//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library converts LLVM code to C code, compilable by GCC and other C // compilers. // //===----------------------------------------------------------------------===// #include "CTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/SymbolTable.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Analysis/FindUsedTypes.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/MathExtras.h" #include "llvm/Config/config.h" #include #include #include #include using namespace llvm; namespace { // Register the target. RegisterTarget X("c", " C backend"); /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for /// any unnamed structure types that are used by the program, and merges /// external functions with the same name. /// class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass { void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } virtual const char *getPassName() const { return "C backend type canonicalizer"; } virtual bool runOnModule(Module &M); }; /// CWriter - This class is the main chunk of code that converts an LLVM /// module to a C translation unit. class CWriter : public FunctionPass, public InstVisitor { std::ostream &Out; DefaultIntrinsicLowering IL; Mangler *Mang; LoopInfo *LI; const Module *TheModule; std::map TypeNames; std::map FPConstantMap; public: CWriter(std::ostream &o) : Out(o) {} virtual const char *getPassName() const { return "C backend"; } void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesAll(); } virtual bool doInitialization(Module &M); bool runOnFunction(Function &F) { LI = &getAnalysis(); // Get rid of intrinsics we can't handle. lowerIntrinsics(F); // Output all floating point constants that cannot be printed accurately. printFloatingPointConstants(F); // Ensure that no local symbols conflict with global symbols. F.renameLocalSymbols(); printFunction(F); FPConstantMap.clear(); return false; } virtual bool doFinalization(Module &M) { // Free memory... delete Mang; TypeNames.clear(); return false; } std::ostream &printType(std::ostream &Out, const Type *Ty, const std::string &VariableName = "", bool IgnoreName = false); void printStructReturnPointerFunctionType(std::ostream &Out, const PointerType *Ty); void writeOperand(Value *Operand); void writeOperandInternal(Value *Operand); private : void lowerIntrinsics(Function &F); void printModule(Module *M); void printModuleTypes(const SymbolTable &ST); void printContainedStructs(const Type *Ty, std::set &); void printFloatingPointConstants(Function &F); void printFunctionSignature(const Function *F, bool Prototype); void printFunction(Function &); void printBasicBlock(BasicBlock *BB); void printLoop(Loop *L); void printConstant(Constant *CPV); void printConstantArray(ConstantArray *CPA); void printConstantPacked(ConstantPacked *CP); // isInlinableInst - Attempt to inline instructions into their uses to build // trees as much as possible. To do this, we have to consistently decide // what is acceptable to inline, so that variable declarations don't get // printed and an extra copy of the expr is not emitted. // static bool isInlinableInst(const Instruction &I) { // Always inline setcc instructions, even if they are shared by multiple // expressions. GCC generates horrible code if we don't. if (isa(I)) return true; // Must be an expression, must be used exactly once. If it is dead, we // emit it inline where it would go. if (I.getType() == Type::VoidTy || !I.hasOneUse() || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) // Don't inline a load across a store or other bad things! return false; // Only inline instruction it it's use is in the same BB as the inst. return I.getParent() == cast(I.use_back())->getParent(); } // isDirectAlloca - Define fixed sized allocas in the entry block as direct // variables which are accessed with the & operator. This causes GCC to // generate significantly better code than to emit alloca calls directly. // static const AllocaInst *isDirectAlloca(const Value *V) { const AllocaInst *AI = dyn_cast(V); if (!AI) return false; if (AI->isArrayAllocation()) return 0; // FIXME: we can also inline fixed size array allocas! if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) return 0; return AI; } // Instruction visitation functions friend class InstVisitor; void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitSwitchInst(SwitchInst &I); void visitInvokeInst(InvokeInst &I) { assert(0 && "Lowerinvoke pass didn't work!"); } void visitUnwindInst(UnwindInst &I) { assert(0 && "Lowerinvoke pass didn't work!"); } void visitUnreachableInst(UnreachableInst &I); void visitPHINode(PHINode &I); void visitBinaryOperator(Instruction &I); void visitCastInst (CastInst &I); void visitSelectInst(SelectInst &I); void visitCallInst (CallInst &I); void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } void visitMallocInst(MallocInst &I); void visitAllocaInst(AllocaInst &I); void visitFreeInst (FreeInst &I); void visitLoadInst (LoadInst &I); void visitStoreInst (StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitVAArgInst (VAArgInst &I); void visitInstruction(Instruction &I) { std::cerr << "C Writer does not know about " << I; abort(); } void outputLValue(Instruction *I) { Out << " " << Mang->getValueName(I) << " = "; } bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); void printPHICopiesForSuccessor(BasicBlock *CurBlock, BasicBlock *Successor, unsigned Indent); void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, unsigned Indent); void printIndexingExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E); }; } /// This method inserts names for any unnamed structure types that are used by /// the program, and removes names from structure types that are not used by the /// program. /// bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) { // Get a set of types that are used by the program... std::set UT = getAnalysis().getTypes(); // Loop over the module symbol table, removing types from UT that are // already named, and removing names for types that are not used. // SymbolTable &MST = M.getSymbolTable(); for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end(); TI != TE; ) { SymbolTable::type_iterator I = TI++; // If this is not used, remove it from the symbol table. std::set::iterator UTI = UT.find(I->second); if (UTI == UT.end()) MST.remove(I); else UT.erase(UTI); // Only keep one name for this type. } // UT now contains types that are not named. Loop over it, naming // structure types. // bool Changed = false; unsigned RenameCounter = 0; for (std::set::const_iterator I = UT.begin(), E = UT.end(); I != E; ++I) if (const StructType *ST = dyn_cast(*I)) { while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) ++RenameCounter; Changed = true; } // Loop over all external functions and globals. If we have two with // identical names, merge them. // FIXME: This code should disappear when we don't allow values with the same // names when they have different types! std::map ExtSymbols; for (Module::iterator I = M.begin(), E = M.end(); I != E;) { Function *GV = I++; if (GV->isExternal() && GV->hasName()) { std::pair::iterator, bool> X = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); if (!X.second) { // Found a conflict, replace this global with the previous one. GlobalValue *OldGV = X.first->second; GV->replaceAllUsesWith(ConstantExpr::getCast(OldGV, GV->getType())); GV->eraseFromParent(); Changed = true; } } } // Do the same for globals. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;) { GlobalVariable *GV = I++; if (GV->isExternal() && GV->hasName()) { std::pair::iterator, bool> X = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); if (!X.second) { // Found a conflict, replace this global with the previous one. GlobalValue *OldGV = X.first->second; GV->replaceAllUsesWith(ConstantExpr::getCast(OldGV, GV->getType())); GV->eraseFromParent(); Changed = true; } } } return Changed; } /// printStructReturnPointerFunctionType - This is like printType for a struct /// return type, except, instead of printing the type as void (*)(Struct*, ...) /// print it as "Struct (*)(...)", for struct return functions. void CWriter::printStructReturnPointerFunctionType(std::ostream &Out, const PointerType *TheTy) { const FunctionType *FTy = cast(TheTy->getElementType()); std::stringstream FunctionInnards; FunctionInnards << " (*) ("; bool PrintedType = false; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); const Type *RetTy = cast(I->get())->getElementType(); for (++I; I != E; ++I) { if (PrintedType) FunctionInnards << ", "; printType(FunctionInnards, *I, ""); PrintedType = true; } if (FTy->isVarArg()) { if (PrintedType) FunctionInnards << ", ..."; } else if (!PrintedType) { FunctionInnards << "void"; } FunctionInnards << ')'; std::string tstr = FunctionInnards.str(); printType(Out, RetTy, tstr); } // Pass the Type* and the variable name and this prints out the variable // declaration. // std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, const std::string &NameSoFar, bool IgnoreName) { if (Ty->isPrimitiveType()) switch (Ty->getTypeID()) { case Type::VoidTyID: return Out << "void " << NameSoFar; case Type::BoolTyID: return Out << "bool " << NameSoFar; case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; case Type::SByteTyID: return Out << "signed char " << NameSoFar; case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; case Type::ShortTyID: return Out << "short " << NameSoFar; case Type::UIntTyID: return Out << "unsigned " << NameSoFar; case Type::IntTyID: return Out << "int " << NameSoFar; case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; case Type::LongTyID: return Out << "signed long long " << NameSoFar; case Type::FloatTyID: return Out << "float " << NameSoFar; case Type::DoubleTyID: return Out << "double " << NameSoFar; default : std::cerr << "Unknown primitive type: " << *Ty << "\n"; abort(); } // Check to see if the type is named. if (!IgnoreName || isa(Ty)) { std::map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar; } switch (Ty->getTypeID()) { case Type::FunctionTyID: { const FunctionType *FTy = cast(Ty); std::stringstream FunctionInnards; FunctionInnards << " (" << NameSoFar << ") ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) FunctionInnards << ", "; printType(FunctionInnards, *I, ""); } if (FTy->isVarArg()) { if (FTy->getNumParams()) FunctionInnards << ", ..."; } else if (!FTy->getNumParams()) { FunctionInnards << "void"; } FunctionInnards << ')'; std::string tstr = FunctionInnards.str(); printType(Out, FTy->getReturnType(), tstr); return Out; } case Type::StructTyID: { const StructType *STy = cast(Ty); Out << NameSoFar + " {\n"; unsigned Idx = 0; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { Out << " "; printType(Out, *I, "field" + utostr(Idx++)); Out << ";\n"; } return Out << '}'; } case Type::PointerTyID: { const PointerType *PTy = cast(Ty); std::string ptrName = "*" + NameSoFar; if (isa(PTy->getElementType()) || isa(PTy->getElementType())) ptrName = "(" + ptrName + ")"; return printType(Out, PTy->getElementType(), ptrName); } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); unsigned NumElements = ATy->getNumElements(); if (NumElements == 0) NumElements = 1; return printType(Out, ATy->getElementType(), NameSoFar + "[" + utostr(NumElements) + "]"); } case Type::PackedTyID: { const PackedType *PTy = cast(Ty); unsigned NumElements = PTy->getNumElements(); if (NumElements == 0) NumElements = 1; return printType(Out, PTy->getElementType(), NameSoFar + "[" + utostr(NumElements) + "]"); } case Type::OpaqueTyID: { static int Count = 0; std::string TyName = "struct opaque_" + itostr(Count++); assert(TypeNames.find(Ty) == TypeNames.end()); TypeNames[Ty] = TyName; return Out << TyName << ' ' << NameSoFar; } default: assert(0 && "Unhandled case in getTypeProps!"); abort(); } return Out; } void CWriter::printConstantArray(ConstantArray *CPA) { // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // const Type *ETy = CPA->getType()->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); // Make sure the last character is a null char, as automatically added by C if (isString && (CPA->getNumOperands() == 0 || !cast(*(CPA->op_end()-1))->isNullValue())) isString = false; if (isString) { Out << '\"'; // Keep track of whether the last number was a hexadecimal escape bool LastWasHex = false; // Do not include the last character, which we know is null for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { unsigned char C = cast(CPA->getOperand(i))->getRawValue(); // Print it out literally if it is a printable character. The only thing // to be careful about is when the last letter output was a hex escape // code, in which case we have to be careful not to print out hex digits // explicitly (the C compiler thinks it is a continuation of the previous // character, sheesh...) // if (isprint(C) && (!LastWasHex || !isxdigit(C))) { LastWasHex = false; if (C == '"' || C == '\\') Out << "\\" << C; else Out << C; } else { LastWasHex = false; switch (C) { case '\n': Out << "\\n"; break; case '\t': Out << "\\t"; break; case '\r': Out << "\\r"; break; case '\v': Out << "\\v"; break; case '\a': Out << "\\a"; break; case '\"': Out << "\\\""; break; case '\'': Out << "\\\'"; break; default: Out << "\\x"; Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); LastWasHex = true; break; } } } Out << '\"'; } else { Out << '{'; if (CPA->getNumOperands()) { Out << ' '; printConstant(cast(CPA->getOperand(0))); for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPA->getOperand(i))); } } Out << " }"; } } void CWriter::printConstantPacked(ConstantPacked *CP) { Out << '{'; if (CP->getNumOperands()) { Out << ' '; printConstant(cast(CP->getOperand(0))); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CP->getOperand(i))); } } Out << " }"; } // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out // textually as a double (rather than as a reference to a stack-allocated // variable). We decide this by converting CFP to a string and back into a // double, and then checking whether the conversion results in a bit-equal // double to the original value of CFP. This depends on us and the target C // compiler agreeing on the conversion process (which is pretty likely since we // only deal in IEEE FP). // static bool isFPCSafeToPrint(const ConstantFP *CFP) { #if HAVE_PRINTF_A char Buffer[100]; sprintf(Buffer, "%a", CFP->getValue()); if (!strncmp(Buffer, "0x", 2) || !strncmp(Buffer, "-0x", 3) || !strncmp(Buffer, "+0x", 3)) return atof(Buffer) == CFP->getValue(); return false; #else std::string StrVal = ftostr(CFP->getValue()); while (StrVal[0] == ' ') StrVal.erase(StrVal.begin()); // Check to make sure that the stringized number is not some string like "Inf" // or NaN. Check that the string matches the "[-+]?[0-9]" regex. if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) // Reparse stringized version! return atof(StrVal.c_str()) == CFP->getValue(); return false; #endif } // printConstant - The LLVM Constant to C Constant converter. void CWriter::printConstant(Constant *CPV) { if (const ConstantExpr *CE = dyn_cast(CPV)) { switch (CE->getOpcode()) { case Instruction::Cast: Out << "(("; printType(Out, CPV->getType()); Out << ')'; printConstant(CE->getOperand(0)); Out << ')'; return; case Instruction::GetElementPtr: Out << "(&("; printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), gep_type_end(CPV)); Out << "))"; return; case Instruction::Select: Out << '('; printConstant(CE->getOperand(0)); Out << '?'; printConstant(CE->getOperand(1)); Out << ':'; printConstant(CE->getOperand(2)); Out << ')'; return; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Div: case Instruction::Rem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::SetEQ: case Instruction::SetNE: case Instruction::SetLT: case Instruction::SetLE: case Instruction::SetGT: case Instruction::SetGE: case Instruction::Shl: case Instruction::Shr: Out << '('; printConstant(CE->getOperand(0)); switch (CE->getOpcode()) { case Instruction::Add: Out << " + "; break; case Instruction::Sub: Out << " - "; break; case Instruction::Mul: Out << " * "; break; case Instruction::Div: Out << " / "; break; case Instruction::Rem: Out << " % "; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::SetEQ: Out << " == "; break; case Instruction::SetNE: Out << " != "; break; case Instruction::SetLT: Out << " < "; break; case Instruction::SetLE: Out << " <= "; break; case Instruction::SetGT: Out << " > "; break; case Instruction::SetGE: Out << " >= "; break; case Instruction::Shl: Out << " << "; break; case Instruction::Shr: Out << " >> "; break; default: assert(0 && "Illegal opcode here!"); } printConstant(CE->getOperand(1)); Out << ')'; return; default: std::cerr << "CWriter Error: Unhandled constant expression: " << *CE << "\n"; abort(); } } else if (isa(CPV) && CPV->getType()->isFirstClassType()) { Out << "(("; printType(Out, CPV->getType()); Out << ")/*UNDEF*/0)"; return; } switch (CPV->getType()->getTypeID()) { case Type::BoolTyID: Out << (CPV == ConstantBool::False ? '0' : '1'); break; case Type::SByteTyID: case Type::ShortTyID: Out << cast(CPV)->getValue(); break; case Type::IntTyID: if ((int)cast(CPV)->getValue() == (int)0x80000000) Out << "((int)0x80000000U)"; // Handle MININT specially to avoid warning else Out << cast(CPV)->getValue(); break; case Type::LongTyID: if (cast(CPV)->isMinValue()) Out << "(/*INT64_MIN*/(-9223372036854775807LL)-1)"; else Out << cast(CPV)->getValue() << "ll"; break; case Type::UByteTyID: case Type::UShortTyID: Out << cast(CPV)->getValue(); break; case Type::UIntTyID: Out << cast(CPV)->getValue() << 'u'; break; case Type::ULongTyID: Out << cast(CPV)->getValue() << "ull"; break; case Type::FloatTyID: case Type::DoubleTyID: { ConstantFP *FPC = cast(CPV); std::map::iterator I = FPConstantMap.find(FPC); if (I != FPConstantMap.end()) { // Because of FP precision problems we must load from a stack allocated // value that holds the value in hex. Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") << "*)&FPConstant" << I->second << ')'; } else { if (IsNAN(FPC->getValue())) { // The value is NaN // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, // it's 0x7ff4. const unsigned long QuietNaN = 0x7ff8UL; const unsigned long SignalNaN = 0x7ff4UL; // We need to grab the first part of the FP # char Buffer[100]; uint64_t ll = DoubleToBits(FPC->getValue()); sprintf(Buffer, "0x%llx", static_cast(ll)); std::string Num(&Buffer[0], &Buffer[6]); unsigned long Val = strtoul(Num.c_str(), 0, 16); if (FPC->getType() == Type::FloatTy) Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" << Buffer << "\") /*nan*/ "; else Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" << Buffer << "\") /*nan*/ "; } else if (IsInf(FPC->getValue())) { // The value is Inf if (FPC->getValue() < 0) Out << '-'; Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") << " /*inf*/ "; } else { std::string Num; #if HAVE_PRINTF_A // Print out the constant as a floating point number. char Buffer[100]; sprintf(Buffer, "%a", FPC->getValue()); Num = Buffer; #else Num = ftostr(FPC->getValue()); #endif Out << Num; } } break; } case Type::ArrayTyID: if (isa(CPV) || isa(CPV)) { const ArrayType *AT = cast(CPV->getType()); Out << '{'; if (AT->getNumElements()) { Out << ' '; Constant *CZ = Constant::getNullValue(AT->getElementType()); printConstant(CZ); for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { Out << ", "; printConstant(CZ); } } Out << " }"; } else { printConstantArray(cast(CPV)); } break; case Type::PackedTyID: if (isa(CPV) || isa(CPV)) { const PackedType *AT = cast(CPV->getType()); Out << '{'; if (AT->getNumElements()) { Out << ' '; Constant *CZ = Constant::getNullValue(AT->getElementType()); printConstant(CZ); for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { Out << ", "; printConstant(CZ); } } Out << " }"; } else { printConstantPacked(cast(CPV)); } break; case Type::StructTyID: if (isa(CPV) || isa(CPV)) { const StructType *ST = cast(CPV->getType()); Out << '{'; if (ST->getNumElements()) { Out << ' '; printConstant(Constant::getNullValue(ST->getElementType(0))); for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { Out << ", "; printConstant(Constant::getNullValue(ST->getElementType(i))); } } Out << " }"; } else { Out << '{'; if (CPV->getNumOperands()) { Out << ' '; printConstant(cast(CPV->getOperand(0))); for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPV->getOperand(i))); } } Out << " }"; } break; case Type::PointerTyID: if (isa(CPV)) { Out << "(("; printType(Out, CPV->getType()); Out << ")/*NULL*/0)"; break; } else if (GlobalValue *GV = dyn_cast(CPV)) { writeOperand(GV); break; } // FALL THROUGH default: std::cerr << "Unknown constant type: " << *CPV << "\n"; abort(); } } void CWriter::writeOperandInternal(Value *Operand) { if (Instruction *I = dyn_cast(Operand)) if (isInlinableInst(*I) && !isDirectAlloca(I)) { // Should we inline this instruction to build a tree? Out << '('; visit(*I); Out << ')'; return; } Constant* CPV = dyn_cast(Operand); if (CPV && !isa(CPV)) { printConstant(CPV); } else { Out << Mang->getValueName(Operand); } } void CWriter::writeOperand(Value *Operand) { if (isa(Operand) || isDirectAlloca(Operand)) Out << "(&"; // Global variables are references as their addresses by llvm writeOperandInternal(Operand); if (isa(Operand) || isDirectAlloca(Operand)) Out << ')'; } // generateCompilerSpecificCode - This is where we add conditional compilation // directives to cater to specific compilers as need be. // static void generateCompilerSpecificCode(std::ostream& Out) { // Alloca is hard to get, and we don't want to include stdlib.h here. Out << "/* get a declaration for alloca */\n" << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" << "extern void *_alloca(unsigned long);\n" << "#define alloca(x) _alloca(x)\n" << "#elif defined(__APPLE__)\n" << "extern void *__builtin_alloca(unsigned long);\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#elif defined(__sun__)\n" << "#if defined(__sparcv9)\n" << "extern void *__builtin_alloca(unsigned long);\n" << "#else\n" << "extern void *__builtin_alloca(unsigned int);\n" << "#endif\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#elif !defined(_MSC_VER)\n" << "#include \n" << "#endif\n\n"; // We output GCC specific attributes to preserve 'linkonce'ness on globals. // If we aren't being compiled with GCC, just drop these attributes. Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" << "#define __attribute__(X)\n" << "#endif\n\n"; #if 0 // At some point, we should support "external weak" vs. "weak" linkages. // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" << "#elif defined(__GNUC__)\n" << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" << "#else\n" << "#define __EXTERNAL_WEAK__\n" << "#endif\n\n"; #endif // For now, turn off the weak linkage attribute on Mac OS X. (See above.) Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" << "#define __ATTRIBUTE_WEAK__\n" << "#elif defined(__GNUC__)\n" << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" << "#else\n" << "#define __ATTRIBUTE_WEAK__\n" << "#endif\n\n"; // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise // From the GCC documentation: // // double __builtin_nan (const char *str) // // This is an implementation of the ISO C99 function nan. // // Since ISO C99 defines this function in terms of strtod, which we do // not implement, a description of the parsing is in order. The string is // parsed as by strtol; that is, the base is recognized by leading 0 or // 0x prefixes. The number parsed is placed in the significand such that // the least significant bit of the number is at the least significant // bit of the significand. The number is truncated to fit the significand // field provided. The significand is forced to be a quiet NaN. // // This function, if given a string literal, is evaluated early enough // that it is considered a compile-time constant. // // float __builtin_nanf (const char *str) // // Similar to __builtin_nan, except the return type is float. // // double __builtin_inf (void) // // Similar to __builtin_huge_val, except a warning is generated if the // target floating-point format does not support infinities. This // function is suitable for implementing the ISO C99 macro INFINITY. // // float __builtin_inff (void) // // Similar to __builtin_inf, except the return type is float. Out << "#ifdef __GNUC__\n" << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" << "#define LLVM_INF __builtin_inf() /* Double */\n" << "#define LLVM_INFF __builtin_inff() /* Float */\n" << "#define LLVM_PREFETCH(addr,rw,locality) " "__builtin_prefetch(addr,rw,locality)\n" << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" << "#define LLVM_ASM __asm__\n" << "#else\n" << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" << "#define LLVM_INF ((double)0.0) /* Double */\n" << "#define LLVM_INFF 0.0F /* Float */\n" << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" << "#define __ATTRIBUTE_CTOR__\n" << "#define __ATTRIBUTE_DTOR__\n" << "#define LLVM_ASM(X)\n" << "#endif\n\n"; // Output target-specific code that should be inserted into main. Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; // On X86, set the FP control word to 64-bits of precision instead of 80 bits. Out << "#if defined(__GNUC__) && !defined(__llvm__)\n" << "#if defined(i386) || defined(__i386__) || defined(__i386) || " << "defined(__x86_64__)\n" << "#undef CODE_FOR_MAIN\n" << "#define CODE_FOR_MAIN() \\\n" << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n" << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n" << "#endif\n#endif\n"; } /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into /// the StaticTors set. static void FindStaticTors(GlobalVariable *GV, std::set &StaticTors){ ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) return; // Found a null terminator, exit printing. Constant *FP = CS->getOperand(1); if (ConstantExpr *CE = dyn_cast(FP)) if (CE->getOpcode() == Instruction::Cast) FP = CE->getOperand(0); if (Function *F = dyn_cast(FP)) StaticTors.insert(F); } } enum SpecialGlobalClass { NotSpecial = 0, GlobalCtors, GlobalDtors, NotPrinted }; /// getGlobalVariableClass - If this is a global that is specially recognized /// by LLVM, return a code that indicates how we should handle it. static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { // If this is a global ctors/dtors list, handle it now. if (GV->hasAppendingLinkage() && GV->use_empty()) { if (GV->getName() == "llvm.global_ctors") return GlobalCtors; else if (GV->getName() == "llvm.global_dtors") return GlobalDtors; } // Otherwise, it it is other metadata, don't print it. This catches things // like debug