assert(hiBitsSet <= numBits && "Too many bits to set!"); // Handle a degenerate case, to avoid shifting by word size if (hiBitsSet == 0) return APInt(numBits, 0); uint32_t shiftAmt = numBits - hiBitsSet; // For small values, return quickly if (numBits <= APINT_BITS_PER_WORD) return APInt(numBits, ~0ULL << shiftAmt); return (~APInt(numBits, 0)).shl(shiftAmt); } /// Constructs an APInt value that has the bottom loBitsSet bits set. /// @param numBits the bitwidth of the result /// @param loBitsSet the number of low-order bits set in the result. /// @brief Get a value with low bits set static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) { assert(loBitsSet <= numBits && "Too many bits to set!"); // Handle a degenerate case, to avoid shifting by word size if (loBitsSet == 0) return APInt(numBits, 0); if (loBitsSet == APINT_BITS_PER_WORD) return APInt(numBits, -1ULL); // For small values, return quickly. if (numBits < APINT_BITS_PER_WORD) return APInt(numBits, (1ULL << loBitsSet) - 1); return (~APInt(numBits, 0)).lshr(numBits - loBitsSet); } /// The hash value is computed as the sum of the words and the bit width. /// @returns A hash value computed from the sum of the APInt words. /// @brief Get a hash value based on this APInt uint64_t getHashValue() const; /// This function returns a pointer to the internal storage of the APInt. /// This is useful for writing out the APInt in binary form without any /// conversions. const uint64_t* getRawData() const { if (isSingleWord()) return &VAL; return &pVal[0]; } /// @} /// @name Unary Operators /// @{ /// @returns a new APInt value representing *this incremented by one /// @brief Postfix increment operator. const APInt operator++(int) { APInt API(*this); ++(*this); return API; } /// @returns *this incremented by one /// @brief Prefix increment operator. APInt& operator++(); /// @returns a new APInt representing *this decremented by one. /// @brief Postfix decrement operator. const APInt operator--(int) { APInt API(*this); --(*this); return API; } /// @returns *this decremented by one. /// @brief Prefix decrement operator. APInt& operator--(); /// Performs a bitwise complement operation on this APInt. /// @returns an APInt that is the bitwise complement of *this /// @brief Unary bitwise complement operator. APInt operator~() const { APInt Result(*this); Result.flip(); return Result; } /// Negates *this using two's complement logic. /// @returns An APInt value representing the negation of *this. /// @brief Unary negation operator APInt operator-() const { return APInt(BitWidth, 0) - (*this); } /// Performs logical negation operation on this APInt. /// @returns true if *this is zero, false otherwise. /// @brief Logical negation operator. bool operator!() const; /// @} /// @name Assignment Operators /// @{ /// @returns *this after assignment of RHS. /// @brief Copy assignment operator. APInt& operator=(const APInt& RHS) { // If the bitwidths are the same, we can avoid mucking with memory if (isSingleWord() && RHS.isSingleWord()) { VAL = RHS.VAL; BitWidth = RHS.BitWidth; return clearUnusedBits(); } return AssignSlowCase(RHS); } /// The RHS value is assigned to *this. If the significant bits in RHS exceed /// the bit width, the excess bits are truncated. If the bit width is larger /// than 64, the value is zero filled in the unspecified high order bits. /// @returns *this after assignment of RHS value. /// @brief Assignment operator. APInt& operator=(uint64_t RHS); /// Performs a bitwise AND operation on this APInt and RHS. The result is /// assigned to *this. /// @returns *this after ANDing with RHS. /// @brief Bitwise AND assignment operator. APInt& operator&=(const APInt& RHS); /// Performs a bitwise OR operation on this APInt and RHS. The result is /// assigned *this; /// @returns *this after ORing with RHS. /// @brief Bitwise OR assignment operator. APInt& operator|=(const APInt& RHS); /// Performs a bitwise XOR operation on this APInt and RHS. The result is /// assigned to *this. /// @returns *this after XORing with RHS. /// @brief Bitwise XOR assignment operator. APInt& operator^=(const APInt& RHS); /// Multiplies this APInt by RHS and assigns the result to *this. /// @returns *this /// @brief Multiplication assignment operator. APInt& operator*=(const APInt& RHS); /// Adds RHS to *this and assigns the result to *this. /// @returns *this /// @brief Addition assignment operator. APInt& operator+=(const