//====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86-64 instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Operand Definitions. // // 64-bits but only 32 bits are significant. def i64i32imm : Operand; // 64-bits but only 32 bits are significant, and those bits are treated as being // pc relative. def i64i32imm_pcrel : Operand { let PrintMethod = "print_pcrel_imm"; } // 64-bits but only 8 bits are significant. def i64i8imm : Operand; def lea64mem : Operand { let PrintMethod = "printlea64mem"; let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm); } def lea64_32mem : Operand { let PrintMethod = "printlea64_32mem"; let AsmOperandLowerMethod = "lower_lea64_32mem"; let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm); } //===----------------------------------------------------------------------===// // Complex Pattern Definitions. // def lea64addr : ComplexPattern; def tls64addr : ComplexPattern; //===----------------------------------------------------------------------===// // Pattern fragments. // def i64immSExt8 : PatLeaf<(i64 imm), [{ // i64immSExt8 predicate - True if the 64-bit immediate fits in a 8-bit // sign extended field. return (int64_t)N->getZExtValue() == (int8_t)N->getZExtValue(); }]>; def i64immSExt32 : PatLeaf<(i64 imm), [{ // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit // sign extended field. return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue(); }]>; def i64immZExt32 : PatLeaf<(i64 imm), [{ // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit // unsignedsign extended field. return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue(); }]>; def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>; def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>; def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>; //===----------------------------------------------------------------------===// // Instruction list... // // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [RSP, EFLAGS], Uses = [RSP] in { def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In64BitMode]>; def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In64BitMode]>; } //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. Uses for argument // registers are added manually. let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [RSP] in { // NOTE: this pattern doesn't match "X86call imm", because we do not know // that the offset between an arbitrary immediate and the call will fit in // the 32-bit pcrel field that we have. def CALL64pcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i64i32imm_pcrel:$dst, variable_ops), "call\t$dst", []>, Requires<[In64BitMode, NotWin64]>; def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops), "call\t{*}$dst", [(X86call GR64:$dst)]>, Requires<[NotWin64]>; def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops), "call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, Requires<[NotWin64]>; } // FIXME: We need to teach codegen about single list of call-clobbered registers. let isCall = 1 in // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. Uses for argument // registers are added manually. let Defs = [RAX, RCX, RDX, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, EFLAGS], Uses = [RSP] in { def WINCALL64pcrel32 : I<0xE8, RawFrm, (outs), (ins i64i32imm:$dst, variable_ops), "call\t${dst:call}", [(X86call imm:$dst)]>, Requires<[IsWin64]>; def WINCALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops), "call\t{*}$dst", [(X86call GR64:$dst)]>, Requires<[IsWin64]>; def WINCALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops), "call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, Requires<[IsWin64]>; } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TCRETURNdi64 : I<0, Pseudo, (outs), (ins i64imm:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst # TAILCALL", []>; // Branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", [(brind GR64:$dst)]>; def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", [(brind (loadi64 addr:$dst))]>; } //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in { def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR64:$addr)]>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in def LEAVE64 : I<0xC9, RawFrm, (outs), (ins), "leave", []>; let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in { let mayLoad = 1 in def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>; let mayStore = 1 in def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", []>; } let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1 in { def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i8imm:$imm), "push{q}\t$imm", []>; def PUSH64i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{q}\t$imm", []>; def PUSH64i32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm), "push{q}\t$imm", []>; } let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1 in def POPFQ : I<0x9D, RawFrm, (outs), (ins), "popf", []>, REX_W; let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1 in def PUSHFQ : I<0x9C, RawFrm, (outs), (ins), "pushf", []>; def LEA64_32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins lea64_32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>; let isReMaterializable = 1 in def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), "lea{q}\t{$src|$dst}, {$dst|$src}", [(set GR64:$dst, lea64addr:$src)]>; let isTwoAddress = 1 in def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "bswap{q}\t$dst", [(set GR64:$dst, (bswap GR64:$src))]>, TB; // Bit scan instructions. let Defs = [EFLAGS] in { def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86bsf GR64:$src)), (implicit EFLAGS)]>, TB; def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86bsf (loadi64 addr:$src))), (implicit EFLAGS)]>, TB; def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86bsr GR64:$src)), (implicit EFLAGS)]>, TB; def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86bsr (loadi64 addr:$src))), (implicit EFLAGS)]>, TB; } // Defs = [EFLAGS] // Repeat string ops let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI] in def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", [(X86rep_movs i64)]>, REP; let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", [(X86rep_stos i64)]>, REP; // Fast system-call instructions def SYSCALL : I<0x05, RawFrm, (outs), (ins), "syscall", []>, TB; def SYSENTER : I<0x34, RawFrm, (outs), (ins), "sysenter", []>, TB; def SYSEXIT : I<0x35, RawFrm, (outs), (ins), "sysexit", []>, TB; def SYSEXIT64 : RI<0x35, RawFrm, (outs), (ins), "sysexit", []>, TB; def SYSRET : I<0x07, RawFrm, (outs), (ins), "sysret", []>, TB; //===----------------------------------------------------------------------===// // Move Instructions... // let neverHasSideEffects = 1 in def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", []>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src), "movabs{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, imm:$src)]>; def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, i64immSExt32:$src)]>; } let canFoldAsLoad = 1 in def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (load addr:$src))]>; def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store GR64:$src, addr:$dst)]>; def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store