//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Top-level implementation for the PowerPC target. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "PPCMCAsmInfo.h" #include "PPCTargetMachine.h" #include "llvm/PassManager.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/FormattedStream.h" using namespace llvm; static const MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) { Triple TheTriple(TT); bool isPPC64 = TheTriple.getArch() == Triple::ppc64; if (TheTriple.getOS() == Triple::Darwin) return new PPCMCAsmInfoDarwin(isPPC64); return new PPCLinuxMCAsmInfo(isPPC64); } extern "C" void LLVMInitializePowerPCTarget() { // Register the targets RegisterTargetMachine A(ThePPC32Target); RegisterTargetMachine B(ThePPC64Target); RegisterAsmInfoFn C(ThePPC32Target, createMCAsmInfo); RegisterAsmInfoFn D(ThePPC64Target, createMCAsmInfo); } PPCTargetMachine::PPCTargetMachine(const Target &T, const std::string &TT, const std::string &FS, bool is64Bit) : LLVMTargetMachine(T, TT), Subtarget(TT, FS, is64Bit), DataLayout(Subtarget.getTargetDataString()), InstrInfo(*this), FrameInfo(*this, is64Bit), JITInfo(*this, is64Bit), TLInfo(*this), InstrItins(Subtarget.getInstrItineraryData()), MachOWriterInfo(*this) { if (getRelocationModel() == Reloc::Default) { if (Subtarget.isDarwin()) setRelocationModel(Reloc::DynamicNoPIC); else setRelocationModel(Reloc::Static); } } /// Override this for PowerPC. Tail merging happily breaks up instruction issue /// groups, which typically degrades performance. bool PPCTargetMachine::getEnableTailMergeDefault() const { return false; } PPC32TargetMachine::PPC32TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : PPCTargetMachine(T, TT, FS, false) { } PPC64TargetMachine::PPC64TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : PPCTargetMachine(T, TT, FS, true) { } //===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// bool PPCTargetMachine::addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // Install an instruction selector. PM.add(createPPCISelDag(*this)); return false; } bool PPCTargetMachine::addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // Must run branch selection immediately preceding the asm printer. PM.add(createPPCBranchSelectionPass()); return false; } bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, MachineCodeEmitter &MCE) { // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64. // FIXME: This should be moved to TargetJITInfo!! if (Subtarget.isPPC64()) { // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many // instructions to materialize arbitrary global variable + function + // constant pool addresses. setRelocationModel(Reloc::PIC_); // Temporary workaround for the inability of PPC64 JIT to handle jump // tables. DisableJumpTables = true; } else { setRelocationModel(Reloc::Static); } // Inform the subtarget that we are in JIT mode. FIXME: does this break macho // writing? Subtarget.SetJITMode(); // Machine code emitter pass for PowerPC. PM.add(createPPCCodeEmitterPass(*this, MCE)); return false; } bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, JITCodeEmitter &JCE) { // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64. // FIXME: This should be moved to TargetJITInfo!! if (Subtarget.isPPC64()) { // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many // instructions to materialize arbitrary global variable + function + // constant pool addresses. setRelocationModel(Reloc::PIC_); // Temporary workaround for the inability of PPC64 JIT to handle jump // tables. DisableJumpTables = true; } else { setRelocationModel(Reloc::Static); } // Inform the subtarget that we are in JIT mode. FIXME: does this break macho // writing? Subtarget.SetJITMode(); // Machine code emitter pass for PowerPC. PM.add(createPPCJITCodeEmitterPass(*this, JCE)); return false; } bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, ObjectCodeEmitter &OCE) { // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64. // FIXME: This should be moved to TargetJITInfo!! if (Subtarget.isPPC64()) { // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many // instructions to materialize arbitrary global variable + function + // constant pool addresses. setRelocationModel(Reloc::PIC_); // Temporary workaround for the inability of PPC64 JIT to handle jump // tables. DisableJumpTables = true; } else { setRelocationModel(Reloc::Static); } // Inform the subtarget that we are in JIT mode. FIXME: does this break macho // writing? Subtarget.SetJITMode(); // Machine code emitter pass for PowerPC. PM.add(createPPCObjectCodeEmitterPass(*this, OCE)); return false; } bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, MachineCodeEmitter &MCE) { // Machine code emitter pass for PowerPC. PM.add(createPPCCodeEmitterPass(*this, MCE)); return false; } bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, JITCodeEmitter &JCE) { // Machine code emitter pass for PowerPC. PM.add(createPPCJITCodeEmitterPass(*this, JCE)); return false; } bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, ObjectCodeEmitter &OCE) { // Machine code emitter pass for PowerPC. PM.add(createPPCObjectCodeEmitterPass(*this, OCE)); return false; } /// getLSDAEncoding - Returns the LSDA pointer encoding. The choices are 4-byte, /// 8-byte, and target default. The CIE is hard-coded to indicate that the LSDA /// pointer in the FDE section is an "sdata4", and should be encoded as a 4-byte /// pointer by default. However, some systems may require a different size due /// to bugs or other conditions. We will default to a 4-byte encoding unless the /// system tells us otherwise. /// /// The issue is when the CIE says their is an LSDA. That mandates that every /// FDE have an LSDA slot. But if the function does not need an LSDA. There /// needs to be some way to signify there is none. The LSDA is encoded as /// pc-rel. But you don't look for some magic value after adding the pc. You /// have to look for a zero before adding the pc. The problem is that the size /// of the zero to look for depends on the encoding. The unwinder bug in SL is /// that it always checks for a pointer-size zero. So on x86_64 it looks for 8 /// bytes of zero. If you have an LSDA, it works fine since the 8-bytes are /// non-zero so it goes ahead and then reads the value based on the encoding. /// But if you use sdata4 and there is no LSDA, then the test for zero gives a /// false negative and the unwinder thinks there is an LSDA. /// /// FIXME: This call-back isn't good! We should be using the correct encoding /// regardless of the system. However, there are some systems which have bugs /// that prevent this from occuring. DwarfLSDAEncoding::Encoding PPCTargetMachine::getLSDAEncoding() const { if (Subtarget.isDarwin() && Subtarget.getDarwinVers() != 10) return DwarfLSDAEncoding::Default; return DwarfLSDAEncoding::EightByte; }