APInt& RHS); /// Subtracts RHS from *this and assigns the result to *this. /// @returns *this /// @brief Subtraction assignment operator. APInt& operator-=(const APInt& RHS); /// Shifts *this left by shiftAmt and assigns the result to *this. /// @returns *this after shifting left by shiftAmt /// @brief Left-shift assignment function. APInt& operator<<=(uint32_t shiftAmt) { *this = shl(shiftAmt); return *this; } /// @} /// @name Binary Operators /// @{ /// Performs a bitwise AND operation on *this and RHS. /// @returns An APInt value representing the bitwise AND of *this and RHS. /// @brief Bitwise AND operator. APInt operator&(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL & RHS.VAL); return AndSlowCase(RHS); } APInt And(const APInt& RHS) const { return this->operator&(RHS); } /// Performs a bitwise OR operation on *this and RHS. /// @returns An APInt value representing the bitwise OR of *this and RHS. /// @brief Bitwise OR operator. APInt operator|(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL | RHS.VAL); return OrSlowCase(RHS); } APInt Or(const APInt& RHS) const { return this->operator|(RHS); } /// Performs a bitwise XOR operation on *this and RHS. /// @returns An APInt value representing the bitwise XOR of *this and RHS. /// @brief Bitwise XOR operator. APInt operator^(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL ^ RHS.VAL); return XorSlowCase(RHS); } APInt Xor(const APInt& RHS) const { return this->operator^(RHS); } /// Multiplies this APInt by RHS and returns the result. /// @brief Multiplication operator. APInt operator*(const APInt& RHS) const; /// Adds RHS to this APInt and returns the result. /// @brief Addition operator. APInt operator+(const APInt& RHS) const; APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); } /// Subtracts RHS from this APInt and returns the result. /// @brief Subtraction operator. APInt operator-(const APInt& RHS) const; APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); } APInt operator<<(unsigned Bits) const { return shl(Bits); } APInt operator<<(const APInt &Bits) const { return shl(Bits); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt ashr(uint32_t shiftAmt) const; /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt lshr(uint32_t shiftAmt) const; /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt shl(uint32_t shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // avoid undefined shift results return APInt(BitWidth, VAL << shiftAmt); } return shlSlowCase(shiftAmt); } /// @brief Rotate left by rotateAmt. APInt rotl(uint32_t rotateAmt) const; /// @brief Rotate right by rotateAmt. APInt rotr(uint32_t rotateAmt) const; /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt ashr(const APInt &shiftAmt) const; /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt lshr(const APInt &shiftAmt) const; /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt shl(const APInt &shiftAmt) const; /// @brief Rotate left by rotateAmt. APInt rotl(const APInt &rotateAmt) const; /// @brief Rotate right by rotateAmt. APInt rotr(const APInt &rotateAmt) const; /// Perform an unsigned divide operation on this APInt by RHS. Both this and /// RHS are treated as unsigned quantities for purposes of this division. /// @returns a new APInt value containing the division result /// @brief Unsigned division operation. APInt udiv(const APInt& RHS) const; /// Signed divide this APInt by APInt RHS. /// @brief Signed division function for APInt. APInt sdiv(const APInt& RHS) const { if (isNegative()) if (RHS.isNegative()) return (-(*this)).udiv(-RHS); else return -((-(*this)).udiv(RHS)); else if (RHS.isNegative()) return -(this->udiv(-RHS)); return this->udiv(RHS); } /// Perform an unsigned remainder operation on this APInt with RHS being the /// divisor. Both this and RHS are treated as unsigned quantities for purposes /// of this operation. Note that this is a true remainder operation and not /// a modulo operation because the sign follows the sign of the dividend /// which is *this. /// @returns a new APInt value containing the remainder result /// @brief Unsigned remainder operation. APInt urem(const APInt& RHS) const; /// Signed remainder operation on APInt. /// @brief Function for signed remainder operation. APInt srem(const APInt& RHS) const { if (isNegative()) if (RHS.isNegative()) return -((-(*this)).urem(-RHS)); else return -((-(*this)).urem(RHS)); else