//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SelectionDAG class, and transitively defines the // SDNode class and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAG_H #define LLVM_CODEGEN_SELECTIONDAG_H #include "llvm/ADT/ilist.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include #include #include #include #include namespace llvm { class AliasAnalysis; class TargetLowering; class TargetMachine; class MachineModuleInfo; class MachineFunction; class MachineConstantPoolValue; class FunctionLoweringInfo; template<> struct ilist_traits : public ilist_default_traits { private: mutable SDNode Sentinel; public: ilist_traits() : Sentinel(ISD::DELETED_NODE, SDVTList()) {} SDNode *createSentinel() const { return &Sentinel; } static void destroySentinel(SDNode *) {} static void deleteNode(SDNode *) { assert(0 && "ilist_traits shouldn't see a deleteNode call!"); } private: static void createNode(const SDNode &); }; /// SelectionDAG class - This is used to represent a portion of an LLVM function /// in a low-level Data Dependence DAG representation suitable for instruction /// selection. This DAG is constructed as the first step of instruction /// selection in order to allow implementation of machine specific optimizations /// and code simplifications. /// /// The representation used by the SelectionDAG is a target-independent /// representation, which has some similarities to the GCC RTL representation, /// but is significantly more simple, powerful, and is a graph form instead of a /// linear form. /// class SelectionDAG { TargetLowering &TLI; MachineFunction *MF; FunctionLoweringInfo &FLI; MachineModuleInfo *MMI; /// EntryNode - The starting token. SDNode EntryNode; /// Root - The root of the entire DAG. SDValue Root; /// AllNodes - A linked list of nodes in the current DAG. ilist AllNodes; /// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use /// pool allocation with recycling. typedef RecyclingAllocator::Alignment> NodeAllocatorType; /// NodeAllocator - Pool allocation for nodes. NodeAllocatorType NodeAllocator; /// CSEMap - This structure is used to memoize nodes, automatically performing /// CSE with existing nodes with a duplicate is requested. FoldingSet CSEMap; /// OperandAllocator - Pool allocation for machine-opcode SDNode operands. BumpPtrAllocator OperandAllocator; /// Allocator - Pool allocation for misc. objects that are created once per /// SelectionDAG. BumpPtrAllocator Allocator; /// VerifyNode - Sanity check the given node. Aborts if it is invalid. void VerifyNode(SDNode *N); public: SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli); ~SelectionDAG(); /// init - Prepare this SelectionDAG to process code in the given /// MachineFunction. /// void init(MachineFunction &mf, MachineModuleInfo *mmi); /// clear - Clear state and free memory necessary to make this /// SelectionDAG ready to process a new block. /// void clear(); MachineFunction &getMachineFunction() const { return *MF; } const TargetMachine &getTarget() const; TargetLowering &getTargetLoweringInfo() const { return TLI; } FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; } MachineModuleInfo *getMachineModuleInfo() const { return MMI; } /// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'. /// void viewGraph(const std::string &Title); void viewGraph(); #ifndef NDEBUG std::map NodeGraphAttrs; #endif /// clearGraphAttrs - Clear all previously defined node graph attributes. /// Intended to be used from a debugging tool (eg. gdb). void clearGraphAttrs(); /// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".) /// void setGraphAttrs(const SDNode *N, const char *Attrs); /// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".) /// Used from getNodeAttributes. const std::string getGraphAttrs(const SDNode *N) const; /// setGraphColor - Convenience for setting node color attribute. /// void setGraphColor(const SDNode *N, const char *Color); typedef ilist::const_iterator allnodes_const_iterator; allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } typedef ilist::iterator allnodes_iterator; allnodes_iterator allnodes_begin() { return AllNodes.begin(); } allnodes_iterator allnodes_end() { return AllNodes.end(); } ilist::size_type allnodes_size() const { return AllNodes.size(); } /// getRoot - Return the root tag of the SelectionDAG. /// const SDValue &getRoot() const { return Root; } /// getEntryNode - Return the token chain corresponding to the entry of the /// function. SDValue getEntryNode() const { return SDValue(const_cast(&EntryNode), 0); } /// setRoot - Set the current root tag of the SelectionDAG. /// const SDValue &setRoot(SDValue N) { assert((!N.getNode() || N.getValueType() == MVT::Other) && "DAG root value is not a chain!"); return Root = N; } /// Combine - This iterates over the nodes in the SelectionDAG, folding /// certain types of nodes together, or eliminating superfluous nodes. When /// the AfterLegalize argument is set to 'true', Combine takes care not to /// generate any nodes that will be illegal on the target. void Combine(bool AfterLegalize, AliasAnalysis &AA, bool Fast); /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that /// only uses types natively supported by the target. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void LegalizeTypes(); /// Legalize - This transforms the SelectionDAG into a SelectionDAG that is /// compatible with the target instruction selector, as indicated by the /// TargetLowering object. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void Legalize(); /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void RemoveDeadNodes(); /// DeleteNode - Remove the specified node from the system. This node must /// have no referrers. void DeleteNode(SDNode *N); /// getVTList - Return an SDVTList that represents the list of values /// specified. SDVTList getVTList(MVT VT); SDVTList getVTList(MVT VT1, MVT VT2); SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3); SDVTList getVTList(const MVT *VTs, unsigned NumVTs); /// getNodeValueTypes - These are obsolete, use getVTList instead. const MVT *getNodeValueTypes(MVT VT) { return getVTList(VT).VTs; } const MVT *getNodeValueTypes(MVT VT1, MVT VT2) { return getVTList(VT1, VT2).VTs; } const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) { return getVTList(VT1, VT2, VT3).VTs; } const MVT *getNodeValueTypes(const std::vector &vtList) { return getVTList(&vtList[0], (unsigned)vtList.size()).VTs; } //===--------------------------------------------------------------------===// // Node creation methods. // SDValue getConstant(uint64_t Val, MVT VT, bool isTarget = false); SDValue getConstant(const APInt &Val, MVT VT, bool isTarget = false); SDValue getConstant(const ConstantInt &Val, MVT VT, bool isTarget = false); SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false); SDValue getTargetConstant(uint64_t Val, MVT VT) { return getConstant(Val, VT, true); } SDValue getTargetConstant(const APInt &Val, MVT VT) { return getConstant(Val, VT, true); } SDValue getTargetConstant(const ConstantInt &Val, MVT VT) { return getConstant(Val, VT, true); } SDValue getConstantFP(double Val, MVT VT, bool isTarget = false); SDValue getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false); SDValue getConstantFP(const ConstantFP &CF, MVT VT, bool isTarget = false); SDValue getTargetConstantFP(double Val, MVT VT) { return getConstantFP(Val, VT, true); } SDValue getTargetConstantFP(const APFloat& Val, MVT VT) { return getConstantFP(Val, VT, true); } SDValue getTargetConstantFP(const ConstantFP &Val, MVT VT) { return getConstantFP(Val, VT, true); } SDValue getGlobalAddress(const GlobalValue *GV, MVT VT, int offset = 0, bool isTargetGA = false); SDValue getTargetGlobalAddress(const GlobalValue *GV, MVT VT, int offset = 0) { return getGlobalAddress(GV, VT, offset, true); } SDValue getFrameIndex(int FI, MVT VT, bool isTarget = false); SDValue getTargetFrameIndex(int FI, MVT VT) { return getFrameIndex(FI, VT, true); } SDValue getJumpTable(int JTI, MVT VT, bool isTarget = false); SDValue getTargetJumpTable(int JTI, MVT VT) { return getJumpTable(JTI, VT, true); } SDValue getConstantPool(Constant *C, MVT VT, unsigned Align = 0, int Offs = 0, bool isT=false); SDValue getTargetConstantPool(Constant *C, MVT VT, unsigned Align = 0, int Offset = 0) { return getConstantPool(C, VT, Align, Offset, true); } SDValue getConstantPool(MachineConstantPoolValue *C, MVT VT, unsigned Align = 0, int Offs = 0, bool isT=false); SDValue getTargetConstantPool(MachineConstantPoolValue *C, MVT VT, unsigned Align = 0, int Offset = 0) { return getConstantPool(C, VT, Align, Offset, true); } SDValue getBasicBlock(MachineBasicBlock *MBB); SDValue getExternalSymbol(const char *Sym, MVT VT); SDValue getTargetExternalSymbol(const char *Sym, MVT VT); SDValue getArgFlags(ISD::ArgFlagsTy Flags); SDValue getValueType(MVT); SDValue getRegister(unsigned Reg, MVT VT); SDValue getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col, const CompileUnitDesc *CU); SDValue getLabel(unsigned Opcode, SDValue Root, unsigned LabelID); SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N) { return getNode(ISD::CopyToReg, MVT::Other, Chain, getRegister(Reg, N.getValueType()), N); } // This version of the getCopyToReg method takes an extra operand, which // indicates that there is potentially an incoming flag value (if Flag is not // null) and that there should be a flag result. SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N, SDValue Flag) { const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag }; return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3); } // Similar to last getCopyToReg() except parameter Reg is a SDValue SDValue getCopyToReg(SDValue Chain, SDValue Reg, SDValue N, SDValue Flag) { const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, Reg, N, Flag }; return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3); } SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT) { const MVT *VTs = getNodeValueTypes(VT, MVT::Other); SDValue Ops[] = { Chain, getRegister(Reg, VT) }; return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2); } // This version of the getCopyFromReg method takes an extra operand, which // indicates that there is potentially an incoming flag value (if Flag is not // null) and that there should be a flag result. SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT, SDValue Flag) { const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, getRegister(Reg, VT), Flag }; return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.getNode() ? 3 : 2); } SDValue getCondCode(ISD::CondCode Cond); /// getZeroExtendInReg - Return the expression required to zero extend the Op /// value assuming it was the smaller SrcTy value. SDValue getZeroExtendInReg(SDValue Op, MVT SrcTy); /// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have /// a flag result (to ensure it's not CSE'd). SDValue getCALLSEQ_START(SDValue Chain, SDValue Op) { const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, Op }; return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2); } /// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a /// flag result (to ensure it's not CSE'd). SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InFlag) { SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(InFlag); return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], (unsigned)Ops.size() - (InFlag.getNode() == 0 ? 1 : 0)); } /// getNode - Gets or creates the specified node. /// SDValue getNode(unsigned Opcode, MVT VT); SDValue getNode(unsigned Opcode, MVT VT, SDValue N); SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2); SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3); SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); SDValue getNode(unsigned Opcode, MVT VT, const SDValue *Ops, unsigned NumOps); SDValue getNode(unsigned Opcode, MVT VT, const SDUse *Ops, unsigned NumOps); SDValue getNode(unsigned Opcode, const std::vector &ResultTys, const SDValue *Ops, unsigned NumOps); SDValue getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs, const SDValue *Ops, unsigned NumOps); SDValue getNode(unsigned Opcode, SDVTList VTs); SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N); SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2); SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3); SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); SDValue getNode(unsigned Opcode, SDVTList VTs, const SDValue *Ops, unsigned NumOps); SDValue getMemcpy(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff); SDValue getMemmove(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstOSVff, const Value *SrcSV, uint64_t SrcSVOff); SDValue getMemset(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff); /// getSetCC - Helper function to make it easier to build SetCC's if you just /// have an ISD::CondCode instead of an SDValue. /// SDValue getSetCC(MVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond) { return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond)); } /// getVSetCC - Helper function to make it easier to build VSetCC's nodes /// if you just have an ISD::CondCode instead of an SDValue. /// SDValue getVSetCC(MVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond) { return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond)); } /// getSelectCC - Helper function to make it easier to build SelectCC's if you /// just have an ISD::CondCode instead of an SDValue. /// SDValue getSelectCC(SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond) { return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False, getCondCode(Cond)); } /// getVAArg - VAArg produces a result and token chain, and takes a pointer /// and a source value as input. SDValue getVAArg(MVT VT, SDValue Chain, SDValue Ptr, SDValue SV); /// getAtomic - Gets a node for an atomic op, produces result and chain, takes /// 3 operands SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, const Value* PtrVal, unsigned Alignment=0); /// getAtomic - Gets a node for an atomic op, produces result and chain, takes /// 2 operands SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr, SDValue Val, const Value* PtrVal, unsigned Alignment = 0); /// getMergeValues - Create a MERGE_VALUES node from the given operands. /// Allowed to return something different (and simpler) if