//===- ARMScheduleV6.td - ARM v6 Scheduling Definitions ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the ARM v6 processors. // //===----------------------------------------------------------------------===// // Model based on ARM1176 // // Functional Units def V6_Pipe : FuncUnit; // pipeline // Scheduling information derived from "ARM1176JZF-S Technical Reference Manual" // def ARMV6Itineraries : ProcessorItineraries< [V6_Pipe], [], [ // // No operand cycles InstrItinData]>, // // Binary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 2, 2]>, InstrItinData], [2, 2, 1]>, InstrItinData], [3, 3, 2, 1]>, // // Bitwise Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 2, 2]>, InstrItinData], [2, 2, 1]>, InstrItinData], [3, 3, 2, 1]>, // // Unary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, // // Zero and sign extension instructions InstrItinData], [1, 1]>, InstrItinData], [2, 2, 1]>, InstrItinData], [3, 3, 2, 1]>, // // Compare instructions InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [3, 2, 1]>, // // Test instructions InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [3, 2, 1]>, // // Move instructions, unconditional InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [3, 2, 1]>, InstrItinData, InstrStage<1, [V6_Pipe]>], [2]>, // // Move instructions, conditional InstrItinData], [3]>, InstrItinData], [3, 2]>, InstrItinData], [3, 1]>, InstrItinData], [4, 2, 1]>, // // MVN instructions InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [3, 2, 1]>, // Integer multiply pipeline // InstrItinData], [4, 1, 1]>, InstrItinData], [4, 1, 1, 2]>, InstrItinData], [5, 1, 1]>, InstrItinData], [5, 1, 1, 2]>, InstrItinData], [6, 1, 1]>, InstrItinData], [6, 1, 1, 2]>, // Integer load pipeline // // Immediate offset InstrItinData], [4, 1]>, // // Register offset InstrItinData], [4, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData], [5, 2, 1]>, // // Immediate offset with update InstrItinData], [4, 2, 1]>, // // Register offset with update InstrItinData], [4, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData], [5, 2, 2, 1]>, // // Load multiple InstrItinData]>, // // Load multiple plus branch InstrItinData, InstrStage<1, [V6_Pipe]>]>, // // iLoadi + iALUr for t2LDRpci_pic. InstrItinData, InstrStage<1, [V6_Pipe]>], [3, 1]>, // Integer store pipeline // // Immediate offset InstrItinData], [2, 1]>, // // Register offset InstrItinData], [2, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData], [2, 2, 1]>, // // Immediate offset with update InstrItinData], [2, 2, 1]>, // // Register offset with update InstrItinData], [2, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData], [2, 2, 2, 1]>, // // Store multiple InstrItinData]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData]>, // VFP // Issue through integer pipeline, and execute in NEON unit. We assume // RunFast mode so that NFP pipeline is used for single-precision when // possible. // // FP Special Register to Integer Register File Move InstrItinData], [3]>, // // Single-precision FP Unary InstrItinData], [5, 2]>, // // Double-precision FP Unary InstrItinData], [5, 2]>, // // Single-precision FP Compare InstrItinData], [2, 2]>, // // Double-precision FP Compare InstrItinData], [2, 2]>, // // Single to Double FP Convert InstrItinData], [5, 2]>, // // Double to Single FP Convert InstrItinData], [5, 2]>, // // Single-Precision FP to Integer Convert InstrItinData], [9, 2]>, // // Double-Precision FP to Integer Convert InstrItinData], [9, 2]>, // // Integer to Single-Precision FP Convert InstrItinData], [9, 2]>, // // Integer to Double-Precision FP Convert InstrItinData], [9, 2]>, // // Single-precision FP ALU InstrItinData], [9, 2, 2]>, // // Double-precision FP ALU InstrItinData], [9, 2, 2]>, // // Single-precision FP Multiply InstrItinData], [9, 2, 2]>, // // Double-precision FP Multiply InstrItinData], [9, 2, 2]>, // // Single-precision FP MAC InstrItinData], [9, 2, 2, 2]>, // // Double-precision FP MAC InstrItinData], [9, 2, 2, 2]>, // // Single-precision FP DIV InstrItinData], [20, 2, 2]>, // // Double-precision FP DIV InstrItinData], [34, 2, 2]>, // // Single-precision FP SQRT InstrItinData], [20, 2, 2]>, // // Double-precision FP SQRT InstrItinData], [34, 2, 2]>, // // Single-precision FP Load InstrItinData], [5, 2, 2]>, // // Double-precision FP Load InstrItinData], [5, 2, 2]>, // // FP Load Multiple InstrItinData]>, // // Single-precision FP Store InstrItinData], [2, 2, 2]>, // // Double-precision FP Store // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData], [2, 2, 2]>, // // FP Store Multiple InstrItinData]> ]>;