if (RHS.isNegative()) return this->urem(-RHS); return this->urem(RHS); } /// Sometimes it is convenient to divide two APInt values and obtain both the /// quotient and remainder. This function does both operations in the same /// computation making it a little more efficient. The pair of input arguments /// may overlap with the pair of output arguments. It is safe to call /// udivrem(X, Y, X, Y), for example. /// @brief Dual division/remainder interface. static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder); static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { if (LHS.isNegative()) { if (RHS.isNegative()) APInt::udivrem(-LHS, -RHS, Quotient, Remainder); else APInt::udivrem(-LHS, RHS, Quotient, Remainder); Quotient = -Quotient; Remainder = -Remainder; } else if (RHS.isNegative()) { APInt::udivrem(LHS, -RHS, Quotient, Remainder); Quotient = -Quotient; } else { APInt::udivrem(LHS, RHS, Quotient, Remainder); } } /// @returns the bit value at bitPosition /// @brief Array-indexing support. bool operator[](uint32_t bitPosition) const; /// @} /// @name Comparison Operators /// @{ /// Compares this APInt with RHS for the validity of the equality /// relationship. /// @brief Equality operator. bool operator==(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); if (isSingleWord()) return VAL == RHS.VAL; return EqualSlowCase(RHS); } /// Compares this APInt with a uint64_t for the validity of the equality /// relationship. /// @returns true if *this == Val /// @brief Equality operator. bool operator==(uint64_t Val) const { if (isSingleWord()) return VAL == Val; return EqualSlowCase(Val); } /// Compares this APInt with RHS for the validity of the equality /// relationship. /// @returns true if *this == Val /// @brief Equality comparison. bool eq(const APInt &RHS) const { return (*this) == RHS; } /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// @returns true if *this != Val /// @brief Inequality operator. bool operator!=(const APInt& RHS) const { return !((*this) == RHS); } /// Compares this APInt with a uint64_t for the validity of the inequality /// relationship. /// @returns true if *this != Val /// @brief Inequality operator. bool operator!=(uint64_t Val) const { return !((*this) == Val); } /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// @returns true if *this != Val /// @brief Inequality comparison bool ne(const APInt &RHS) const { return !((*this) == RHS); } /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the less-than relationship. /// @returns true if *this < RHS when both are considered unsigned. /// @brief Unsigned less than comparison bool ult(const APInt& RHS) const; /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-than relationship. /// @returns true if *this < RHS when both are considered signed. /// @brief Signed less than comparison bool slt(const APInt& RHS) const; /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the less-or-equal relationship. /// @returns true if *this <= RHS when both are considered unsigned. /// @brief Unsigned less or equal comparison bool ule(const APInt& RHS) const { return ult(RHS) || eq(RHS); } /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-or-equal relationship. /// @returns true if *this <= RHS when both are considered signed. /// @brief Signed less or equal comparison bool sle(const APInt& RHS) const { return slt(RHS) || eq(RHS); } /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the greater-than relationship. /// @returns true if *this > RHS when both are considered unsigned. /// @brief Unsigned greather than comparison bool ugt(const APInt& RHS) const { return !ult(RHS) && !eq(RHS); } /// Regards both *this and RHS as signed quantities and compares them for /// the validity of the greater-than relationship. /// @returns true if *this > RHS when both are considered signed. /// @brief Signed greather than comparison bool sgt(const APInt& RHS) const { return !slt(RHS) && !eq(RHS); } /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the greater-or-equal relationship. /// @returns true if *this >= RHS when both are considered unsigned. /// @brief Unsigned greater or equal comparison bool uge(const APInt& RHS) const { return !ult(RHS); } /// Regards both *this and RHS as signed quantities and compares them for /// validity of the greater-or-equal relationship. /// @returns true if *this >= RHS when both are considered signed. /// @brief