information. if (GV->getSection() == "llvm.metadata") return NotPrinted; return NotSpecial; } bool CWriter::doInitialization(Module &M) { // Initialize TheModule = &M; IL.AddPrototypes(M); // Ensure that all structure types have names... Mang = new Mangler(M); Mang->markCharUnacceptable('.'); // Keep track of which functions are static ctors/dtors so they can have // an attribute added to their prototypes. std::set StaticCtors, StaticDtors; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { switch (getGlobalVariableClass(I)) { default: break; case GlobalCtors: FindStaticTors(I, StaticCtors); break; case GlobalDtors: FindStaticTors(I, StaticDtors); break; } } // get declaration for alloca Out << "/* Provide Declarations */\n"; Out << "#include \n"; // Varargs support Out << "#include \n"; // Unwind support generateCompilerSpecificCode(Out); // Provide a definition for `bool' if not compiling with a C++ compiler. Out << "\n" << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" << "\n\n/* Support for floating point constants */\n" << "typedef unsigned long long ConstantDoubleTy;\n" << "typedef unsigned int ConstantFloatTy;\n" << "\n\n/* Global Declarations */\n"; // First output all the declarations for the program, because C requires // Functions & globals to be declared before they are used. // // Loop over the symbol table, emitting all named constants... printModuleTypes(M.getSymbolTable()); // Global variable declarations... if (!M.global_empty()) { Out << "\n/* External Global Variable Declarations */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (I->hasExternalLinkage()) { Out << "extern "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); Out << ";\n"; } } } // Function declarations Out << "\n/* Function Declarations */\n"; Out << "double fmod(double, double);\n"; // Support for FP rem Out << "float fmodf(float, float);\n"; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { // Don't print declarations for intrinsic functions. if (!I->getIntrinsicID() && I->getName() != "setjmp" && I->getName() != "longjmp") { printFunctionSignature(I, true); if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__"; if (StaticCtors.count(I)) Out << " __ATTRIBUTE_CTOR__"; if (StaticDtors.count(I)) Out << " __ATTRIBUTE_DTOR__"; if (I->hasName() && I->getName()[0] == 1) Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")"; Out << ";\n"; } } // Output the global variable declarations if (!M.global_empty()) { Out << "\n\n/* Global Variable Declarations */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!I->isExternal()) { // Ignore special globals, such as debug info. if (getGlobalVariableClass(I)) continue; if (I->hasInternalLinkage()) Out << "static "; else Out << "extern "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; Out << ";\n"; } } // Output the global variable definitions and contents... if (!M.global_empty()) { Out << "\n\n/* Global Variable Definitions and Initialization */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!I->isExternal()) { // Ignore special globals, such as debug info. if (getGlobalVariableClass(I)) continue; if (I->hasInternalLinkage()) Out << "static "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; // If the initializer is not null, emit the initializer. If it is null, // we try to avoid emitting large amounts of zeros. The problem with // this, however, occurs when the variable has weak linkage. In this // case, the assembler will complain about the variable being both weak // and common, so we disable this optimization. if (!I->getInitializer()->isNullValue()) { Out << " = " ; writeOperand(I->getInitializer()); } else if (I->hasWeakLinkage()) { // We have to specify an initializer, but it doesn't have to be // complete. If the value is an aggregate, print out { 0 }, and let // the compiler figure out the rest of the zeros. Out << " = " ; if (isa(I->getInitializer()->getType()) || isa(I->getInitializer()->getType()) || isa(I->getInitializer()->getType())) { Out << "{ 0 }"; } else { // Just print it out normally. writeOperand(I->getInitializer()); } } Out << ";\n"; } } if (!M.empty()) Out << "\n\n/* Function Bodies */\n"; return false; } /// Output all floating point constants that cannot be printed accurately... void CWriter::printFloatingPointConstants(Function &F) { // Scan the module for floating point constants. If any FP constant is used // in the function, we want to redirect it here so that we do not depend on // the precision of the printed form, unless the printed form preserves // precision. // static unsigned FPCounter = 0; for (constant_iterator I = constant_begin(&F), E = constant_end(&F); I != E; ++I) if (const ConstantFP *FPC = dyn_cast(*I)) if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. !FPConstantMap.count(FPC)) { double Val = FPC->getValue(); FPConstantMap[FPC] = FPCounter; // Number the FP constants if (FPC->getType() == Type::DoubleTy) { Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ << " = 0x" << std::hex << DoubleToBits(Val) << std::dec << "ULL; /* " << Val << " */\n"; } else if (FPC->getType() == Type::FloatTy) { Out << "static const ConstantFloatTy FPConstant" << FPCounter++ << " = 0x" << std::hex << FloatToBits(Val) << std::dec << "U; /* " << Val << " */\n"; } else assert(0 && "Unknown float type!"); } Out << '\n'; } /// printSymbolTable - Run through symbol table looking for type names. If a /// type name is found, emit its declaration... /// void CWriter::printModuleTypes(const SymbolTable &ST) { // We are only interested in the type plane of the symbol table. SymbolTable::type_const_iterator I = ST.type_begin(); SymbolTable::type_const_iterator End = ST.type_end(); // If there are no type names, exit early. if (I == End) return; // Print out forward declarations for structure types before anything else! Out << "/* Structure forward decls */\n"; for (; I != End; ++I) if (const Type *STy = dyn_cast(I->second)) { std::string Name = "struct l_" + Mang->makeNameProper(I->first); Out << Name << ";\n"; TypeNames.insert(std::make_pair(STy, Name)); } Out << '\n'; // Now we can print out typedefs... Out << "/* Typedefs */\n"; for (I = ST.type_begin(); I != End; ++I) { const Type *Ty = cast(I->second); std::string Name = "l_" + Mang->makeNameProper(I->first); Out << "typedef "; printType(Out, Ty, Name); Out << ";\n"; } Out << '\n'; // Keep track of which structures have been printed so far... std::set StructPrinted; // Loop over all structures then push them into the stack so they are // printed in the correct order. // Out << "/* Structure contents */\n"; for (I = ST.type_begin(); I != End; ++I) if (const StructType *STy = dyn_cast(I->second)) // Only print out used types! printContainedStructs(STy, StructPrinted); } // Push the struct onto the stack and recursively push all structs // this one depends on. // // TODO: Make this work properly with packed types // void CWriter::printContainedStructs(const Type *Ty, std::set &StructPrinted){ // Don't walk through pointers. if (isa(Ty) || Ty->isPrimitiveType()) return; // Print all contained types first. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) printContainedStructs(*I, StructPrinted); if (const StructType *STy = dyn_cast(Ty)) { // Check to see if we have already printed this struct. if (StructPrinted.insert(STy).second) { // Print structure type out. std::string Name = TypeNames[STy]; printType(Out, STy, Name, true); Out << ";\n\n"; } } } void CWriter::printFunctionSignature(const Function *F, bool Prototype) { /// isCStructReturn - Should this function actually return a struct by-value? bool isCStructReturn = F->getCallingConv() == CallingConv::CSRet; if (F->hasInternalLinkage()) Out << "static "; // Loop over the arguments, printing them... const FunctionType *FT = cast(F->getFunctionType()); std::stringstream FunctionInnards; // Print out the name... FunctionInnards << Mang->getValueName(F) << '('; bool PrintedArg = false; if (!F->isExternal()) { if (!F->arg_empty()) { Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); // If this is a struct-return function, don't print the hidden // struct-return argument. if (isCStructReturn) { assert(I != E && "Invalid struct return function!"); ++I; } std::string ArgName; for (; I != E; ++I) { if (PrintedArg) FunctionInnards << ", "; if (I->hasName() || !Prototype) ArgName = Mang->getValueName(I); else ArgName = ""; printType(FunctionInnards, I->getType(), ArgName); PrintedArg = true; } } } else { // Loop over the arguments, printing them. FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); // If this is a struct-return function, don't print the hidden // struct-return argument. if (isCStructReturn) { assert(I != E && "Invalid struct return function!"); ++I; } for (; I != E; ++I) { if (PrintedArg) FunctionInnards << ", "; printType(FunctionInnards, *I); PrintedArg = true; } } // Finish printing arguments... if this is a vararg function, print the ..., // unless there are no known types, in which case, we just emit (). // if (FT->isVarArg() && PrintedArg) { if (PrintedArg) FunctionInnards << ", "; FunctionInnards << "..."; // Output varargs portion of signature! } else if (!FT->isVarArg() && !PrintedArg) { FunctionInnards << "void"; // ret() -> ret(void) in C. } FunctionInnards << ')'; // Get the return tpe for the function. const Type *RetTy; if (!isCStructReturn) RetTy = F->getReturnType(); else { // If this is a struct-return function, print the struct-return type. RetTy = cast(FT->getParamType(0))->getElementType(); } // Print out the return type and the signature built above. printType(Out, RetTy, FunctionInnards.str()); } void CWriter::printFunction(Function &F) { printFunctionSignature(&F, false); Out << " {\n"; // If this is a struct return function, handle the result with magic. if (F.getCallingConv() == CallingConv::CSRet) { const Type *StructTy = cast(F.arg_begin()->getType())->getElementType(); Out << " "; printType(Out, StructTy, "StructReturn"); Out << "; /* Struct return temporary */\n"; Out << " "; printType(Out, F.arg_begin()->getType(), Mang->getValueName(F.arg_begin())); Out << " = &StructReturn;\n"; } bool PrintedVar = false; // print local variable information for the function for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) if (const AllocaInst *AI = isDirectAlloca(&*I)) { Out << " "; printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); Out << "; /* Address-exposed local */\n"; PrintedVar = true; } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) { Out << " "; printType(Out, I->getType(), Mang->getValueName(&*I)); Out << ";\n"; if (isa(*I)) { // Print out PHI node temporaries as well... Out << " "; printType(Out, I->getType(), Mang->getValueName(&*I)+"__PHI_TEMPORARY"); Out << ";\n"; } PrintedVar = true; } if (PrintedVar) Out << '\n'; if (F.hasExternalLinkage() && F.getName() == "main") Out << " CODE_FOR_MAIN();\n"; // print the basic blocks for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (Loop *L = LI->getLoopFor(BB)) { if (L->getHeader() == BB && L->getParentLoop() == 0) printLoop(L); } else { printBasicBlock(BB); } } Out << "}\n\n"; } void CWriter::printLoop(Loop *L) { Out << " do { /* Syntactic loop '" << L->getHeader()->getName() << "' to make GCC happy */\n"; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { BasicBlock *BB = L->getBlocks()[i]; Loop *BBLoop = LI->getLoopFor(BB); if (BBLoop == L) printBasicBlock(BB); else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) printLoop(BBLoop); } Out << " } while (1); /* end of syntactic loop '" << L->getHeader()->getName() << "' */\n"; } void CWriter::printBasicBlock(BasicBlock *BB) { // Don't print the label for the basic block if there are no uses, or if // the only terminator use is the predecessor basic block's terminator. // We have to scan the use list because PHI nodes use basic blocks too but // do not require a label to be generated. // bool NeedsLabel = false; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) if (isGotoCodeNecessary(*PI, BB)) { NeedsLabel = true; break; } if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; // Output all of the instructions in the basic block... for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II) { if (!isInlinableInst(*II) && !isDirectAlloca(II)) { if (II->getType() != Type::VoidTy) outputLValue(II); else Out << " "; visit(*II); Out << ";\n"; } } // Don't emit prefix or suffix for the terminator... visit(*BB->getTerminator()); } // Specific Instruction type classes... note that all of the casts are // necessary because we use the instruction classes as opaque types... // void CWriter::visitReturnInst(ReturnInst &I) { // If this is a struct return function, return the temporary struct. if (I.getParent()->getParent()->getCallingConv() == CallingConv::CSRet) { Out << " return StructReturn;\n"; return; } // Don't output a void return if this is the last basic block in the function if (I.getNumOperands() == 0 && &*--I.getParent()->getParent()->end() == I.getParent() && !I.getParent()->size() == 1) { return; } Out << " return"; if (I.getNumOperands()) { Out << ' '; writeOperand(I.getOperand(0)); } Out << ";\n"; } void CWriter::visitSwitchInst(SwitchInst &SI) { Out << " switch ("; writeOperand(SI.getOperand(0)); Out << ") {\n default:\n"; printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); Out << ";\n"; for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { Out << " case "; writeOperand(SI.getOperand(i)); Out << ":\n"; BasicBlock *Succ = cast(SI.getOperand(i+1)); printPHICopiesForSuccessor (SI.getParent(), Succ, 2); printBranchToBlock(SI.getParent(), Succ, 2); if (Function::iterator(Succ) == next(Function::iterator(SI.getParent()))) Out << " break;\n"; } Out << " }\n"; } void CWriter::visitUnreachableInst(UnreachableInst &I) { Out << " /*UNREACHABLE*/;\n"; } bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { /// FIXME: This should be reenabled, but loop reordering safe!! return true; if (next(Function::iterator(From)) != Function::iterator(To)) return true; // Not the direct successor, we need a goto. //isa(From->getTerminator()) if (LI->getLoopFor(From) != LI->getLoopFor(To)) return true; return false; } void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, BasicBlock *Successor, unsigned Indent) { for (BasicBlock::iterator I = Successor->begin(); isa(I); ++I) { PHINode *PN = cast(I); // Now we have to do the printing. Value *IV = PN->getIncomingValueForBlock(CurBlock); if (!isa(IV)) { Out << std::string(Indent, ' '); Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; writeOperand(IV); Out << "; /* for PHI node */\n"; } } } void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, unsigned Indent) { if (isGotoCodeNecessary(CurBB, Succ)) { Out << std::string(Indent, ' ') << " goto "; writeOperand(Succ); Out << ";\n"; } } // Branch instruction printing - Avoid printing out a branch to a basic block // that immediately succeeds the current one. // void CWriter::visitBranchInst(BranchInst &I) { if (I.isConditional()) { if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { Out << " if ("; writeOperand(I.getCondition()); Out << ") {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { Out << " } else {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } } else { // First goto not necessary, assume second one is... Out << " if (!"; writeOperand(I.getCondition()); Out << ") {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } Out << " }\n"; } else { printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); } Out << "\n"; } // PHI nodes get copied into temporary values at the end of predecessor basic // blocks. We now need to copy these temporary values into the REAL value for // the PHI. void CWriter::visitPHINode(PHINode &I) { writeOperand(&I); Out << "__PHI_TEMPORARY"; } void CWriter::visitBinaryOperator(Instruction &I) { // binary instructions, shift instructions, setCond instructions. assert(!isa(I.getType())); // We must cast the results of binary operations which might be promoted. bool needsCast = false; if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) || (I.getType() == Type::FloatTy)) { needsCast = true; Out << "(("; printType(Out, I.getType()); Out << ")("; } // If this is a negation operation, print it out as such. For FP, we don't // want to print "-0.0 - X". if (BinaryOperator::isNeg(&I)) { Out << "-("; writeOperand(BinaryOperator::getNegArgument(cast(&I))); Out << ")"; } else if (I.getOpcode() == Instruction::Rem && I.getType()->isFloatingPoint()) { // Output a call to fmod/fmodf instead of emitting a%b if (I.getType() == Type::FloatTy) Out << "fmodf("; else Out << "fmod("; writeOperand(I.getOperand(0)); Out << ", "; writeOperand(I.getOperand(1)); Out << ")"; } else { writeOperand(I.getOperand(0)); switch (I.getOpcode()) { case Instruction::Add: Out << " + "; break; case Instruction::Sub: Out << " - "; break; case Instruction::Mul: Out << '*'; break; case Instruction::Div: Out << '/'; break; case Instruction::Rem: Out << '%'; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::SetEQ: Out << " == "; break; case Instruction::SetNE: Out << " != "; break; case Instruction::SetLE: Out << " <= "; break; case Instruction::SetGE: Out << " >= "; break; case Instruction::SetLT: Out << " < "; break; case Instruction::SetGT: Out << " > "; break; case Instruction::Shl : Out << " << "; break; case Instruction::Shr : Out << " >> "; break; default: std::cerr << "Invalid operator type!" << I; abort(); } writeOperand(I.getOperand(1)); } if (needsCast) { Out << "))"; } } void CWriter::visitCastInst(CastInst &I) { if (I.getType() == Type::BoolTy) { Out << '('; writeOperand(I.getOperand(0)); Out << " != 0)"; return; } Out << '('; printType(Out, I.getType()); Out << ')'; if (isa(I.getType())&&I.getOperand(0)->getType()->isIntegral() || isa(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { // Avoid "cast to pointer from integer of different size" warnings Out << "(long)"; } writeOperand(I.getOperand(0)); } void CWriter::visitSelectInst(SelectInst &I) { Out << "(("; writeOperand(I.getCondition()); Out << ") ? ("; writeOperand(I.getTrueValue()); Out << ") : ("; writeOperand(I.getFalseValue()); Out << "))"; } void CWriter::lowerIntrinsics(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::returnaddress: case Intrinsic::frameaddress: case Intrinsic::setjmp: case Intrinsic::longjmp: case Intrinsic::prefetch: case Intrinsic::dbg_stoppoint: // We directly implement these intrinsics break; default: // If this is an intrinsic that directly corresponds to a GCC // builtin, we handle it. const char *BuiltinName = ""; #define GET_GCC_BUILTIN_NAME #include "llvm/Intrinsics.gen" #undef GET_GCC_BUILTIN_NAME // If we handle it, don't lower it. if (BuiltinName[0]) break; // All other intrinsic calls we must lower. Instruction *Before = 0; if (CI != &BB->front()) Before = prior(BasicBlock::iterator(CI)); IL.LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } break; } } void CWriter::visitCallInst(CallInst &I) { bool WroteCallee = false; // Handle intrinsic function calls first... if (Function *F = I.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { switch (ID) { default: { // If this is an intrinsic that directly corresponds to a GCC // builtin, we emit it here. const char *BuiltinName = ""; #define GET_GCC_BUILTIN_NAME #include "llvm/Intrinsics.gen" #undef GET_GCC_BUILTIN_NAME assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); Out << BuiltinName; WroteCallee = true; break; } case Intrinsic::vastart: Out << "0; "; Out << "va_start(*(va_list*)"; writeOperand(I.getOperand(1)); Out << ", "; // Output the last argument to the enclosing function... if (I.getParent()->getParent()->arg_empty()) { std::cerr << "The C backend does not currently support zero " << "argument varargs functions, such as '" << I.getParent()->getParent()->getName() << "'!