//===- MergeFunctions.cpp - Merge identical functions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass looks for equivalent functions that are mergable and folds them. // // A hash is computed from the function, based on its type and number of // basic blocks. // // Once all hashes are computed, we perform an expensive equality comparison // on each function pair. This takes n^2/2 comparisons per bucket, so it's // important that the hash function be high quality. The equality comparison // iterates through each instruction in each basic block. // // When a match is found, the functions are folded. We can only fold two // functions when we know that the definition of one of them is not // overridable. // //===----------------------------------------------------------------------===// // // Future work: // // * fold vector::push_back and vector::push_back. // // These two functions have different types, but in a way that doesn't matter // to us. As long as we never see an S or T itself, using S* and S** is the // same as using a T* and T**. // // * virtual functions. // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup // and call, this is irrelevant, and we'd like to fold such implementations. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mergefunc" #include "llvm/Transforms/IPO.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; STATISTIC(NumFunctionsMerged, "Number of functions merged"); namespace { struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass { static char ID; // Pass identification, replacement for typeid MergeFunctions() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M); }; } char MergeFunctions::ID = 0; static RegisterPass X("mergefunc", "Merge Functions"); ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } // ===----------------------------------------------------------------------=== // Comparison of functions // ===----------------------------------------------------------------------=== static unsigned long hash(const Function *F) { const FunctionType *FTy = F->getFunctionType(); FoldingSetNodeID ID; ID.AddInteger(F->size()); ID.AddInteger(F->getCallingConv()); ID.AddBoolean(F->hasGC()); ID.AddBoolean(FTy->isVarArg()); ID.AddInteger(FTy->getReturnType()->getTypeID()); for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) ID.AddInteger(FTy->getParamType(i)->getTypeID()); return ID.ComputeHash(); } /// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by /// walking the chain of cast operands. Otherwise, returns the argument. static Value* IgnoreBitcasts(Value *V) { while (BitCastInst *BC = dyn_cast(V)) V = BC->getOperand(0); return V; } /// isEquivalentType - any two pointers are equivalent. Otherwise, standard /// type equivalence rules apply. static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { if (Ty1 == Ty2) return true; if (Ty1->getTypeID() != Ty2->getTypeID()) return false; switch(Ty1->getTypeID()) { case Type::VoidTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: return true; case Type::IntegerTyID: case Type::OpaqueTyID: // Ty1 == Ty2 would have returned true earlier. return false; default: llvm_unreachable("Unknown type!"); return false; case Type::PointerTyID: { const PointerType *PTy1 = cast(Ty1); const PointerType *PTy2 = cast(Ty2); return PTy1->getAddressSpace() == PTy2->getAddressSpace(); } case Type::StructTyID: { const StructType *STy1 = cast(Ty1); const StructType *STy2 = cast(Ty2); if (STy1->getNumElements() != STy2->getNumElements()) return false; if (STy1->isPacked() != STy2->isPacked()) return false; for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) return false; } return true; } case Type::FunctionTyID: { const FunctionType *FTy1 = cast(Ty1); const FunctionType *FTy2 = cast(Ty2); if (FTy1->getNumParams() != FTy2->getNumParams() || FTy1->isVarArg() != FTy2->isVarArg()) return false; if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) return false; for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) return false; } return true; } case Type::ArrayTyID: case Type::VectorTyID: { const SequentialType *STy1 = cast(Ty1); const SequentialType *STy2 = cast(Ty2); return isEquivalentType(STy1->getElementType(), STy2->getElementType()); } } } /// isEquivalentOperation - determine whether the two operations are the same /// except that pointer-to-A and pointer-to-B are equivalent. This should be /// kept in sync with Instruction::isSameOperationAs. static bool isEquivalentOperation(const Instruction *I1, const Instruction *I2) { if (I1->getOpcode() != I2->getOpcode() || I1->getNumOperands() != I2->getNumOperands() || !isEquivalentType(I1->getType(), I2->getType())) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) if (!isEquivalentType(I1->getOperand(i)->getType(), I2->getOperand(i)->getType())) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast(I1)) return LI->isVolatile() == cast(I2)->isVolatile() && LI->getAlignment() == cast(I2)->getAlignment(); if (const StoreInst *SI = dyn_cast(I1)) return SI->isVolatile() == cast(I2)->isVolatile() && SI->getAlignment() == cast(I2)->getAlignment(); if (const CmpInst *CI = dyn_cast(I1)) return CI->getPredicate() == cast(I2)->getPredicate(); if (const CallInst *CI = dyn_cast(I1)) return CI->isTailCall() == cast(I2)->isTailCall() && CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I2)->getAttributes().getRawPointer(); if (const InvokeInst *CI = dyn_cast(I1)) return CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I2)->getAttributes().getRawPointer(); if (const InsertValueInst *IVI = dyn_cast(I1)) { if (IVI->getNumIndices() != cast(I2)->getNumIndices()) return false; for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) if (IVI->idx_begin()[i] != cast(I2)->idx_begin()[i]) return false; return true; } if (const ExtractValueInst *EVI = dyn_cast(I1)) { if (EVI->getNumIndices() != cast(I2)->getNumIndices()) return false; for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) if (EVI->idx_begin()[i] != cast(I2)->idx_begin()[i]) return false; return true; } return true; } static bool compare(const Value *V, const Value *U) { assert(!isa(V) && !isa(U) && "Must not compare basic blocks."); assert(isEquivalentType(V->getType(), U->getType()) && "Two of the same operation have operands of different type."); // TODO: If the constant is an expression of F, we should accept that it's // equal to the same expression in terms of G. if (isa(V)) return V == U; // The caller has ensured that ValueMap[V] != U. Since Arguments are // pre-loaded into the ValueMap, and Instructions are added as we go, we know // that this can only be a mis-match. if (isa(V) || isa(V)) return false; if (isa(V) && isa(U)) { const InlineAsm *IAF = cast(V); const InlineAsm *IAG = cast(U); return IAF->getAsmString() == IAG->getAsmString() && IAF->getConstraintString() == IAG->getConstraintString(); } return false; } static bool equals(const BasicBlock *BB1, const BasicBlock *BB2, DenseMap &ValueMap, DenseMap &SpeculationMap) { // Speculatively add it anyways. If it's false, we'll notice a difference // later, and this won't matter. ValueMap[BB1] = BB2; BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end(); BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end(); do { if (isa(FI)) { ++FI; continue; } if (isa(GI)) { ++GI; continue; } if (!isEquivalentOperation(FI, GI)) return false; if (isa(FI)) { const GetElementPtrInst *GEPF = cast(FI); const GetElementPtrInst *GEPG = cast(GI); if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) { // It's effectively a bitcast. ++FI, ++GI; continue; } // TODO: we only really care about the elements before the index if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType()) return false; } if (ValueMap[FI] == GI) { ++FI, ++GI; continue; } if (ValueMap[FI] != NULL) return false; for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { Value *OpF = IgnoreBitcasts(FI->getOperand(i)); Value *OpG = IgnoreBitcasts(GI->getOperand(i)); if (ValueMap[OpF] == OpG) continue; if (ValueMap[OpF] != NULL) return false; if (OpF->getValueID() != OpG->getValueID() || !isEquivalentType(OpF->getType(), OpG->getType())) return false; if (isa(FI)) { if (SpeculationMap[OpF] == NULL) SpeculationMap[OpF] = OpG; else if (SpeculationMap[OpF] != OpG) return false; continue; } else if (isa(OpF)) { assert(isa(FI) && "BasicBlock referenced by non-Terminator non-PHI"); // This call changes the ValueMap, hence we can't use // Value *& = ValueMap[...] if (!equals(cast(OpF), cast(OpG), ValueMap, SpeculationMap)) return false; } else { if (!compare(OpF, OpG)) return false; } ValueMap[OpF] = OpG; } ValueMap[FI] = GI; ++FI, ++GI; } while (FI != FE && GI != GE); return FI == FE && GI == GE; } static bool equals(const Function *F, const Function *G) { // We need to recheck everything, but check the things that weren't included // in the hash first. if (F->getAttributes() != G->getAttributes()) return false; if (F->hasGC() != G->hasGC()) return false; if (F->hasGC() && F->getGC() != G->getGC()) return false; if (F->hasSection() != G->hasSection()) return false; if (F->hasSection() && F->getSection() != G->getSection()) return false; if (F->isVarArg() != G->isVarArg()) return false; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (F->getCallingConv() != G->getCallingConv()) return false; if (!isEquivalentType(F->getFunctionType(), G->getFunctionType())) return false; DenseMap ValueMap; DenseMap SpeculationMap; ValueMap[F] = G; assert(F->arg_size() == G->arg_size() && "Identical functions have a different number of args."); for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(), fe = F->arg_end(); fi != fe; ++fi, ++gi) ValueMap[fi] = gi; if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap, SpeculationMap)) return false; for (DenseMap::iterator I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) { if (ValueMap[I->first] != I->second) return false; } return true; } // ===----------------------------------------------------------------------=== // Folding of functions // ===----------------------------------------------------------------------=== // Cases: // * F is external strong, G is external strong: // turn G into a thunk to F (1) // * F is external strong, G is external weak: // turn G into a thunk to F (1) // * F is external weak, G is external weak: // unfoldable // * F is external strong, G is internal: // address of G taken: // turn G into a thunk to F (1) // address of G not taken: // make G an alias to F (2) // * F is internal, G is external weak // address of F is taken: // turn G into a thunk to F (1) // address of F is not taken: // make G an alias of F (2) // * F is