Signed greather or equal comparison bool sge(const APInt& RHS) const { return !slt(RHS); } /// This operation tests if there are any pairs of corresponding bits /// between this APInt and RHS that are both set. bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } /// @} /// @name Resizing Operators /// @{ /// Truncate the APInt to a specified width. It is an error to specify a width /// that is greater than or equal to the current width. /// @brief Truncate to new width. APInt &trunc(uint32_t width); /// This operation sign extends the APInt to a new width. If the high order /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. /// It is an error to specify a width that is less than or equal to the /// current width. /// @brief Sign extend to a new width. APInt &sext(uint32_t width); /// This operation zero extends the APInt to a new width. The high order bits /// are filled with 0 bits. It is an error to specify a width that is less /// than or equal to the current width. /// @brief Zero extend to a new width. APInt &zext(uint32_t width); /// Make this APInt have the bit width given by \p width. The value is sign /// extended, truncated, or left alone to make it that width. /// @brief Sign extend or truncate to width APInt &sextOrTrunc(uint32_t width); /// Make this APInt have the bit width given by \p width. The value is zero /// extended, truncated, or left alone to make it that width. /// @brief Zero extend or truncate to width APInt &zextOrTrunc(uint32_t width); /// @} /// @name Bit Manipulation Operators /// @{ /// @brief Set every bit to 1. APInt& set() { if (isSingleWord()) { VAL = -1ULL; return clearUnusedBits(); } // Set all the bits in all the words. for (uint32_t i = 0; i < getNumWords(); ++i) pVal[i] = -1ULL; // Clear the unused ones return clearUnusedBits(); } /// Set the given bit to 1 whose position is given as "bitPosition". /// @brief Set a given bit to 1. APInt& set(uint32_t bitPosition); /// @brief Set every bit to 0. APInt& clear() { if (isSingleWord()) VAL = 0; else memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); return *this; } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. APInt& clear(uint32_t bitPosition); /// @brief Toggle every bit to its opposite value. APInt& flip() { if (isSingleWord()) { VAL ^= -1ULL; return clearUnusedBits(); } for (uint32_t i = 0; i < getNumWords(); ++i) pVal[i] ^= -1ULL; return clearUnusedBits(); } /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. APInt& flip(uint32_t bitPosition); /// @} /// @name Value Characterization Functions /// @{ /// @returns the total number of bits. uint32_t getBitWidth() const { return BitWidth; } /// Here one word's bitwidth equals to that of uint64_t. /// @returns the number of words to hold the integer value of this APInt. /// @brief Get the number of words. uint32_t getNumWords() const { return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; } /// This function returns the number of active bits which is defined as the /// bit width minus the number of leading zeros. This is used in several /// computations to see how "wide" the value is. /// @brief Compute the number of active bits in the value uint32_t getActiveBits() const { return BitWidth - countLeadingZeros(); } /// This function returns the number of active words in the value of this /// APInt. This is used in conjunction with getActiveData to extract the raw /// value of the APInt. uint32_t getActiveWords() const { return whichWord(getActiveBits()-1) + 1; } /// Computes the minimum bit width for this APInt while considering it to be /// a signed (and probably negative) value. If the value is not negative, /// this function returns the same value as getActiveBits()+1. Otherwise, it /// returns the smallest bit width that will retain the negative value. For /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so /// for -1, this function will always return 1. /// @brief Get the minimum bit size for this signed APInt uint32_t getMinSignedBits() const { if (isNegative()) return BitWidth - countLeadingOnes() + 1; return getActiveBits()+1; } /// This method attempts to return the value of this APInt as a zero extended /// uint64_t. The bitwidth must be <= 64 or the value must fit within a /// uint64_t. Otherwise an assertion will result. /// @brief Get zero extended value uint64_t getZExtValue() const { if (isSingleWord()) return