i64immSExt32:$src, addr:$dst)]>; // Sign/Zero extenders // MOVSX64rr8 always has a REX prefix and it has an 8-bit register // operand, which makes it a rare instruction with an 8-bit register // operand that can never access an h register. If support for h registers // were generalized, this would require a special register class. def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR8:$src))]>, TB; def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB; def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR16:$src))]>, TB; def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB; def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR32:$src))]>; def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i32 addr:$src))]>; // Use movzbl instead of movzbq when the destination is a register; it's // equivalent due to implicit zero-extending, and it has a smaller encoding. def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zext GR8:$src))]>, TB; def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zextloadi64i8 addr:$src))]>, TB; // Use movzwl instead of movzwq when the destination is a register; it's // equivalent due to implicit zero-extending, and it has a smaller encoding. def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zext GR16:$src))]>, TB; def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zextloadi64i16 addr:$src))]>, TB; // There's no movzlq instruction, but movl can be used for this purpose, using // implicit zero-extension. The preferred way to do 32-bit-to-64-bit zero // extension on x86-64 is to use a SUBREG_TO_REG to utilize implicit // zero-extension, however this isn't possible when the 32-bit value is // defined by a truncate or is copied from something where the high bits aren't // necessarily all zero. In such cases, we fall back to these explicit zext // instructions. def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src), "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zext GR32:$src))]>; def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src), "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, (zextloadi64i32 addr:$src))]>; // Any instruction that defines a 32-bit result leaves the high half of the // register. Truncate can be lowered to EXTRACT_SUBREG, and CopyFromReg may // be copying from a truncate, but any other 32-bit operation will zero-extend // up to 64 bits. def def32 : PatLeaf<(i32 GR32:$src), [{ return N->getOpcode() != ISD::TRUNCATE && N->getOpcode() != TargetInstrInfo::EXTRACT_SUBREG && N->getOpcode() != ISD::CopyFromReg; }]>; // In the case of a 32-bit def that is known to implicitly zero-extend, // we can use a SUBREG_TO_REG. def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, x86_subreg_32bit)>; let neverHasSideEffects = 1 in { let Defs = [RAX], Uses = [EAX] in def CDQE : RI<0x98, RawFrm, (outs), (ins), "{cltq|cdqe}", []>; // RAX = signext(EAX) let Defs = [RAX,RDX], Uses = [RAX] in def CQO : RI<0x99, RawFrm, (outs), (ins), "{cqto|cqo}", []>; // RDX:RAX = signext(RAX) } //===----------------------------------------------------------------------===// // Arithmetic Instructions... // let Defs = [EFLAGS] in { let isTwoAddress = 1 in { let isConvertibleToThreeAddress = 1 in { let isCommutable = 1 in // Register-Register Addition def ADD64rr : RI<0x01, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>; // Register-Integer Addition def ADD64ri8 : RIi8<0x83, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def ADD64ri32 : RIi32<0x81, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; } // isConvertibleToThreeAddress // Register-Memory Addition def ADD64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>; } // isTwoAddress // Memory-Register Addition def ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR64:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i64immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2), "add{q}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i64immSExt32:$src2), addr:$dst), (implicit EFLAGS)]>; let Uses = [EFLAGS] in { let isTwoAddress = 1 in { let isCommutable = 1 in def ADC64rr : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (adde GR64:$src1, GR64:$src2))]>; def ADC64rm : RI<0x13, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (adde GR64:$src1, (load addr:$src2)))]>; def ADC64ri8 : RIi8<0x83, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (adde GR64:$src1, i64immSExt8:$src2))]>; def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>; } // isTwoAddress def ADC64mr : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR64:$src2), addr:$dst)]>; def ADC64mi8 : RIi8<0x83, MRM2m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>; def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>; } // Uses = [EFLAGS] let isTwoAddress = 1 in { // Register-Register Subtraction def SUB64rr : RI<0x29, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sub GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>; // Register-Memory Subtraction def SUB64rm : RI<0x2B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sub GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>; // Register-Integer Subtraction def SUB64ri8 : RIi8<0x83, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sub GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sub GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; } // isTwoAddress // Memory-Register Subtraction def SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR64:$src2), addr:$dst), (implicit EFLAGS)]>; // Memory-Integer Subtraction def SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i64immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2), "sub{q}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i64immSExt32:$src2), addr:$dst), (implicit EFLAGS)]>; let Uses = [EFLAGS] in { let isTwoAddress = 1 in { def SBB64rr : RI<0x19, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sube GR64:$src1, GR64:$src2))]>; def SBB64rm : RI<0x1B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sube GR64:$src1, (load addr:$src2)))]>; def SBB64ri8 : RIi8<0x83, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sube GR64:$src1, i64immSExt8:$src2))]>; def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>; } // isTwoAddress def SBB64mr : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>; def SBB64mi8 : RIi8<0x83, MRM3m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>; def SBB64mi32 : RIi32<0x81, MRM3m, (outs), (ins i64mem:$dst, i64i32imm:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>; } // Uses = [EFLAGS] } // Defs = [EFLAGS] // Unsigned multiplication let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in { def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), "mul{q}\t$src", []>; // RAX,RDX = RAX*GR64 let mayLoad = 1 in def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), "mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64] // Signed multiplication def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>; // RAX,RDX = RAX*GR64 let mayLoad = 1 in def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), "imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64] } let Defs = [EFLAGS] in { let isTwoAddress = 1 in { let isCommutable = 1 in // Register-Register Signed Integer Multiplication def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "imul{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (mul GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>, TB; // Register-Memory Signed Integer Multiplication def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "imul{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (mul GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>, TB; } // isTwoAddress // Suprisingly enough, these are not two address instructions! // Register-Integer Signed Integer Multiplication def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, (mul GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; // Memory-Integer Signed Integer Multiplication def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, (mul (load addr:$src1), i64immSExt8:$src2)), (implicit EFLAGS)]>; def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32 (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, (mul (load addr:$src1), i64immSExt32:$src2)), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Unsigned division / remainder let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in { def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX "div{q}\t$src", []>; // Signed division / remainder def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX "idiv{q}\t$src", []>; let mayLoad = 1 in { def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX "div{q}\t$src", []>; def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX "idiv{q}\t$src", []>; } } // Unary instructions let Defs = [EFLAGS], CodeSize = 2 in { let isTwoAddress = 1 in def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst", [(set GR64:$dst, (ineg GR64:$src)), (implicit EFLAGS)]>; def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", [(store (ineg (loadi64 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst", [(set GR64:$dst, (add GR64:$src, 1)), (implicit EFLAGS)]>; def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", [(store (add (loadi64 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>; let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst", [(set GR64:$dst, (add GR64:$src, -1)), (implicit EFLAGS)]>; def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", [(store (add (loadi64 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>; // In 64-bit mode, single byte INC and DEC cannot be encoded. let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst", [(set GR16:$dst, (add GR16:$src, 1)), (implicit EFLAGS)]>, OpSize, Requires<[In64BitMode]>; def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst", [(set GR32:$dst, (add GR32:$src, 1)), (implicit EFLAGS)]>, Requires<[In64BitMode]>; def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst", [(set GR16:$dst, (add GR16:$src, -1)), (implicit EFLAGS)]>, OpSize, Requires<[In64BitMode]>; def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst", [(set GR32:$dst, (add GR32:$src, -1)), (implicit EFLAGS)]>, Requires<[In64BitMode]>; } // isConvertibleToThreeAddress // These are duplicates of their 32-bit counterparts. Only needed so X86 knows // how to unfold them. let isTwoAddress = 0, CodeSize = 2 in { def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In64BitMode]>; def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, Requires<[In64BitMode]>; def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In64BitMode]>; def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, Requires<[In64BitMode]>; } } // Defs = [EFLAGS], CodeSize let Defs = [EFLAGS] in { // Shift instructions let isTwoAddress = 1 in { let Uses = [CL] in def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src), "shl{q}\t{%cl, $dst|$dst, %CL}", [(set GR64:$dst, (shl GR64:$src, CL))]>; let isConvertibleToThreeAddress = 1 in // Can transform into LEA. def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "shl{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>; // NOTE: We don't use shifts of a register by one, because 'add reg,reg' is // cheaper. } // isTwoAddress let Uses = [CL] in def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst), "shl{q}\t{%cl, $dst|$dst, %CL}", [(store (shl (loadi64 addr:$dst), CL), addr:$dst)]>; def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src), "shl{q}\t{$src, $dst|$dst, $src}", [(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst), "shl{q}\t$dst", [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; let isTwoAddress = 1 in { let Uses = [CL] in def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src), "shr{q}\t{%cl, $dst|$dst, %CL}", [(set GR64:$dst, (srl GR64:$src, CL))]>; def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "shr{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>; def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1), "shr{q}\t$dst", [(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>; } // isTwoAddress let Uses = [CL] in def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst), "shr{q}\t{%cl, $dst|$dst, %CL}", [(store (srl (loadi64 addr:$dst), CL), addr:$dst)]>; def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src), "shr{q}\t{$src, $dst|$dst, $src}", [(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst), "shr{q}\t$dst", [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; let isTwoAddress = 1 in { let Uses = [CL] in def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src), "sar{q}\t{%cl, $dst|$dst, %CL}", [(set GR64:$dst, (sra GR64:$src, CL))]>; def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "sar{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))]>; def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1), "sar{q}\t$dst", [(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>; } // isTwoAddress let Uses = [CL] in def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst), "sar{q}\t{%cl, $dst|$dst, %CL}", [(store (sra (loadi64 addr:$dst), CL), addr:$dst)]>; def SAR64mi : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src), "sar{q}\t{$src, $dst|$dst, $src}", [(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst), "sar{q}\t$dst", [(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; // Rotate instructions let isTwoAddress = 1 in { let Uses = [CL] in def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src), "rol{q}\t{%cl, $dst|$dst, %CL}", [(set GR64:$dst, (rotl GR64:$src, CL))]>; def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "rol{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))]>; def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "rol{q}\t$dst", [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>; } // isTwoAddress let Uses = [CL] in def ROL64mCL : I<0xD3, MRM0m, (outs), (ins i64mem:$dst), "rol{q}\t{%cl, $dst|$dst, %CL}", [(store (rotl (loadi64 addr:$dst), CL), addr:$dst)]>; def ROL64mi : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src), "rol{q}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst), "rol{q}\t$dst", [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; let isTwoAddress = 1 in { let Uses = [CL] in def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src), "ror{q}\t{%cl, $dst|$dst, %CL}", [(set GR64:$dst, (rotr GR64:$src, CL))]>; def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "ror{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))]>; def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "ror{q}\t$dst", [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>; } // isTwoAddress