internal, G is internal: // address of F and G are taken: // turn G into a thunk to F (1) // address of G is not taken: // make G an alias to F (2) // // alias requires linkage == (external,local,weak) fallback to creating a thunk // external means 'externally visible' linkage != (internal,private) // internal means linkage == (internal,private) // weak means linkage mayBeOverridable // being external implies that the address is taken // // 1. turn G into a thunk to F // 2. make G an alias to F enum LinkageCategory { ExternalStrong, ExternalWeak, Internal }; static LinkageCategory categorize(const Function *F) { switch (F->getLinkage()) { case GlobalValue::InternalLinkage: case GlobalValue::PrivateLinkage: case GlobalValue::LinkerPrivateLinkage: return Internal; case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::ExternalWeakLinkage: return ExternalWeak; case GlobalValue::ExternalLinkage: case GlobalValue::AvailableExternallyLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::AppendingLinkage: case GlobalValue::DLLImportLinkage: case GlobalValue::DLLExportLinkage: case GlobalValue::GhostLinkage: case GlobalValue::CommonLinkage: return ExternalStrong; } llvm_unreachable("Unknown LinkageType."); return ExternalWeak; } static void ThunkGToF(Function *F, Function *G) { Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", G->getParent()); BasicBlock *BB = BasicBlock::Create("", NewG); std::vector Args; unsigned i = 0; const FunctionType *FFTy = F->getFunctionType(); for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); AI != AE; ++AI) { if (FFTy->getParamType(i) == AI->getType()) Args.push_back(AI); else { Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB); Args.push_back(BCI); } ++i; } CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB); CI->setTailCall(); CI->setCallingConv(F->getCallingConv()); if (NewG->getReturnType() == Type::VoidTy) { ReturnInst::Create(BB); } else if (CI->getType() != NewG->getReturnType()) { Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB); ReturnInst::Create(BCI, BB); } else { ReturnInst::Create(CI, BB); } NewG->copyAttributesFrom(G); NewG->takeName(G); G->replaceAllUsesWith(NewG); G->eraseFromParent(); // TODO: look at direct callers to G and make them all direct callers to F. } static void AliasGToF(Function *F, Function *G) { if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage()) return ThunkGToF(F, G); GlobalAlias *GA = new GlobalAlias( G->getType(), G->getLinkage(), "", ConstantExpr::getBitCast(F, G->getType()), G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); G->replaceAllUsesWith(GA); G->eraseFromParent(); } static bool fold(std::vector &FnVec, unsigned i, unsigned j) { Function *F = FnVec[i]; Function *G = FnVec[j]; LinkageCategory catF = categorize(F); LinkageCategory catG = categorize(G); if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) { std::swap(FnVec[i], FnVec[j]); std::swap(F, G); std::swap(catF, catG); } switch (catF) { case ExternalStrong: switch (catG) { case ExternalStrong: case ExternalWeak: ThunkGToF(F, G); break; case Internal: if (G->hasAddressTaken()) ThunkGToF(F, G); else AliasGToF(F, G); break; } break; case ExternalWeak: { assert(catG == ExternalWeak); // Make them both thunks to the same internal function. F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", F->getParent()); H->copyAttributesFrom(F); H->takeName(F); F->replaceAllUsesWith(H); ThunkGToF(F, G); ThunkGToF(F, H); F->setLinkage(GlobalValue::InternalLinkage); } break; case Internal: switch (catG) { case ExternalStrong: llvm_unreachable(0); // fall-through case ExternalWeak: if (F->hasAddressTaken()) ThunkGToF(F, G); else AliasGToF(F, G); break; case Internal: { bool addrTakenF = F->hasAddressTaken(); bool addrTakenG = G->hasAddressTaken(); if (!addrTakenF && addrTakenG) { std::swap(FnVec[i], FnVec[j]); std::swap(F, G); std::swap(addrTakenF, addrTakenG); } if (addrTakenF && addrTakenG) { ThunkGToF(F, G); } else { assert(!addrTakenG); AliasGToF(F, G); } } break; } break; } ++NumFunctionsMerged; return true; } // ===----------------------------------------------------------------------=== // Pass definition // ===----------------------------------------------------------------------=== bool MergeFunctions::runOnModule(Module &M) { bool Changed = false; std::map > FnMap; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration() || F->isIntrinsic()) continue; FnMap[hash(F)].push_back(F); } // TODO: instead of running in a loop, we could also fold functions in // callgraph order. Constructing the CFG probably isn't cheaper than just // running in a loop, unless it happened to already be available. bool LocalChanged; do { LocalChanged = false; DOUT << "size: " << FnMap.size() << "\n"; for (std::map >::iterator I = FnMap.begin(), E = FnMap.end(); I != E; ++I) { std::vector &FnVec = I->second; DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n"; for (int i = 0, e = FnVec.size(); i != e; ++i) { for (int j = i + 1; j != e; ++j) { bool isEqual = equals(FnVec[i], FnVec[j]); DEBUG(errs() << " " << FnVec[i]->getName() << (isEqual ? " == " : " != ") << FnVec[j]->getName() << "\n"); if (isEqual) { if (fold(FnVec, i, j)) { LocalChanged = true; FnVec.erase(FnVec.begin() + j); --j, --e; } } } } } Changed |= LocalChanged; } while (LocalChanged); return Changed; }