//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform manipulations on basic blocks, and // instructions contained within basic blocks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ValueHandle.h" #include <algorithm> using namespace llvm; /// DeleteDeadBlock - Delete the specified block, which must have no /// predecessors. void llvm::DeleteDeadBlock(BasicBlock *BB) { assert((pred_begin(BB) == pred_end(BB) || // Can delete self loop. BB->getSinglePredecessor() == BB) && "Block is not dead!"); TerminatorInst *BBTerm = BB->getTerminator(); // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) BBTerm->getSuccessor(i)->removePredecessor(BB); // Zap all the instructions in the block. while (!BB->empty()) { Instruction &I = BB->back(); // If this instruction is used, replace uses with an arbitrary value. // Because control flow can't get here, we don't care what we replace the // value with. Note that since this block is unreachable, and all values // contained within it must dominate their uses, that all uses will // eventually be removed (they are themselves dead). if (!I.use_empty()) I.replaceAllUsesWith(UndefValue::get(I.getType())); BB->getInstList().pop_back(); } // Zap the block! BB->eraseFromParent(); } /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are /// any single-entry PHI nodes in it, fold them away. This handles the case /// when all entries to the PHI nodes in a block are guaranteed equal, such as /// when the block has exactly one predecessor. void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) { while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { if (PN->getIncomingValue(0) != PN) PN->replaceAllUsesWith(PN->getIncomingValue(0)); else PN->replaceAllUsesWith(UndefValue::get(PN->getType())); PN->eraseFromParent(); } } /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it /// is dead. Also recursively delete any operands that become dead as /// a result. This includes tracing the def-use list from the PHI to see if /// it is ultimately unused or if it reaches an unused cycle. bool llvm::DeleteDeadPHIs(BasicBlock *BB) { // Recursively deleting a PHI may cause multiple PHIs to be deleted // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. SmallVector<WeakVH, 8> PHIs; for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) PHIs.push_back(PN); bool Changed = false; for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) Changed |= RecursivelyDeleteDeadPHINode(PN); return Changed; } /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, /// if possible. The return value indicates success or failure. bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { // Don't merge away blocks who have their address taken. if (BB->hasAddressTaken()) return false; // Can't merge if there are multiple predecessors, or no predecessors. BasicBlock *PredBB = BB->getUniquePredecessor(); if (!PredBB) return false; // Don't break self-loops. if (PredBB == BB) return false; // Don't break invokes. if (isa<InvokeInst>(PredBB->getTerminator())) return false; succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); BasicBlock* OnlySucc = BB; for (; SI != SE; ++SI) if (*SI != OnlySucc) { OnlySucc = 0; // There are multiple distinct successors! break; } // Can't merge if there are multiple successors. if (!OnlySucc) return false; // Can't merge if there is PHI loop. for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast<PHINode>(BI)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == PN) return false; } else break; } // Begin by getting rid of unneeded PHIs. while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... PredBB->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(PredBB); // Inherit predecessors name if it exists. if (!PredBB->hasName()) PredBB->takeName(BB); // Finally, erase the old block and update dominator info. if (P) { if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) { DomTreeNode* DTN = DT->getNode(BB); DomTreeNode* PredDTN = DT->getNode(PredBB); if (DTN) { SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(), DE = Children.end(); DI != DE; ++DI) DT->changeImmediateDominator(*DI, PredDTN); DT->eraseNode(BB); } } } BB->eraseFromParent(); return true; } /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) /// with a value, then remove and delete the original instruction. /// void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Value *V) { Instruction &I = *BI; // Replaces all of the uses of the instruction with uses of the value I.replaceAllUsesWith(V); // Make sure to propagate a name if there is one already. if (I.hasName() && !V->hasName()) V->takeName(&I); // Delete the unnecessary instruction now... BI = BIL.erase(BI); } /// ReplaceInstWithInst - Replace the instruction specified by BI with the /// instruction specified by I. The original instruction is deleted and BI is /// updated to point to the new instruction. /// void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I) { assert(I->getParent() == 0 && "ReplaceInstWithInst: Instruction already inserted into basic block!"); // Insert the new instruction into the basic block... BasicBlock::iterator New = BIL.insert(BI, I); // Replace all uses of the old instruction, and delete it. ReplaceInstWithValue(BIL, BI, I); // Move BI back to point to the newly inserted instruction BI = New; } /// ReplaceInstWithInst - Replace the instruction specified by From with the /// instruction specified by To. /// void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { BasicBlock::iterator BI(From); ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); } /// RemoveSuccessor - Change the specified terminator instruction such that its /// successor SuccNum no longer exists. Because this reduces the outgoing /// degree of the current basic block, the actual terminator instruction itself /// may have to be changed. In the case where the last successor of the block /// is deleted, a return instruction is inserted in its place which can cause a /// surprising change in program behavior if it is not expected. /// void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) { assert(SuccNum < TI->getNumSuccessors() && "Trying to remove a nonexistant successor!"); // If our old successor block contains any PHI nodes, remove the entry in the // PHI nodes that comes from this branch... // BasicBlock *BB = TI->getParent(); TI->getSuccessor(SuccNum)->removePredecessor(BB); TerminatorInst *NewTI = 0; switch (TI->getOpcode()) { case Instruction::Br: // If this is a conditional branch... convert to unconditional branch. if (TI->getNumSuccessors() == 2) { cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum)); } else { // Otherwise convert to a return instruction... Value *RetVal = 0; // Create a value to return... if the function doesn't return null... if (!BB->getParent()->getReturnType()->isVoidTy()) RetVal = Constant::getNullValue(BB->getParent()->getReturnType()); // Create the return... NewTI = ReturnInst::Create(TI->getContext(), RetVal); } break; case Instruction::Invoke: // Should convert to call case Instruction::Switch: // Should remove entry default: case Instruction::Ret: // Cannot happen, has no successors! llvm_unreachable("Unhandled terminator inst type in RemoveSuccessor!"); } if (NewTI) // If it's a different instruction, replace. ReplaceInstWithInst(TI, NewTI); } /// GetSuccessorNumber - Search for the specified successor of basic block BB /// and return its position in the terminator instruction's list of /// successors. It is an error to call this with a block that is not a /// successor. unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { TerminatorInst *Term = BB->getTerminator(); #ifndef NDEBUG unsigned e = Term->getNumSuccessors(); #endif for (unsigned i = 0; ; ++i) { assert(i != e && "Didn't find edge?"); if (Term->getSuccessor(i) == Succ) return i; } return 0; } /// SplitEdge - Split the edge connecting specified block. Pass P must /// not be NULL. BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { unsigned SuccNum = GetSuccessorNumber(BB, Succ); // If this is a critical edge, let SplitCriticalEdge do it. TerminatorInst *LatchTerm = BB->getTerminator(); if (SplitCriticalEdge(LatchTerm, SuccNum, P)) return LatchTerm->getSuccessor(SuccNum); // If the edge isn't critical, then BB has a single successor or Succ has a // single pred. Split the block. BasicBlock::iterator SplitPoint; if (BasicBlock *SP = Succ->getSinglePredecessor()) { // If the successor only has a single pred, split the top of the successor // block. assert(SP == BB && "CFG broken"); SP = NULL; return SplitBlock(Succ, Succ->begin(), P); } else { // Otherwise, if BB has a single successor, split it at the bottom of the // block. assert(BB->getTerminator()->getNumSuccessors() == 1 && "Should have a single succ!"); return SplitBlock(BB, BB->getTerminator(), P); } } /// SplitBlock - Split the specified block at the specified instruction - every /// thing before SplitPt stays in Old and everything starting with SplitPt moves /// to a new block. The two blocks are joined by an unconditional branch and /// the loop info is updated. /// BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { BasicBlock::iterator SplitIt = SplitPt; while (isa<PHINode>(SplitIt)) ++SplitIt; BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); // The new block lives in whichever loop the old one did. This preserves // LCSSA as well, because we force the split point to be after any PHI nodes. if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>()) if (Loop *L = LI->getLoopFor(Old)) L->addBasicBlockToLoop(New, LI->getBase()); if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { // Old dominates New. New node dominates all other nodes dominated by Old. DomTreeNode *OldNode = DT->getNode(Old); std::vector<DomTreeNode *> Children; for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); I != E; ++I) Children.push_back(*I); DomTreeNode *NewNode = DT->addNewBlock(New,Old); for (std::vector<DomTreeNode *>::iterator I = Children.begin(), E = Children.end(); I != E; ++I) DT->changeImmediateDominator(*I, NewNode); } if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) DF->splitBlock(Old); return New; } /// SplitBlockPredecessors - This method transforms BB by introducing a new /// basic block into the function, and moving some of the predecessors of BB to /// be predecessors of the new block. The new predecessors are indicated by the /// Preds array, which has NumPreds elements in it. The new block is given a /// suffix of 'Suffix'. /// /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. /// In particular, it does not preserve LoopSimplify (because it's /// complicated to handle the case where one of the edges being split /// is an exit of a loop with other exits). /// BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, BasicBlock *const *Preds, unsigned NumPreds, const char *Suffix, Pass *P) { // Create new basic block, insert right before the original block. BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, BB->getParent(), BB); // The new block unconditionally branches to the old block. BranchInst *BI = BranchInst::Create(BB, NewBB); LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0; Loop *L = LI ? LI->getLoopFor(BB) : 0; bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); // Move the edges from Preds to point to NewBB instead of BB. // While here, if we need to preserve loop analyses, collect // some information about how this split will affect loops. bool HasLoopExit = false; bool IsLoopEntry = !!L; bool SplitMakesNewLoopHeader = false; for (unsigned i = 0; i != NumPreds; ++i) { // This is slightly more strict than necessary; the minimum requirement // is that there be no more than one indirectbr branching to BB. And // all BlockAddress uses would need to be updated. assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && "Cannot split an edge from an IndirectBrInst"); Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); if (LI) { // If we need to preserve LCSSA, determine if any of // the preds is a loop exit. if (PreserveLCSSA) if (Loop *PL = LI->getLoopFor(Preds[i])) if (!PL->contains(BB)) HasLoopExit = true; // If we need to preserve LoopInfo, note whether any of the // preds crosses an interesting loop boundary. if (L) { if (L->contains(Preds[i])) IsLoopEntry = false; else SplitMakesNewLoopHeader = true; } } } // Update dominator tree and dominator frontier if available. DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0; if (DT) DT->splitBlock(NewBB); if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0) DF->splitBlock(NewBB); // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI // node becomes an incoming value for BB's phi node. However, if the Preds // list is empty, we need to insert dummy entries into the PHI nodes in BB to // account for the newly created predecessor. if (NumPreds == 0) { // Insert dummy values as the incoming value. for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); return NewBB; } AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; if (L) { if (IsLoopEntry) { // Add the new block to the nearest enclosing loop (and not an // adjacent loop). To find this, examine each of the predecessors and // determine which loops enclose them, and select the most-nested loop // which contains the loop containing the block being split. Loop *InnermostPredLoop = 0; for (unsigned i = 0; i != NumPreds; ++i) if (Loop *PredLoop = LI->getLoopFor(Preds[i])) { // Seek a loop which actually contains the block being split (to // avoid adjacent loops). while (PredLoop && !PredLoop->contains(BB)) PredLoop = PredLoop->getParentLoop(); // Select the most-nested of these loops which contains the block. if (PredLoop && PredLoop->contains(BB) && (!InnermostPredLoop || InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) InnermostPredLoop = PredLoop; } if (InnermostPredLoop) InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); } else { L->addBasicBlockToLoop(NewBB, LI->getBase()); if (SplitMakesNewLoopHeader) L->moveToHeader(NewBB); } } // Otherwise, create a new PHI node in NewBB for each PHI node in BB. for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) { PHINode *PN = cast<PHINode>(I++); // Check to see if all of the values coming in are the same. If so, we // don't need to create a new PHI node, unless it's needed for LCSSA. Value *InVal = 0; if (!HasLoopExit) { InVal = PN->getIncomingValueForBlock(Preds[0]); for (unsigned i = 1; i != NumPreds; ++i) if (InVal != PN->getIncomingValueForBlock(Preds[i])) { InVal = 0; break; } } if (InVal) { // If all incoming values for the new PHI would be the same, just don't // make a new PHI. Instead, just remove the incoming values from the old // PHI. for (unsigned i = 0; i != NumPreds; ++i) PN->removeIncomingValue(Preds[i], false); } else { // If the values coming into the block are not the same, we need a PHI. // Create the new PHI node, insert it into NewBB at the end of the block PHINode *NewPHI = PHINode::Create(PN->getType(), PN->getName()+".ph", BI); if (AA) AA->copyValue(PN, NewPHI); // Move all of the PHI values for 'Preds' to the new PHI. for (unsigned i = 0; i != NumPreds; ++i) { Value *V = PN->removeIncomingValue(Preds[i], false); NewPHI->addIncoming(V, Preds[i]); } InVal = NewPHI; } // Add an incoming value to the PHI node in the loop for the preheader // edge. PN->addIncoming(InVal, NewBB); } return NewBB; } /// FindFunctionBackedges - Analyze the specified function to find all of the /// loop backedges in the function and return them. This is a relatively cheap /// (compared to computing dominators and loop info) analysis. /// /// The output is added to Result, as pairs of <from,to> edge info. void llvm::FindFunctionBackedges(const Function &F, SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { const BasicBlock *BB = &F.getEntryBlock(); if (succ_begin(BB) == succ_end(BB)) return; SmallPtrSet<const BasicBlock*, 8> Visited; SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; SmallPtrSet<const BasicBlock*, 8> InStack; Visited.insert(BB); VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); InStack.insert(BB); do { std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); const BasicBlock *ParentBB = Top.first; succ_const_iterator &I = Top.second; bool FoundNew = false; while (I != succ_end(ParentBB)) { BB = *I++; if (Visited.insert(BB)) { FoundNew = true; break; } // Successor is in VisitStack, it's a back edge. if (InStack.count(BB)) Result.push_back(std::make_pair(ParentBB, BB)); } if (FoundNew) { // Go down one level if there is a unvisited successor. InStack.insert(BB); VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); } else { // Go up one level. InStack.erase(VisitStack.pop_back_val().first); } } while (!VisitStack.empty()); }