//===- Expressions.cpp - Expression Analysis Utilities ----------------------=// // // This file defines a package of expression analysis utilties: // // ClassifyExpression: Analyze an expression to determine the complexity of the // expression, and which other variables it depends on. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Expressions.h" #include "llvm/Optimizations/ConstantHandling.h" #include "llvm/ConstantPool.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" using namespace opt; // Get all the constant handling stuff using namespace analysis; class DefVal { const ConstPoolInt * const Val; ConstantPool &CP; const Type * const Ty; protected: inline DefVal(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) : Val(val), CP(cp), Ty(ty) {} public: inline const Type *getType() const { return Ty; } inline ConstantPool &getCP() const { return CP; } inline const ConstPoolInt *getVal() const { return Val; } inline operator const ConstPoolInt * () const { return Val; } inline const ConstPoolInt *operator->() const { return Val; } }; struct DefZero : public DefVal { inline DefZero(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) : DefVal(val, cp, ty) {} inline DefZero(const ConstPoolInt *val) : DefVal(val, (ConstantPool&)val->getParent()->getConstantPool(), val->getType()) {} }; struct DefOne : public DefVal { inline DefOne(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) : DefVal(val, cp, ty) {} }; // getIntegralConstant - Wrapper around the ConstPoolInt member of the same // name. This method first checks to see if the desired constant is already in // the constant pool. If it is, it is quickly recycled, otherwise a new one // is allocated and added to the constant pool. // static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V, const Type *Ty) { // FIXME: Lookup prexisting constant in table! ConstPoolInt *CPI = ConstPoolInt::get(Ty, V); CP.insert(CPI); return CPI; } static ConstPoolInt *getUnsignedConstant(ConstantPool &CP, uint64_t V, const Type *Ty) { // FIXME: Lookup prexisting constant in table! ConstPoolInt *CPI; CPI = Ty->isSigned() ? new ConstPoolSInt(Ty, V) : new ConstPoolUInt(Ty, V); CP.insert(CPI); return CPI; } // Add - Helper function to make later code simpler. Basically it just adds // the two constants together, inserts the result into the constant pool, and // returns it. Of course life is not simple, and this is no exception. Factors // that complicate matters: // 1. Either argument may be null. If this is the case, the null argument is // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) // 2. Types get in the way. We want to do arithmetic operations without // regard for the underlying types. It is assumed that the constants are // integral constants. The new value takes the type of the left argument. // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne // is false, a null return value indicates a value of 0. // static const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1, const ConstPoolInt *Arg2, bool DefOne) { assert(Arg1 && Arg2 && "No null arguments should exist now!"); assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); // Actually perform the computation now! ConstPoolVal *Result = *Arg1 + *Arg2; assert(Result && Result->getType() == Arg1->getType() && "Couldn't perform addition!"); ConstPoolInt *ResultI = (ConstPoolInt*)Result; // Check to see if the result is one of the special cases that we want to // recognize... if (ResultI->equalsInt(DefOne ? 1 : 0)) { // Yes it is, simply delete the constant and return null. delete ResultI; return 0; } CP.insert(ResultI); return ResultI; } inline const ConstPoolInt *operator+(const DefZero &L, const DefZero &R) { if (L == 0) return R; if (R == 0) return L; return Add(L.getCP(), L, R, false); } inline const ConstPoolInt *operator+(const DefOne &L, const DefOne &R) { if (L == 0) { if (R == 0) return getIntegralConstant(L.getCP(), 2, L.getType()); else return Add(L.getCP(), getIntegralConstant(L.getCP(), 1, L.getType()), R, true); } else if (R == 0) { return Add(L.getCP(), L, getIntegralConstant(L.getCP(), 1, L.getType()), true); } return Add(L.getCP(), L, R, true); } // Mul - Helper function to make later code simpler. Basically it just // multiplies the two constants together, inserts the result into the constant // pool, and returns it. Of course life is not simple, and this is no // exception. Factors that complicate matters: // 1. Either argument may be null. If this is the case, the null argument is // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) // 2. Types get in the way. We want to do arithmetic operations without // regard for the underlying types. It is assumed that the constants are // integral constants. // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne // is false, a null return value indicates a value of 0. // inline const ConstPoolInt *Mul(ConstantPool &CP, const ConstPoolInt *Arg1, const ConstPoolInt *Arg2, bool DefOne = false) { assert(Arg1 && Arg2 && "No null arguments should exist now!"); assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); // Actually perform the computation now! ConstPoolVal *Result = *Arg1 * *Arg2; assert(Result && Result->getType() == Arg1->getType() && "Couldn't perform mult!"); ConstPoolInt *ResultI = (ConstPoolInt*)Result; // Check to see if the result is one of the special cases that we want to // recognize... if (ResultI->equalsInt(DefOne ? 