VAL; assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); return pVal[0]; } /// This method attempts to return the value of this APInt as a sign extended /// int64_t. The bit width must be <= 64 or the value must fit within an /// int64_t. Otherwise an assertion will result. /// @brief Get sign extended value int64_t getSExtValue() const { if (isSingleWord()) return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> (APINT_BITS_PER_WORD - BitWidth); assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); return int64_t(pVal[0]); } /// This method determines how many bits are required to hold the APInt /// equivalent of the string given by \p str of length \p slen. /// @brief Get bits required for string value. static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix); /// countLeadingZeros - This function is an APInt version of the /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number /// of zeros from the most significant bit to the first one bit. /// @returns BitWidth if the value is zero. /// @returns the number of zeros from the most significant bit to the first /// one bits. uint32_t countLeadingZeros() const { if (isSingleWord()) { uint32_t unusedBits = APINT_BITS_PER_WORD - BitWidth; return CountLeadingZeros_64(VAL) - unusedBits; } return countLeadingZerosSlowCase(); } /// countLeadingOnes - This function is an APInt version of the /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number /// of ones from the most significant bit to the first zero bit. /// @returns 0 if the high order bit is not set /// @returns the number of 1 bits from the most significant to the least /// @brief Count the number of leading one bits. uint32_t countLeadingOnes() const; /// countTrailingZeros - This function is an APInt version of the /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts /// the number of zeros from the least significant bit to the first set bit. /// @returns BitWidth if the value is zero. /// @returns the number of zeros from the least significant bit to the first /// one bit. /// @brief Count the number of trailing zero bits. uint32_t countTrailingZeros() const; /// countTrailingOnes - This function is an APInt version of the /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts /// the number of ones from the least significant bit to the first zero bit. /// @returns BitWidth if the value is all ones. /// @returns the number of ones from the least significant bit to the first /// zero bit. /// @brief Count the number of trailing one bits. uint32_t countTrailingOnes() const { if (isSingleWord()) return CountTrailingOnes_64(VAL); return countTrailingOnesSlowCase(); } /// countPopulation - This function is an APInt version of the /// countPopulation_{32,64} functions in MathExtras.h. It counts the number /// of 1 bits in the APInt value. /// @returns 0 if the value is zero. /// @returns the number of set bits. /// @brief Count the number of bits set. uint32_t countPopulation() const { if (isSingleWord()) return CountPopulation_64(VAL); return countPopulationSlowCase(); } /// @} /// @name Conversion Functions /// @{ void print(raw_ostream &OS, bool isSigned) const; /// toString - Converts an APInt to a string and append it to Str. Str is /// commonly a SmallString. void toString(SmallVectorImpl &Str, unsigned Radix, bool Signed) const; /// Considers the APInt to be unsigned and converts it into a string in the /// radix given. The radix can be 2, 8, 10 or 16. void toStringUnsigned(SmallVectorImpl &Str, unsigned Radix = 10) const { return toString(Str, Radix, false); } /// Considers the APInt to be signed and converts it into a string in the /// radix given. The radix can be 2, 8, 10 or 16. void toStringSigned(SmallVectorImpl &Str, unsigned Radix = 10) const { return toString(Str, Radix, true); } /// toString - This returns the APInt as a std::string. Note that this is an /// inefficient method. It is better to pass in a SmallVector/SmallString /// to the methods above to avoid thrashing the heap for the string. std::string toString(unsigned Radix, bool Signed) const; /// @returns a byte-swapped representation of this APInt Value. APInt byteSwap() const; /// @brief Converts this APInt to a double value. double roundToDouble(bool isSigned) const; /// @brief Converts this unsigned APInt to a double value. double roundToDouble() const { return roundToDouble(false); } /// @brief Converts this signed APInt to a double value. double