let Uses = [CL] in def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst), "ror{q}\t{%cl, $dst|$dst, %CL}", [(store (rotr (loadi64 addr:$dst), CL), addr:$dst)]>; def ROR64mi : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src), "ror{q}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst), "ror{q}\t$dst", [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; // Double shift instructions (generalizations of rotate) let isTwoAddress = 1 in { let Uses = [CL] in { def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}", [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))]>, TB; def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}", [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))]>, TB; } let isCommutable = 1 in { // FIXME: Update X86InstrInfo::commuteInstruction def SHLD64rri8 : RIi8<0xA4, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3), "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, (i8 imm:$src3)))]>, TB; def SHRD64rri8 : RIi8<0xAC, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3), "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, (i8 imm:$src3)))]>, TB; } // isCommutable } // isTwoAddress let Uses = [CL] in { def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL), addr:$dst)]>, TB; def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL), addr:$dst)]>, TB; } def SHLD64mri8 : RIi8<0xA4, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3), "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi64 addr:$dst), GR64:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; def SHRD64mri8 : RIi8<0xAC, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3), "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi64 addr:$dst), GR64:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Logical Instructions... // let isTwoAddress = 1 , AddedComplexity = 15 in def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst", [(set GR64:$dst, (not GR64:$src))]>; def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", [(store (not (loadi64 addr:$dst)), addr:$dst)]>; let Defs = [EFLAGS] in { let isTwoAddress = 1 in { let isCommutable = 1 in def AND64rr : RI<0x21, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "and{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>; def AND64rm : RI<0x23, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "and{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def AND64ri8 : RIi8<0x83, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "and{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def AND64ri32 : RIi32<0x81, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "and{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; } // isTwoAddress def AND64mr : RI<0x21, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "and{q}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR64:$src), addr:$dst), (implicit EFLAGS)]>; def AND64mi8 : RIi8<0x83, MRM4m, (outs), (ins i64mem:$dst, i64i8imm :$src), "and{q}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i64immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def AND64mi32 : RIi32<0x81, MRM4m, (outs), (ins i64mem:$dst, i64i32imm:$src), "and{q}\t{$src, $dst|$dst, $src}", [(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst), (implicit EFLAGS)]>; let isTwoAddress = 1 in { let isCommutable = 1 in def OR64rr : RI<0x09, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "or{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>; def OR64rm : RI<0x0B, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "or{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def OR64ri8 : RIi8<0x83, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "or{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "or{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; } // isTwoAddress def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "or{q}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR64:$src), addr:$dst), (implicit EFLAGS)]>; def OR64mi8 : RIi8<0x83, MRM1m, (outs), (ins i64mem:$dst, i64i8imm:$src), "or{q}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i64immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src), "or{q}\t{$src, $dst|$dst, $src}", [(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst), (implicit EFLAGS)]>; let isTwoAddress = 1 in { let isCommutable = 1 in def XOR64rr : RI<0x31, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "xor{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, GR64:$src2)), (implicit EFLAGS)]>; def XOR64rm : RI<0x33, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "xor{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def XOR64ri8 : RIi8<0x83, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "xor{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, i64immSExt8:$src2)), (implicit EFLAGS)]>; def XOR64ri32 : RIi32<0x81, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "xor{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, i64immSExt32:$src2)), (implicit EFLAGS)]>; } // isTwoAddress def XOR64mr : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "xor{q}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR64:$src), addr:$dst), (implicit EFLAGS)]>; def XOR64mi8 : RIi8<0x83, MRM6m, (outs), (ins i64mem:$dst, i64i8imm :$src), "xor{q}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i64immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src), "xor{q}\t{$src, $dst|$dst, $src}", [(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst), (implicit EFLAGS)]>; } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Comparison Instructions... // // Integer comparison let Defs = [EFLAGS] in { let isCommutable = 1 in def TEST64rr : RI<0x85, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "test{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR64:$src1, GR64:$src2), 0), (implicit EFLAGS)]>; def TEST64rm : RI<0x85, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2), "test{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR64:$src1, (loadi64 addr:$src2)), 0), (implicit EFLAGS)]>; def TEST64ri32 : RIi32<0xF7, MRM0r, (outs), (ins GR64:$src1, i64i32imm:$src2), "test{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR64:$src1, i64immSExt32:$src2), 0), (implicit EFLAGS)]>; def TEST64mi32 : RIi32<0xF7, MRM0m, (outs), (ins i64mem:$src1, i64i32imm:$src2), "test{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and (loadi64 addr:$src1), i64immSExt32:$src2), 0), (implicit EFLAGS)]>; def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR64:$src1, GR64:$src2), (implicit EFLAGS)]>; def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi64 addr:$src1), GR64:$src2), (implicit EFLAGS)]>; def CMP64rm : RI<0x3B, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR64:$src1, (loadi64 addr:$src2)), (implicit EFLAGS)]>; def CMP64ri8 : RIi8<0x83, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR64:$src1, i64immSExt8:$src2), (implicit EFLAGS)]>; def CMP64ri32 : RIi32<0x81, MRM7r, (outs), (ins GR64:$src1, i64i32imm:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR64:$src1, i64immSExt32:$src2), (implicit EFLAGS)]>; def CMP64mi8 : RIi8<0x83, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi64 addr:$src1), i64immSExt8:$src2), (implicit EFLAGS)]>; def CMP64mi32 : RIi32<0x81, MRM7m, (outs), (ins