\n"; abort(); } writeOperand(--I.getParent()->getParent()->arg_end()); Out << ')'; return; case Intrinsic::vaend: if (!isa(I.getOperand(1))) { Out << "0; va_end(*(va_list*)"; writeOperand(I.getOperand(1)); Out << ')'; } else { Out << "va_end(*(va_list*)0)"; } return; case Intrinsic::vacopy: Out << "0; "; Out << "va_copy(*(va_list*)"; writeOperand(I.getOperand(1)); Out << ", *(va_list*)"; writeOperand(I.getOperand(2)); Out << ')'; return; case Intrinsic::returnaddress: Out << "__builtin_return_address("; writeOperand(I.getOperand(1)); Out << ')'; return; case Intrinsic::frameaddress: Out << "__builtin_frame_address("; writeOperand(I.getOperand(1)); Out << ')'; return; case Intrinsic::setjmp: #if defined(HAVE__SETJMP) && defined(HAVE__LONGJMP) Out << "_"; // Use _setjmp on systems that support it! #endif Out << "setjmp(*(jmp_buf*)"; writeOperand(I.getOperand(1)); Out << ')'; return; case Intrinsic::longjmp: #if defined(HAVE__SETJMP) && defined(HAVE__LONGJMP) Out << "_"; // Use _longjmp on systems that support it! #endif Out << "longjmp(*(jmp_buf*)"; writeOperand(I.getOperand(1)); Out << ", "; writeOperand(I.getOperand(2)); Out << ')'; return; case Intrinsic::prefetch: Out << "LLVM_PREFETCH((const void *)"; writeOperand(I.getOperand(1)); Out << ", "; writeOperand(I.getOperand(2)); Out << ", "; writeOperand(I.getOperand(3)); Out << ")"; return; case Intrinsic::dbg_stoppoint: { // If we use writeOperand directly we get a "u" suffix which is rejected // by gcc. DbgStopPointInst &SPI = cast(I); Out << "\n#line " << SPI.getLine() << " \"" << SPI.getDirectory() << SPI.getFileName() << "\"\n"; return; } } } Value *Callee = I.getCalledValue(); // If this is a call to a struct-return function, assign to the first // parameter instead of passing it to the call. bool isStructRet = I.getCallingConv() == CallingConv::CSRet; if (isStructRet) { Out << "*("; writeOperand(I.getOperand(1)); Out << ") = "; } if (I.isTailCall()) Out << " /*tail*/ "; const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); if (!WroteCallee) { // If this is an indirect call to a struct return function, we need to cast // the pointer. bool NeedsCast = isStructRet && !isa(Callee); // GCC is a real PITA. It does not permit codegening casts of functions to // function pointers if they are in a call (it generates a trap instruction // instead!). We work around this by inserting a cast to void* in between // the function and the function pointer cast. Unfortunately, we can't just // form the constant expression here, because the folder will immediately // nuke it. // // Note finally, that this is completely unsafe. ANSI C does not guarantee // that void* and function pointers have the same size. :( To deal with this // in the common case, we handle casts where the number of arguments passed // match exactly. // if (ConstantExpr *CE = dyn_cast(Callee)) if (CE->getOpcode() == Instruction::Cast) if (Function *RF = dyn_cast(CE->getOperand(0))) { NeedsCast = true; Callee = RF; } if (NeedsCast) { // Ok, just cast the pointer type. Out << "(("; if (!isStructRet) printType(Out, I.getCalledValue()->getType()); else printStructReturnPointerFunctionType(Out, cast(I.getCalledValue()->getType())); Out << ")(void*)"; } writeOperand(Callee); if (NeedsCast) Out << ')'; } Out << '('; unsigned NumDeclaredParams = FTy->getNumParams(); CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end(); unsigned ArgNo = 0; if (isStructRet) { // Skip struct return argument. ++AI; ++ArgNo; } bool PrintedArg = false; for (; AI != AE; ++AI, ++ArgNo) { if (PrintedArg) Out << ", "; if (ArgNo < NumDeclaredParams && (*AI)->getType() != FTy->getParamType(ArgNo)) { Out << '('; printType(Out, FTy->getParamType(ArgNo)); Out << ')'; } writeOperand(*AI); PrintedArg = true; } Out << ')'; } void CWriter::visitMallocInst(MallocInst &I) { assert(0 && "lowerallocations pass didn't work!"); } void CWriter::visitAllocaInst(AllocaInst &I) { Out << '('; printType(Out, I.getType()); Out << ") alloca(sizeof("; printType(Out, I.getType()->getElementType()); Out << ')'; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ')'; } void CWriter::visitFreeInst(FreeInst &I) { assert(0 && "lowerallocations pass didn't work!"); } void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E) { bool HasImplicitAddress = false; // If accessing a global value with no indexing, avoid *(&GV) syndrome if (GlobalValue *V = dyn_cast(Ptr)) { HasImplicitAddress = true; } else if (isDirectAlloca(Ptr)) { HasImplicitAddress = true; } if (I == E) { if (!HasImplicitAddress) Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]' writeOperandInternal(Ptr); return; } const Constant *CI = dyn_cast(I.getOperand()); if (HasImplicitAddress && (!CI || !CI->isNullValue())) Out << "(&"; writeOperandInternal(Ptr); if (HasImplicitAddress && (!CI || !CI->isNullValue())) { Out << ')'; HasImplicitAddress = false; // HIA is only true if we haven't addressed yet } assert(!HasImplicitAddress || (CI && CI->isNullValue()) && "Can only have implicit address with direct accessing"); if (HasImplicitAddress) { ++I; } else if (CI && CI->isNullValue()) { gep_type_iterator TmpI = I; ++TmpI; // Print out the -> operator if possible... if (TmpI != E && isa(*TmpI)) { Out << (HasImplicitAddress ? "." : "->"); Out << "field" << cast(TmpI.getOperand())->getValue(); I = ++TmpI; } } for (; I != E; ++I) if (isa(*I)) { Out << ".field" << cast(I.getOperand())->getValue(); } else { Out << '['; writeOperand(I.getOperand()); Out << ']'; } } void CWriter::visitLoadInst(LoadInst &I) { Out << '*'; if (I.isVolatile()) { Out << "(("; printType(Out, I.getType(), "volatile*"); Out << ")"; } writeOperand(I.getOperand(0)); if (I.isVolatile()) Out << ')'; } void CWriter::visitStoreInst(StoreInst &I) { Out << '*'; if (I.isVolatile()) { Out << "(("; printType(Out, I.getOperand(0)->getType(), " volatile*"); Out << ")"; } writeOperand(I.getPointerOperand()); if (I.isVolatile()) Out << ')'; Out << " = "; writeOperand(I.getOperand(0)); } void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { Out << '&'; printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I)); } void CWriter::visitVAArgInst(VAArgInst &I) { Out << "va_arg(*(va_list*)"; writeOperand(I.getOperand(0)); Out << ", "; printType(Out, I.getType()); Out << ");\n "; } //===----------------------------------------------------------------------===// // External Interface declaration //===----------------------------------------------------------------------===// bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM, std::ostream &o, CodeGenFileType FileType, bool Fast) { if (FileType != TargetMachine::AssemblyFile) return true; PM.add(createLowerGCPass()); PM.add(createLowerAllocationsPass(true)); PM.add(createLowerInvokePass()); PM.add(createCFGSimplificationPass()); // clean up after lower invoke. PM.add(new CBackendNameAllUsedStructsAndMergeFunctions()); PM.add(new CWriter(o)); return false; }