Simplify is true. SDValue getMergeValues(const SDValue *Ops, unsigned NumOps, bool Simplify = true); /// getMergeValues - Create a MERGE_VALUES node from the given types and ops. /// Allowed to return something different (and simpler) if Simplify is true. /// May be faster than the above version if VTs is known and NumOps is large. SDValue getMergeValues(SDVTList VTs, const SDValue *Ops, unsigned NumOps, bool Simplify = true) { if (Simplify && NumOps == 1) return Ops[0]; return getNode(ISD::MERGE_VALUES, VTs, Ops, NumOps); } /// getCall - Create a CALL node from the given information. /// SDValue getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall, bool isInreg, SDVTList VTs, const SDValue *Operands, unsigned NumOperands); /// getLoad - Loads are not normal binary operators: their result type is not /// determined by their operands, and they produce a value AND a token chain. /// SDValue getLoad(MVT VT, SDValue Chain, SDValue Ptr, const Value *SV, int SVOffset, bool isVolatile=false, unsigned Alignment=0); SDValue getExtLoad(ISD::LoadExtType ExtType, MVT VT, SDValue Chain, SDValue Ptr, const Value *SV, int SVOffset, MVT EVT, bool isVolatile=false, unsigned Alignment=0); SDValue getIndexedLoad(SDValue OrigLoad, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, MVT VT, SDValue Chain, SDValue Ptr, SDValue Offset, const Value *SV, int SVOffset, MVT EVT, bool isVolatile=false, unsigned Alignment=0); /// getStore - Helper function to build ISD::STORE nodes. /// SDValue getStore(SDValue Chain, SDValue Val, SDValue Ptr, const Value *SV, int SVOffset, bool isVolatile=false, unsigned Alignment=0); SDValue getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr, const Value *SV, int SVOffset, MVT TVT, bool isVolatile=false, unsigned Alignment=0); SDValue getIndexedStore(SDValue OrigStoe, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); // getSrcValue - Construct a node to track a Value* through the backend. SDValue getSrcValue(const Value *v); // getMemOperand - Construct a node to track a memory reference // through the backend. SDValue getMemOperand(const MachineMemOperand &MO); /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDValue UpdateNodeOperands(SDValue N, SDValue Op); SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2); SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3); SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4); SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4, SDValue Op5); SDValue UpdateNodeOperands(SDValue N, const SDValue *Ops, unsigned NumOps); /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ~TargetOpcode in the node opcode field. The resultant node is returned. SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, const SDValue *Ops, unsigned NumOps); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs, const SDValue *Ops, unsigned NumOps); /// MorphNodeTo - These *mutate* the specified node to have the specified /// return type, opcode, and operands. SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1, SDValue Op2); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, const SDValue *Ops, unsigned NumOps); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps); /// getTargetNode - These are used for target selectors to create a new node /// with specified return type(s), target opcode, and operands. /// /// Note that getTargetNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *getTargetNode(unsigned Opcode, MVT VT); SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1); SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2); SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *getTargetNode(unsigned Opcode, MVT VT, const SDValue *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, SDValue Op1, SDValue Op2); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4, const SDValue *Ops, unsigned NumOps); SDNode *getTargetNode(unsigned Opcode, const std::vector &ResultTys, const SDValue *Ops, unsigned NumOps); /// getNodeIfExists - Get the specified node if it's already available, or /// else return NULL. SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, const SDValue *Ops, unsigned NumOps); /// DAGUpdateListener - Clients of various APIs that cause global effects on /// the DAG can optionally implement this interface. This allows the clients /// to handle the various sorts of updates that happen. class DAGUpdateListener { public: virtual ~DAGUpdateListener(); /// NodeDeleted - The node N that was deleted and, if E is not null, an /// equivalent node E that replaced it. virtual void NodeDeleted(SDNode *N, SDNode *E) = 0; /// NodeUpdated - The node N that was updated. virtual void NodeUpdated(SDNode *N) = 0; }; /// RemoveDeadNode - Remove the specified node from the system. If any of its /// operands then