signedRoundToDouble() const { return roundToDouble(true); } /// The conversion does not do a translation from integer to double, it just /// re-interprets the bits as a double. Note that it is valid to do this on /// any bit width. Exactly 64 bits will be translated. /// @brief Converts APInt bits to a double double bitsToDouble() const { union { uint64_t I; double D; } T; T.I = (isSingleWord() ? VAL : pVal[0]); return T.D; } /// The conversion does not do a translation from integer to float, it just /// re-interprets the bits as a float. Note that it is valid to do this on /// any bit width. Exactly 32 bits will be translated. /// @brief Converts APInt bits to a double float bitsToFloat() const { union { uint32_t I; float F; } T; T.I = uint32_t((isSingleWord() ? VAL : pVal[0])); return T.F; } /// The conversion does not do a translation from double to integer, it just /// re-interprets the bits of the double. Note that it is valid to do this on /// any bit width but bits from V may get truncated. /// @brief Converts a double to APInt bits. APInt& doubleToBits(double V) { union { uint64_t I; double D; } T; T.D = V; if (isSingleWord()) VAL = T.I; else pVal[0] = T.I; return clearUnusedBits(); } /// The conversion does not do a translation from float to integer, it just /// re-interprets the bits of the float. Note that it is valid to do this on /// any bit width but bits from V may get truncated. /// @brief Converts a float to APInt bits. APInt& floatToBits(float V) { union { uint32_t I; float F; } T; T.F = V; if (isSingleWord()) VAL = T.I; else pVal[0] = T.I; return clearUnusedBits(); } /// @} /// @name Mathematics Operations /// @{ /// @returns the floor log base 2 of this APInt. uint32_t logBase2() const { return BitWidth - 1 - countLeadingZeros(); } /// @returns the log base 2 of this APInt if its an exact power of two, -1 /// otherwise int32_t exactLogBase2() const { if (!isPowerOf2()) return -1; return logBase2(); } /// @brief Compute the square root APInt sqrt() const; /// If *this is < 0 then return -(*this), otherwise *this; /// @brief Get the absolute value; APInt abs() const { if (isNegative()) return -(*this); return *this; } /// @returns the multiplicative inverse for a given modulo. APInt multiplicativeInverse(const APInt& modulo) const; /// @} /// @name Building-block Operations for APInt and APFloat /// @{ // These building block operations operate on a representation of // arbitrary precision, two's-complement, bignum integer values. // They should be sufficient to implement APInt and APFloat bignum // requirements. Inputs are generally a pointer to the base of an // array of integer parts, representing an unsigned bignum, and a // count of how many parts there are. /// Sets the least significant part of a bignum to the input value, /// and zeroes out higher parts. */ static void tcSet(integerPart *, integerPart, unsigned int); /// Assign one bignum to another. static void tcAssign(integerPart *, const integerPart *, unsigned int); /// Returns true if a bignum is zero, false otherwise. static bool tcIsZero(const integerPart *, unsigned int); /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. static int tcExtractBit(const integerPart *, unsigned int bit); /// Copy the bit vector of width srcBITS from SRC, starting at bit /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB /// becomes the least significant bit of DST. All high bits above /// srcBITS in DST are zero-filled. static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *, unsigned int srcBits, unsigned int srcLSB); /// Set the given bit of a bignum. Zero-based. static void tcSetBit(integerPart *, unsigned int bit); /// Returns the bit number of the least or most significant set bit /// of a number. If the input number has no bits set -1U is /// returned. static unsigned int tcLSB(const integerPart *, unsigned int); static unsigned int tcMSB(const integerPart *parts, unsigned int n); /// Negate a bignum in-place. static void tcNegate(integerPart *, unsigned int); /// DST += RHS + CARRY where CARRY is zero or one. Returns the /// carry flag. static integerPart tcAdd(integerPart *, const integerPart *, integerPart carry, unsigned); /// DST -= RHS + CARRY where CARRY is zero or one. Returns the /// carry flag. static integerPart tcSubtract(integerPart *, const integerPart *, integerPart carry, unsigned); /// DST += SRC * MULTIPLIER + PART if add is