1 : 0)) { // Yes it is, simply delete the constant and return null. delete ResultI; return 0; } CP.insert(ResultI); return ResultI; } inline const ConstPoolInt *operator*(const DefZero &L, const DefZero &R) { if (L == 0 || R == 0) return 0; return Mul(L.getCP(), L, R, false); } inline const ConstPoolInt *operator*(const DefOne &L, const DefZero &R) { if (R == 0) return getIntegralConstant(L.getCP(), 0, L.getType()); if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); return Mul(L.getCP(), L, R, false); } inline const ConstPoolInt *operator*(const DefZero &L, const DefOne &R) { return R*L; } // ClassifyExpression: Analyze an expression to determine the complexity of the // expression, and which other values it depends on. // // Note that this analysis cannot get into infinite loops because it treats PHI // nodes as being an unknown linear expression. // ExprType analysis::ClassifyExpression(Value *Expr) { assert(Expr != 0 && "Can't classify a null expression!"); switch (Expr->getValueType()) { case Value::InstructionVal: break; // Instruction... hmmm... investigate. case Value::TypeVal: case Value::BasicBlockVal: case Value::MethodVal: case Value::ModuleVal: assert(0 && "Unexpected expression type to classify!"); case Value::MethodArgumentVal: // Method arg: nothing known, return var return Expr; case Value::ConstantVal: // Constant value, just return constant ConstPoolVal *CPV = Expr->castConstantAsserting(); if (CPV->getType()->isIntegral()) { // It's an integral constant! ConstPoolInt *CPI = (ConstPoolInt*)Expr; return ExprType(CPI->equalsInt(0) ? 0 : (ConstPoolInt*)Expr); } return Expr; } Instruction *I = Expr->castInstructionAsserting(); ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); const Type *Ty = I->getType(); switch (I->getOpcode()) { // Handle each instruction type seperately case Instruction::Add: { ExprType Left (ClassifyExpression(I->getOperand(0))); ExprType Right(ClassifyExpression(I->getOperand(1))); if (Left.ExprTy > Right.ExprTy) swap(Left, Right); // Make left be simpler than right switch (Left.ExprTy) { case ExprType::Constant: return ExprType(Right.Scale, Right.Var, DefZero(Right.Offset,CP,Ty) + DefZero(Left.Offset, CP,Ty)); case ExprType::Linear: // RHS side must be linear or scaled case ExprType::ScaledLinear: // RHS must be scaled if (Left.Var != Right.Var) // Are they the same variables? return ExprType(I); // if not, we don't know anything! return ExprType(DefOne(Left.Scale ,CP,Ty) + DefOne(Right.Scale , CP,Ty), Left.Var, DefZero(Left.Offset,CP,Ty) + DefZero(Right.Offset, CP,Ty)); } } // end case Instruction::Add case Instruction::Shl: { ExprType Right(ClassifyExpression(I->getOperand(1))); if (Right.ExprTy != ExprType::Constant) break; ExprType Left(ClassifyExpression(I->getOperand(0))); if (Right.Offset == 0) return Left; // shl x, 0 = x assert(Right.Offset->getType() == Type::UByteTy && "Shift amount must always be a unsigned byte!"); uint64_t ShiftAmount = ((ConstPoolUInt*)Right.Offset)->getValue(); ConstPoolInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount, Ty); return ExprType(DefOne(Left.Scale, CP, Ty) * Multiplier, Left.Var, DefZero(Left.Offset, CP, Ty) * Multiplier); } // end case Instruction::Shl case Instruction::Mul: { ExprType Left (ClassifyExpression(I->getOperand(0))); ExprType Right(ClassifyExpression(I->getOperand(1))); if (Left.ExprTy > Right.ExprTy) swap(Left, Right); // Make left be simpler than right if (Left.ExprTy != ExprType::Constant) // RHS must be > constant return I; // Quadratic eqn! :( const ConstPoolInt *Offs = Left.Offset; if (Offs == 0) return ExprType(); return ExprType(DefOne(Right.Scale, CP, Ty) * Offs, Right.Var, DefZero(Right.Offset, CP, Ty) * Offs); } // end case Instruction::Mul case Instruction::Cast: { ExprType Src(ClassifyExpression(I->getOperand(0))); if (Src.ExprTy != ExprType::Constant) return I; const ConstPoolInt *Offs = Src.Offset; if (Offs == 0) return ExprType(); if (I->getType()->isPointerType()) return Offs; // Pointer types do not lose precision assert(I->getType()->isIntegral() && "Can only handle integral types!"); const ConstPoolVal *CPV = ConstRules::get(*Offs)->castTo(Offs, I->getType()); if (!CPV) return I; assert(CPV->getType()->isIntegral() && "Must have an integral type!"); return (ConstPoolInt*)CPV; } // end case Instruction::Cast // TODO: Handle SUB (at least!) } // end switch // Otherwise, I don't know anything about this value! return I; }