i64mem:$src1, i64i32imm:$src2), "cmp{q}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi64 addr:$src1), i64immSExt32:$src2), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Bit tests. // TODO: BTC, BTR, and BTS let Defs = [EFLAGS] in { def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(X86bt GR64:$src1, GR64:$src2), (implicit EFLAGS)]>, TB; // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Disable these instructions for now. //def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), // "bt{q}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi64 addr:$src1), GR64:$src2), // (implicit EFLAGS)]>, TB; def BT64ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(X86bt GR64:$src1, i64immSExt8:$src2), (implicit EFLAGS)]>, TB; // Note that these instructions don't need FastBTMem because that // only applies when the other operand is in a register. When it's // an immediate, bt is still fast. def BT64mi8 : Ii8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(X86bt (loadi64 addr:$src1), i64immSExt8:$src2), (implicit EFLAGS)]>, TB; } // Defs = [EFLAGS] // Conditional moves let Uses = [EFLAGS], isTwoAddress = 1 in { let isCommutable = 1 in { def CMOVB64rr : RI<0x42, MRMSrcReg, // if , TB; def CMOVAE64rr: RI<0x43, MRMSrcReg, // if >=u, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_AE, EFLAGS))]>, TB; def CMOVE64rr : RI<0x44, MRMSrcReg, // if ==, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_E, EFLAGS))]>, TB; def CMOVNE64rr: RI<0x45, MRMSrcReg, // if !=, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_NE, EFLAGS))]>, TB; def CMOVBE64rr: RI<0x46, MRMSrcReg, // if <=u, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_BE, EFLAGS))]>, TB; def CMOVA64rr : RI<0x47, MRMSrcReg, // if >u, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_A, EFLAGS))]>, TB; def CMOVL64rr : RI<0x4C, MRMSrcReg, // if , TB; def CMOVGE64rr: RI<0x4D, MRMSrcReg, // if >=s, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_GE, EFLAGS))]>, TB; def CMOVLE64rr: RI<0x4E, MRMSrcReg, // if <=s, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_LE, EFLAGS))]>, TB; def CMOVG64rr : RI<0x4F, MRMSrcReg, // if >s, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_G, EFLAGS))]>, TB; def CMOVS64rr : RI<0x48, MRMSrcReg, // if signed, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_S, EFLAGS))]>, TB; def CMOVNS64rr: RI<0x49, MRMSrcReg, // if !signed, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_NS, EFLAGS))]>, TB; def CMOVP64rr : RI<0x4A, MRMSrcReg, // if parity, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_P, EFLAGS))]>, TB; def CMOVNP64rr : RI<0x4B, MRMSrcReg, // if !parity, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_NP, EFLAGS))]>, TB; def CMOVO64rr : RI<0x40, MRMSrcReg, // if overflow, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_O, EFLAGS))]>, TB; def CMOVNO64rr : RI<0x41, MRMSrcReg, // if !overflow, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, X86_COND_NO, EFLAGS))]>, TB; } // isCommutable = 1 def CMOVB64rm : RI<0x42, MRMSrcMem, // if , TB; def CMOVAE64rm: RI<0x43, MRMSrcMem, // if >=u, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_AE, EFLAGS))]>, TB; def CMOVE64rm : RI<0x44, MRMSrcMem, // if ==, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_E, EFLAGS))]>, TB; def CMOVNE64rm: RI<0x45, MRMSrcMem, // if !=, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_NE, EFLAGS))]>, TB; def CMOVBE64rm: RI<0x46, MRMSrcMem, // if <=u, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_BE, EFLAGS))]>, TB; def CMOVA64rm : RI<0x47, MRMSrcMem, // if >u, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_A, EFLAGS))]>, TB; def CMOVL64rm : RI<0x4C, MRMSrcMem, // if , TB; def CMOVGE64rm: RI<0x4D, MRMSrcMem, // if >=s, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_GE, EFLAGS))]>, TB; def CMOVLE64rm: RI<0x4E, MRMSrcMem, // if <=s, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_LE, EFLAGS))]>, TB; def CMOVG64rm : RI<0x4F, MRMSrcMem, // if >s, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_G, EFLAGS))]>, TB; def CMOVS64rm : RI<0x48, MRMSrcMem, // if signed, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_S, EFLAGS))]>, TB; def CMOVNS64rm: RI<0x49, MRMSrcMem, // if !signed, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_NS, EFLAGS))]>, TB; def CMOVP64rm : RI<0x4A, MRMSrcMem, // if parity, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_P, EFLAGS))]>, TB; def CMOVNP64rm : RI<0x4B, MRMSrcMem, // if !parity, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_NP, EFLAGS))]>, TB; def CMOVO64rm : RI<0x40, MRMSrcMem, // if overflow, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_O, EFLAGS))]>, TB; def CMOVNO64rm : RI<0x41, MRMSrcMem, // if !overflow, GR64 = [mem64] (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_NO, EFLAGS))]>, TB; } // isTwoAddress //===----------------------------------------------------------------------===// // Conversion Instructions... // // f64 -> signed i64 def Int_CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "cvtsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse2_cvtsd2si64 VR128:$src))]>; def Int_CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src), "cvtsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse2_cvtsd2si64 (load addr:$src)))]>; def CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src), "cvttsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (fp_to_sint FR64:$src))]>; def CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src), "cvttsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (fp_to_sint (loadf64 addr:$src)))]>; def Int_CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "cvttsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse2_cvttsd2si64 VR128:$src))]>; def Int_CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src), "cvttsd2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse2_cvttsd2si64 (load addr:$src)))]>; // Signed i64 -> f64 def CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "cvtsi2sd{q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp GR64:$src))]>; def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "cvtsi2sd{q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>; let isTwoAddress = 1 in { def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2), "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsi642sd VR128:$src1, GR64:$src2))]>; def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2), "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsi642sd VR128:$src1, (loadi64 addr:$src2)))]>; } // isTwoAddress // Signed i64 -> f32 def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src), "cvtsi2ss{q}\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp GR64:$src))]>; def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src), "cvtsi2ss{q}\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>; let isTwoAddress = 1 in { def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2), "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtsi642ss VR128:$src1, GR64:$src2))]>; def Int_CVTSI2SS64rm : RSSI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2), "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtsi642ss VR128:$src1, (loadi64 addr:$src2)))]>; } // f32 -> signed i64 def Int_CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "cvtss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse_cvtss2si64 