true /// DST = SRC * MULTIPLIER + PART if add is false /// /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC /// they must start at the same point, i.e. DST == SRC. /// /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is /// returned. Otherwise DST is filled with the least significant /// DSTPARTS parts of the result, and if all of the omitted higher /// parts were zero return zero, otherwise overflow occurred and /// return one. static int tcMultiplyPart(integerPart *dst, const integerPart *src, integerPart multiplier, integerPart carry, unsigned int srcParts, unsigned int dstParts, bool add); /// DST = LHS * RHS, where DST has the same width as the operands /// and is filled with the least significant parts of the result. /// Returns one if overflow occurred, otherwise zero. DST must be /// disjoint from both operands. static int tcMultiply(integerPart *, const integerPart *, const integerPart *, unsigned); /// DST = LHS * RHS, where DST has width the sum of the widths of /// the operands. No overflow occurs. DST must be disjoint from /// both operands. Returns the number of parts required to hold the /// result. static unsigned int tcFullMultiply(integerPart *, const integerPart *, const integerPart *, unsigned, unsigned); /// If RHS is zero LHS and REMAINDER are left unchanged, return one. /// Otherwise set LHS to LHS / RHS with the fractional part /// discarded, set REMAINDER to the remainder, return zero. i.e. /// /// OLD_LHS = RHS * LHS + REMAINDER /// /// SCRATCH is a bignum of the same size as the operands and result /// for use by the routine; its contents need not be initialized /// and are destroyed. LHS, REMAINDER and SCRATCH must be /// distinct. static int tcDivide(integerPart *lhs, const integerPart *rhs, integerPart *remainder, integerPart *scratch, unsigned int parts); /// Shift a bignum left COUNT bits. Shifted in bits are zero. /// There are no restrictions on COUNT. static void tcShiftLeft(integerPart *, unsigned int parts, unsigned int count); /// Shift a bignum right COUNT bits. Shifted in bits are zero. /// There are no restrictions on COUNT. static void tcShiftRight(integerPart *, unsigned int parts, unsigned int count); /// The obvious AND, OR and XOR and complement operations. static void tcAnd(integerPart *, const integerPart *, unsigned int); static void tcOr(integerPart *, const integerPart *, unsigned int); static void tcXor(integerPart *, const integerPart *, unsigned int); static void tcComplement(integerPart *, unsigned int); /// Comparison (unsigned) of two bignums. static int tcCompare(const integerPart *, const integerPart *, unsigned int); /// Increment a bignum in-place. Return the carry flag. static integerPart tcIncrement(integerPart *, unsigned int); /// Set the least significant BITS and clear the rest. static void tcSetLeastSignificantBits(integerPart *, unsigned int, unsigned int bits); /// @brief debug method void dump() const; /// @} }; inline bool operator==(uint64_t V1, const APInt& V2) { return V2 == V1; } inline bool operator!=(uint64_t V1, const APInt& V2) { return V2 != V1; } inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { I.print(OS, true); return OS; } namespace APIntOps { /// @brief Determine the smaller of two APInts considered to be signed. inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; } /// @brief Determine the larger of two APInts considered to be signed. inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; } /// @brief Determine the smaller of two APInts considered to be signed. inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; } /// @brief Determine the larger of two APInts considered to be unsigned. inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; } /// @brief Check if the specified APInt has a N-bits unsigned integer value. inline bool isIntN(uint32_t N, const APInt& APIVal) { return APIVal.isIntN(N); } /// @brief Check if the specified APInt has a N-bits signed integer value. inline bool isSignedIntN(uint32_t N, const APInt& APIVal) { return APIVal.isSignedIntN(N); } /// @returns true if the argument APInt value is a sequence of ones /// starting at the least significant bit with the remainder zero. inline bool isMask(uint32_t numBits, const APInt& APIVal) { return numBits <= APIVal.getBitWidth() && APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); } /// @returns true if the argument APInt value contains a sequence