becomes dead, remove them as well. Inform UpdateListener /// for each node deleted. void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0); /// RemoveDeadNodes - This method deletes the unreachable nodes in the /// given list, and any nodes that become unreachable as a result. void RemoveDeadNodes(SmallVectorImpl &DeadNodes, DAGUpdateListener *UpdateListener = 0); /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. Use the first /// version if 'From' is known to have a single result, use the second /// if you have two nodes with identical results, use the third otherwise. /// /// These methods all take an optional UpdateListener, which (if not null) is /// informed about nodes that are deleted and modified due to recursive /// changes in the dag. /// void ReplaceAllUsesWith(SDValue From, SDValue Op, DAGUpdateListener *UpdateListener = 0); void ReplaceAllUsesWith(SDNode *From, SDNode *To, DAGUpdateListener *UpdateListener = 0); void ReplaceAllUsesWith(SDNode *From, const SDValue *To, DAGUpdateListener *UpdateListener = 0); /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.Val alone. void ReplaceAllUsesOfValueWith(SDValue From, SDValue To, DAGUpdateListener *UpdateListener = 0); /// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but /// for multiple values at once. This correctly handles the case where /// there is an overlap between the From values and the To values. void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num, DAGUpdateListener *UpdateListener = 0); /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG /// based on their topological order. It returns the maximum id and a vector /// of the SDNodes* in assigned order by reference. unsigned AssignTopologicalOrder(std::vector &TopOrder); /// isCommutativeBinOp - Returns true if the opcode is a commutative binary /// operation. static bool isCommutativeBinOp(unsigned Opcode) { // FIXME: This should get its info from the td file, so that we can include // target info. switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::MULHU: case ISD::MULHS: case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: case ISD::FADD: case ISD::FMUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADDC: case ISD::ADDE: return true; default: return false; } } void dump() const; /// CreateStackTemporary - Create a stack temporary, suitable for holding the /// specified value type. If minAlign is specified, the slot size will have /// at least that alignment. SDValue CreateStackTemporary(MVT VT, unsigned minAlign = 1); /// FoldConstantArithmetic - SDValue FoldConstantArithmetic(unsigned Opcode, MVT VT, ConstantSDNode *Cst1, ConstantSDNode *Cst2); /// FoldSetCC - Constant fold a setcc to true or false. SDValue FoldSetCC(MVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond); /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We /// use this predicate to simplify operations downstream. bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We /// use this predicate to simplify operations downstream. Op and Mask are /// known to be the same type. bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0) const; /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. Targets can implement the computeMaskedBitsForTargetNode /// method in the TargetLowering class to allow target nodes to be understood. void ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, unsigned Depth = 0) const; /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. Targets can /// implement the ComputeNumSignBitsForTarget method in the TargetLowering /// class to allow target nodes to be understood. unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; /// isVerifiedDebugInfoDesc - Returns true if the specified SDValue has /// been verified as a debug information descriptor. bool isVerifiedDebugInfoDesc(SDValue Op) const; /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. SDValue getShuffleScalarElt(const SDNode *N, unsigned Idx); private: bool RemoveNodeFromCSEMaps(SDNode *N); SDNode *AddNonLeafNodeToCSEMaps(SDNode *N); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps, void *&InsertPos); void DeleteNodeNotInCSEMaps(SDNode *N); unsigned getMVTAlignment(MVT MemoryVT) const; void allnodes_clear(); // List of non-single value types. std::vector VTList; // Maps to auto-CSE operations. std::vector CondCodeNodes; std::vector ValueTypeNodes; std::map ExtendedValueTypeNodes; StringMap ExternalSymbols; StringMap TargetExternalSymbols; }; template <> struct GraphTraits : public GraphTraits { typedef SelectionDAG::allnodes_iterator nodes_iterator; static nodes_iterator nodes_begin(SelectionDAG *G) { return G->allnodes_begin(); } static nodes_iterator nodes_end(SelectionDAG *G) { return G->allnodes_end(); } }; } // end namespace llvm #endif