VR128:$src))]>; def Int_CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src), "cvtss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse_cvtss2si64 (load addr:$src)))]>; def CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src), "cvttss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (fp_to_sint FR32:$src))]>; def CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src), "cvttss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (fp_to_sint (loadf32 addr:$src)))]>; def Int_CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "cvttss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse_cvttss2si64 VR128:$src))]>; def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src), "cvttss2si{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (int_x86_sse_cvttss2si64 (load addr:$src)))]>; //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's // equivalent due to implicit zero-extending, and it sometimes has a smaller // encoding. // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove // when we have a better way to specify isel priority. let AddedComplexity = 1 in def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), x86_subreg_32bit)>; // Materialize i64 constant where top 32-bits are zero. let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src), "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR64:$dst, i64immZExt32:$src)]>; //===----------------------------------------------------------------------===// // Thread Local Storage Instructions //===----------------------------------------------------------------------===// // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [RSP] in def TLS_addr64 : I<0, Pseudo, (outs), (ins lea64mem:$sym), ".byte\t0x66; " "leaq\t$sym(%rip), %rdi; " ".word\t0x6666; " "rex64; " "call\t__tls_get_addr@PLT", [(X86tlsaddr tls64addr:$sym)]>, Requires<[In64BitMode]>; let AddedComplexity = 5 in def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "movq\t%gs:$src, $dst", [(set GR64:$dst, (gsload addr:$src))]>, SegGS; let AddedComplexity = 5 in def MOV64FSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "movq\t%fs:$src, $dst", [(set GR64:$dst, (fsload addr:$src))]>, SegFS; //===----------------------------------------------------------------------===// // Atomic Instructions //===----------------------------------------------------------------------===// let Defs = [RAX, EFLAGS], Uses = [RAX] in { def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap), "lock\n\t" "cmpxchgq\t$swap,$ptr", [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK; } let Constraints = "$val = $dst" in { let Defs = [EFLAGS] in def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val), "lock\n\t" "xadd\t$val, $ptr", [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>, TB, LOCK; def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val), "xchg\t$val, $ptr", [(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>; } // Optimized codegen when the non-memory output is not used. // FIXME: Use normal add / sub instructions and add lock prefix dynamically. def LOCK_ADD64mr : RI<0x03, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "lock\n\t" "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "lock\n\t" "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2), "lock\n\t" "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "lock\n\t" "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2), "lock\n\t" "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2), "lock\n\t" "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "lock\n\t" "inc{q}\t$dst", []>, LOCK; def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "lock\n\t" "dec{q}\t$dst", []>, LOCK; // Atomic exchange, and, or, xor let Constraints = "$val = $dst", Defs = [EFLAGS], usesCustomDAGSchedInserter = 1 in { def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMAND64 PSEUDO!", [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>; def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMOR64 PSEUDO!", [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>; def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMXOR64 PSEUDO!", [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>; def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMNAND64 PSEUDO!", [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>; def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val), "#ATOMMIN64 PSEUDO!", [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>; def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMMAX64 PSEUDO!", [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>; def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMUMIN64 PSEUDO!", [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>; def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val), "#ATOMUMAX64 PSEUDO!", [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small // code model mode, should use 'movabs'. FIXME: This is really a hack, the // 'movabs' predicate should handle this sort of thing. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri tconstpool :$dst)>, Requires<[NotSmallCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri tjumptable :$dst)>, Requires<[NotSmallCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri tglobaladdr :$dst)>, Requires<[NotSmallCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri texternalsym:$dst)>, Requires<[NotSmallCode]>; // In static codegen with small code model, we can get the address of a label // into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri64i32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>; // If we have small model and -static mode, it is safe to store global addresses // directly as immediates. FIXME: This is really a hack, the 'imm' predicate // for MOV64mi32 should handle this sort of thing. def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), (MOV64mi32 addr:$dst, tconstpool:$src)>, Requires<[SmallCode, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), (MOV64mi32 addr:$dst, tjumptable:$src)>, Requires<[SmallCode, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV64mi32 addr:$dst, tglobaladdr:$src)>, Requires<[SmallCode, IsStatic]>; def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV64mi32 addr:$dst, texternalsym:$src)>, Requires<[SmallCode, IsStatic]>; // Calls // Direct PC relative function call for small code model. 