of ones /// with the remainder zero. inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) { return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal); } /// @returns a byte-swapped representation of the specified APInt Value. inline APInt byteSwap(const APInt& APIVal) { return APIVal.byteSwap(); } /// @returns the floor log base 2 of the specified APInt value. inline uint32_t logBase2(const APInt& APIVal) { return APIVal.logBase2(); } /// GreatestCommonDivisor - This function returns the greatest common /// divisor of the two APInt values using Euclid's algorithm. /// @returns the greatest common divisor of Val1 and Val2 /// @brief Compute GCD of two APInt values. APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2); /// Treats the APInt as an unsigned value for conversion purposes. /// @brief Converts the given APInt to a double value. inline double RoundAPIntToDouble(const APInt& APIVal) { return APIVal.roundToDouble(); } /// Treats the APInt as a signed value for conversion purposes. /// @brief Converts the given APInt to a double value. inline double RoundSignedAPIntToDouble(const APInt& APIVal) { return APIVal.signedRoundToDouble(); } /// @brief Converts the given APInt to a float vlalue. inline float RoundAPIntToFloat(const APInt& APIVal) { return float(RoundAPIntToDouble(APIVal)); } /// Treast the APInt as a signed value for conversion purposes. /// @brief Converts the given APInt to a float value. inline float RoundSignedAPIntToFloat(const APInt& APIVal) { return float(APIVal.signedRoundToDouble()); } /// RoundDoubleToAPInt - This function convert a double value to an APInt value. /// @brief Converts the given double value into a APInt. APInt RoundDoubleToAPInt(double Double, uint32_t width); /// RoundFloatToAPInt - Converts a float value into an APInt value. /// @brief Converts a float value into a APInt. inline APInt RoundFloatToAPInt(float Float, uint32_t width) { return RoundDoubleToAPInt(double(Float), width); } /// Arithmetic right-shift the APInt by shiftAmt. /// @brief Arithmetic right-shift function. inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) { return LHS.ashr(shiftAmt); } /// Logical right-shift the APInt by shiftAmt. /// @brief Logical right-shift function. inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) { return LHS.lshr(shiftAmt); } /// Left-shift the APInt by shiftAmt. /// @brief Left-shift function. inline APInt shl(const APInt& LHS, uint32_t shiftAmt) { return LHS.shl(shiftAmt); } /// Signed divide APInt LHS by APInt RHS. /// @brief Signed division function for APInt. inline APInt sdiv(const APInt& LHS, const APInt& RHS) { return LHS.sdiv(RHS); } /// Unsigned divide APInt LHS by APInt RHS. /// @brief Unsigned division function for APInt. inline APInt udiv(const APInt& LHS, const APInt& RHS) { return LHS.udiv(RHS); } /// Signed remainder operation on APInt. /// @brief Function for signed remainder operation. inline APInt srem(const APInt& LHS, const APInt& RHS) { return LHS.srem(RHS); } /// Unsigned remainder operation on APInt. /// @brief Function for unsigned remainder operation. inline APInt urem(const APInt& LHS, const APInt& RHS) { return LHS.urem(RHS); } /// Performs multiplication on APInt values. /// @brief Function for multiplication operation. inline APInt mul(const APInt& LHS, const APInt& RHS) { return LHS * RHS; } /// Performs addition on APInt values. /// @brief Function for addition operation. inline APInt add(const APInt& LHS, const APInt& RHS) { return LHS + RHS; } /// Performs subtraction on APInt values. /// @brief Function for subtraction operation. inline APInt sub(const APInt& LHS, const APInt& RHS) { return LHS - RHS; } /// Performs bitwise AND operation on APInt LHS and /// APInt RHS. /// @brief Bitwise AND function for APInt. inline APInt And(const APInt& LHS, const APInt& RHS) { return LHS & RHS; } /// Performs bitwise OR operation on APInt LHS and APInt RHS. /// @brief Bitwise OR function for APInt. inline APInt Or(const APInt& LHS, const APInt& RHS) { return LHS | RHS; } /// Performs bitwise XOR operation on APInt. /// @brief Bitwise XOR function for APInt. inline APInt Xor(const APInt& LHS, const APInt& RHS) { return LHS ^ RHS; } /// Performs a bitwise complement operation on APInt. /// @brief Bitwise complement function. inline APInt Not(const APInt& APIVal) { return ~APIVal; } } // End of APIntOps namespace } // End of llvm namespace #endif