32-bit displacement // sign extended to 64-bit. def : Pat<(X86call (i64 tglobaladdr:$dst)), (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>; def : Pat<(X86call (i64 texternalsym:$dst)), (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>; def : Pat<(X86call (i64 tglobaladdr:$dst)), (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>; def : Pat<(X86call (i64 texternalsym:$dst)), (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>; def : Pat<(X86tailcall (i64 tglobaladdr:$dst)), (CALL64pcrel32 tglobaladdr:$dst)>; def : Pat<(X86tailcall (i64 texternalsym:$dst)), (CALL64pcrel32 texternalsym:$dst)>; def : Pat<(X86tailcall GR64:$dst), (CALL64r GR64:$dst)>; // tailcall stuff def : Pat<(X86tailcall GR32:$dst), (TAILCALL)>; def : Pat<(X86tailcall (i64 tglobaladdr:$dst)), (TAILCALL)>; def : Pat<(X86tailcall (i64 texternalsym:$dst)), (TAILCALL)>; def : Pat<(X86tcret GR64:$dst, imm:$off), (TCRETURNri64 GR64:$dst, imm:$off)>; def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>; def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(parallel (X86cmp GR64:$src1, 0), (implicit EFLAGS)), (TEST64rr GR64:$src1, GR64:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS), (CMOVAE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS), (CMOVB64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS), (CMOVNE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS), (CMOVE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS), (CMOVA64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS), (CMOVBE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS), (CMOVGE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS), (CMOVL64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS), (CMOVG64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS), (CMOVLE64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS), (CMOVNP64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS), (CMOVP64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS), (CMOVNS64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS), (CMOVS64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS), (CMOVNO64rm GR64:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS), (CMOVO64rm GR64:$src2, addr:$src1)>; // zextload bool -> zextload byte def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; // extload // When extloading from 16-bit and smaller memory locations into 64-bit registers, // use zero-extending loads so that the entire 64-bit register is defined, avoiding // partial-register updates. def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>; // For other extloads, use subregs, since the high contents of the register are // defined after an extload. def : Pat<(extloadi64i32 addr:$src), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV32rm addr:$src), x86_subreg_32bit)>; def : Pat<(extloadi16i1 addr:$src), (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src), x86_subreg_8bit)>, Requires<[In64BitMode]>; def : Pat<(extloadi16i8 addr:$src), (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src), x86_subreg_8bit)>, Requires<[In64BitMode]>; // anyext def : Pat<(i64 (anyext GR8:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>; def : Pat<(i64 (anyext GR16:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>; def : Pat<(i64 (anyext GR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, x86_subreg_32bit)>; def : Pat<(i16 (anyext GR8:$src)), (INSERT_SUBREG (i16 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>, Requires<[In64BitMode]>; def : Pat<(i32 (anyext GR8:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR64:$src1, 128), (SUB64ri8 GR64:$src1, -128)>; def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), (SUB64mi8 addr:$dst, -128)>; // The same trick applies for 32-bit immediate fields in 64-bit // instructions. def : Pat<(add GR64:$src1, 0x0000000080000000), (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), (SUB64mi32 addr:$dst, 0xffffffff80000000)>; // r & (2^32-1) ==> movz def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>; // r & (2^16-1) ==> movz def : Pat<(and GR64:$src, 0xffff), (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR64:$src, 0xff), (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, x86_subreg_8bit))>, Requires<[In64BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, x86_subreg_8bit)))>, Requires<[In64BitMode]>; // sext_inreg patterns def : Pat<(sext_inreg GR64:$src, i32), (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>; def : Pat<(sext_inreg GR64:$src, i16), (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit))>; def : Pat<(sext_inreg GR64:$src, i8), (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit))>, Requires<[In64BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)))>, Requires<[In64BitMode]>; // trunc patterns def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)>; def : Pat<(i16 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)>; def : Pat<(i8 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit)>, Requires<[In64BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)>, Requires<[In64BitMode]>; // h-register tricks. // For now, be conservative on x86-64 and use an h-register extract only if the // value is immediately zero-extended or stored, which are somewhat common // cases. This uses a bunch of code to prevent a register requiring a REX prefix // from being allocated in the same instruction as the h register, as there's // currently no way to describe this requirement to the register allocator. // h-register extract and zero-extend. def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR64:$src, GR64_ABCD), x86_subreg_8bit_hi)), x86_subreg_32bit)>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl_su GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi)), x86_subreg_16bit)>, Requires<[In64BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi)), x86_subreg_32bit)>; // h-register extract and store. def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (COPY_TO_REGCLASS GR64:$src, GR64_ABCD), x86_subreg_8bit_hi))>; def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi))>, Requires<[In64BitMode]>; // (shl x, 1) ==> (add x, x) def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; // (shl x (and y, 63)) ==> (shl x, y) def : Pat<(shl GR64:$src1, (and CL:$amt, 63)), (SHL64rCL GR64:$src1)>; def : Pat<(store (shl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst), (SHL64mCL addr:$dst)>; def : Pat<(srl GR64:$src1, (and CL:$amt, 63)), (SHR64rCL GR64:$src1)>; def : Pat<(store (srl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst), (SHR64mCL addr:$dst)>; def : Pat<(sra GR64:$src1, (and CL:$amt, 63)), (SAR64rCL GR64:$src1)>; def : Pat<(store (sra (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst), (SAR64mCL addr:$dst)>; // (or (x >> c) | (y << (64 - c))) ==> (shrd64 x, y, c) def : Pat<(or (srl GR64:$src1, CL:$amt), (shl GR64:$src2, (sub 64, CL:$amt))), (SHRD64rrCL GR64:$src1, GR64:$src2)>; def : Pat<(store (or (srl (loadi64 addr:$dst), CL:$amt), (shl GR64:$src2, (sub 64, CL:$amt))), addr:$dst), (SHRD64mrCL addr:$dst, GR64:$src2)>; def : Pat<(or (srl GR64:$src1, (i8 (trunc RCX:$amt))), (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))), (SHRD64rrCL GR64:$src1, GR64:$src2)>; def : Pat<(store (or (srl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))), (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))), addr:$dst), (SHRD64mrCL addr:$dst, GR64:$src2)>; def : Pat<(shrd GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)), (SHRD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>; def : Pat<(store (shrd (loadi64 addr:$dst), (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)), addr:$dst), (SHRD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>; // (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) def : Pat<(or (shl GR64:$src1, CL:$amt), (srl GR64:$src2, (sub 64, CL:$amt))), (SHLD64rrCL GR64:$src1, GR64:$src2)>; def : Pat<(store (or (shl (loadi64 addr:$dst), CL:$amt), (srl GR64:$src2, (sub 64, CL:$amt))), addr:$dst), (SHLD64mrCL addr:$dst, GR64:$src2)>; def : Pat<(or (shl GR64:$src1, (i8 (trunc RCX:$amt))), (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))), (SHLD64rrCL GR64:$src1, GR64:$src2)>; def : Pat<(store (or (shl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))), (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))), addr:$dst), (SHLD64mrCL addr:$dst, GR64:$src2)>; def : Pat<(shld GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)), (SHLD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>; def : Pat<(store (shld (loadi64 addr:$dst), (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)), addr:$dst), (SHLD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>; // X86 specific add which produces a flag. def : Pat<(addc GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; def : Pat<(addc GR64:$src1, (load addr:$src2)), (ADD64rm GR64:$src1, addr:$src2)>; def : Pat<(addc GR64:$src1, i64immSExt8:$src2), (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(addc GR64:$src1, i64immSExt32:$src2), (ADD64ri32 GR64:$src1, imm:$src2)>; def : Pat<(subc GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; def : Pat<(subc GR64:$src1, (load addr:$src2)), (SUB64rm GR64:$src1, addr:$src2)>; def : Pat<(subc GR64:$src1, i64immSExt8:$src2), (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(subc GR64:$src1, imm:$src2), (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // Register-Register Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR64:$src1, GR64:$src2), (implicit EFLAGS)), (ADD64rr GR64:$src1, GR64:$src2)>; // Register-Integer Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR64:$src1, i64immSExt8:$src2), (implicit EFLAGS)), (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(parallel (X86add_flag GR64:$src1, i64immSExt32:$src2), (implicit EFLAGS)), (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; // Register-Memory Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR64:$src1, (loadi64 addr:$src2)), (implicit EFLAGS)), (ADD64rm GR64:$src1, addr:$src2)>; // Memory-Register Addition with EFLAGS result def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), GR64:$src2), addr:$dst), (implicit EFLAGS)), (ADD64mr addr:$dst, GR64:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), i64immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (ADD64mi8 addr:$dst, i64immSExt8:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), i64immSExt32:$src2), addr:$dst), (implicit EFLAGS)), (ADD64mi32 addr:$dst, i64immSExt32:$src2)>; // Register-Register Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR64:$src1, GR64:$src2), (implicit EFLAGS)), (SUB64rr GR64:$src1, GR64:$src2)>; // Register-Memory Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR64:$src1, (loadi64 addr:$src2)), (implicit EFLAGS)), (SUB64rm GR64:$src1, addr:$src2)>; // Register-Integer Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR64:$src1, i64immSExt8:$src2), (implicit EFLAGS)), (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(parallel (X86sub_flag GR64:$src1, i64immSExt32:$src2), (implicit EFLAGS)), (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; // Memory-Register Subtraction with EFLAGS result def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), GR64:$src2), addr:$dst), (implicit EFLAGS)), (SUB64mr addr:$dst, GR64:$src2)>; // Memory-Integer Subtraction with EFLAGS result def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), i64immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (SUB64mi8 addr:$dst, i64immSExt8:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), i64immSExt32:$src2), addr:$dst), (implicit EFLAGS)), (SUB64mi32 addr:$dst, i64immSExt32:$src2)>; // Register-Register Signed Integer Multiplication with EFLAGS result def : Pat<(parallel (X86smul_flag GR64:$src1, GR64:$src2), (implicit EFLAGS)), (IMUL64rr GR64:$src1, GR64:$src2)>; // Register-Memory Signed Integer Multiplication with EFLAGS result def : Pat<(parallel (X86smul_flag GR64:$src1, (loadi64 addr:$src2)), (implicit EFLAGS)), (IMUL64rm GR64:$src1, addr:$src2)>; // Register-Integer Signed Integer Multiplication with EFLAGS result def : Pat<(parallel (X86smul_flag GR64:$src1, i64immSExt8:$src2), (implicit EFLAGS)), (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(parallel (X86smul_flag GR64:$src1, i64immSExt32:$src2), (implicit EFLAGS)), (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; // Memory-Integer Signed Integer Multiplication with EFLAGS result def : Pat<(parallel (X86smul_flag (loadi64 addr:$src1), i64immSExt8:$src2), (implicit EFLAGS)), (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; def : Pat<(parallel (X86smul_flag (loadi64 addr:$src1), i64immSExt32:$src2), (implicit EFLAGS)), (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; // INC and DEC with EFLAGS result. Note that these do not set CF. def : Pat<(parallel (X86inc_flag GR16:$src), (implicit EFLAGS)), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(parallel (store (i16 (X86inc_flag (loadi16 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC64_16m addr:$dst)>, Requires<[In64BitMode]>; def : Pat<(parallel (X86dec_flag GR16:$src), (implicit EFLAGS)), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(parallel (store (i16 (X86dec_flag (loadi16 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC64_16m addr:$dst)>, Requires<[In64BitMode]>; def : Pat<(parallel (X86inc_flag GR32:$src), (implicit EFLAGS)), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(parallel (store (i32 (X86inc_flag (loadi32 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC64_32m addr:$dst)>, Requires<[In64BitMode]>; def : Pat<(parallel (X86dec_flag GR32:$src), (implicit EFLAGS)), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(parallel (store (i32 (X86dec_flag (loadi32 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC64_32m addr:$dst)>, Requires<[In64BitMode]>; def : Pat<(parallel (X86inc_flag GR64:$src), (implicit EFLAGS)), (INC64r GR64:$src)>; def : Pat<(parallel (store (i64 (X86inc_flag (loadi64 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC64m addr:$dst)>; def : Pat<(parallel (X86dec_flag GR64:$src), (implicit EFLAGS)), (DEC64r GR64:$src)>; def : Pat<(parallel (store (i64 (X86dec_flag (loadi64 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC64m addr:$dst)>; //===----------------------------------------------------------------------===// // X86-64 SSE Instructions //===----------------------------------------------------------------------===// // Move instructions... def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))]>; def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (vector_extract (v2i64 VR128:$src), (iPTR 0)))]>; def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))]>; def MOV64toSDrm : RPDI<0x6E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>; def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))]>; def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>; //===----------------------------------------------------------------------===// // X86-64 SSE4.1 Instructions //===----------------------------------------------------------------------===// /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract64 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize, REX_W; def mr : SS4AIi8, OpSize, REX_W; } defm PEXTRQ : SS41I_extract64<0x16, "pextrq">; let isTwoAddress = 1 in { multiclass SS41I_insert64 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize, REX_W; def rm : SS4AIi8, OpSize, REX_W; } } defm PINSRQ : SS41I_insert64<0x22, "pinsrq">;