//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/PassRegistry.h" #include "llvm/Module.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/PassNameParser.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Atomic.h" #include "llvm/System/Mutex.h" #include "llvm/System/Threading.h" #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Pass Implementation // Pass::Pass(PassKind K, intptr_t pid) : Resolver(0), PassID(pid), Kind(K) { assert(pid && "pid cannot be 0"); } Pass::Pass(PassKind K, const void *pid) : Resolver(0), PassID((intptr_t)pid), Kind(K) { assert(pid && "pid cannot be 0"); } // Force out-of-line virtual method. Pass::~Pass() { delete Resolver; } // Force out-of-line virtual method. ModulePass::~ModulePass() { } Pass *ModulePass::createPrinterPass(raw_ostream &O, const std::string &Banner) const { return createPrintModulePass(&O, false, Banner); } PassManagerType ModulePass::getPotentialPassManagerType() const { return PMT_ModulePassManager; } bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const { return Resolver->getAnalysisIfAvailable(AnalysisID, true) != 0; } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { dbgs().indent(Offset*2) << getPassName() << "\n"; } /// getPassName - Return a nice clean name for a pass. This usually /// implemented in terms of the name that is registered by one of the /// Registration templates, but can be overloaded directly. /// const char *Pass::getPassName() const { if (const PassInfo *PI = getPassInfo()) return PI->getPassName(); return "Unnamed pass: implement Pass::getPassName()"; } void Pass::preparePassManager(PMStack &) { // By default, don't do anything. } PassManagerType Pass::getPotentialPassManagerType() const { // Default implementation. return PMT_Unknown; } void Pass::getAnalysisUsage(AnalysisUsage &) const { // By default, no analysis results are used, all are invalidated. } void Pass::releaseMemory() { // By default, don't do anything. } void Pass::verifyAnalysis() const { // By default, don't do anything. } void *Pass::getAdjustedAnalysisPointer(const PassInfo *) { return this; } ImmutablePass *Pass::getAsImmutablePass() { return 0; } PMDataManager *Pass::getAsPMDataManager() { return 0; } void Pass::setResolver(AnalysisResolver *AR) { assert(!Resolver && "Resolver is already set"); Resolver = AR; } // print - Print out the internal state of the pass. This is called by Analyze // to print out the contents of an analysis. Otherwise it is not necessary to // implement this method. // void Pass::print(raw_ostream &O,const Module*) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(cerr); void Pass::dump() const { print(dbgs(), 0); } //===----------------------------------------------------------------------===// // ImmutablePass Implementation // // Force out-of-line virtual method. ImmutablePass::~ImmutablePass() { } void ImmutablePass::initializePass() { // By default, don't do anything. } //===----------------------------------------------------------------------===// // FunctionPass Implementation // Pass *FunctionPass::createPrinterPass(raw_ostream &O, const std::string &Banner) const { return createPrintFunctionPass(Banner, &O); } // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::runOnModule(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { // Passes are not run on external functions! if (F.isDeclaration()) return false; bool Changed = doInitialization(*F.getParent()); Changed |= runOnFunction(F); return Changed | doFinalization(*F.getParent()); } bool FunctionPass::doInitialization(Module &) { // By default, don't do anything. return false; } bool FunctionPass::doFinalization(Module &) { // By default, don't do anything. return false; } PassManagerType FunctionPass::getPotentialPassManagerType() const { return PMT_FunctionPassManager; } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // Pass *BasicBlockPass::createPrinterPass(raw_ostream &O, const std::string &Banner) const { llvm_unreachable("BasicBlockPass printing unsupported."); return 0; } // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = doInitialization(F); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed | doFinalization(F); } bool BasicBlockPass::doInitialization(Module &) { // By default, don't do anything. return false; } bool BasicBlockPass::doInitialization(Function &) { // By default, don't do anything. return false; } bool BasicBlockPass::doFinalization(Function &) { // By default, don't do anything. return false; } bool BasicBlockPass::doFinalization(Module &) { // By default, don't do anything. return false; } PassManagerType BasicBlockPass::getPotentialPassManagerType() const { return PMT_BasicBlockPassManager; } //===----------------------------------------------------------------------===// // Pass Registration mechanism // static std::vector *Listeners = 0; static sys::SmartMutex ListenersLock; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { return lookupPassInfo(PassID); } const PassInfo *Pass::lookupPassInfo(intptr_t TI) { return PassRegistry::getPassRegistry()->getPassInfo(TI); } const PassInfo *Pass::lookupPassInfo(StringRef Arg) { return PassRegistry::getPassRegistry()->getPassInfo(Arg); } void PassInfo::registerPass() { PassRegistry::getPassRegistry()->registerPass(*this); // Notify any listeners. sys::SmartScopedLock Lock(ListenersLock); if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(this); } void PassInfo::unregisterPass() { PassRegistry::getPassRegistry()->unregisterPass(*this); } Pass *PassInfo::createPass() const { assert((!isAnalysisGroup() || NormalCtor) && "No default implementation found for analysis group!"); assert(NormalCtor && "Cannot call createPass on PassInfo without default ctor!"); return NormalCtor(); } //===----------------------------------------------------------------------===// // Analysis Group Implementation Code //===----------------------------------------------------------------------===// // RegisterAGBase implementation // RegisterAGBase::RegisterAGBase(const char *Name, intptr_t InterfaceID, intptr_t PassID, bool isDefault) : PassInfo(Name, InterfaceID) { PassInfo *InterfaceInfo = const_cast(Pass::lookupPassInfo(InterfaceID)); if (InterfaceInfo == 0) { // First reference to Interface, register it now. registerPass(); InterfaceInfo = this; } assert(isAnalysisGroup() && "Trying to join an analysis group that is a normal pass!"); if (PassID) { const PassInfo *ImplementationInfo = Pass::lookupPassInfo(PassID); assert(ImplementationInfo && "Must register pass before adding to AnalysisGroup!"); // Make sure we keep track of the fact that the implementation implements // the interface. PassInfo *IIPI = const_cast(ImplementationInfo); IIPI->addInterfaceImplemented(InterfaceInfo); PassRegistry::getPassRegistry()->registerAnalysisGroup(InterfaceInfo, IIPI, isDefault); } } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { sys::SmartScopedLock Lock(ListenersLock); if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { sys::SmartScopedLock Lock(ListenersLock); std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { PassRegistry::getPassRegistry()->enumerateWith(this); } PassNameParser::~PassNameParser() {} //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // namespace { struct GetCFGOnlyPasses : public PassRegistrationListener { typedef AnalysisUsage::VectorType VectorType; VectorType &CFGOnlyList; GetCFGOnlyPasses(VectorType &L) : CFGOnlyList(L) {} void passEnumerate(const PassInfo *P) { if (P->isCFGOnlyPass()) CFGOnlyList.push_back(P); } }; } // setPreservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::setPreservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) GetCFGOnlyPasses(Preserved).enumeratePasses(); } AnalysisUsage &AnalysisUsage::addRequiredID(AnalysisID ID) { assert(ID && "Pass class not registered!"); Required.push_back(ID); return *this; } AnalysisUsage &AnalysisUsage::addRequiredTransitiveID(AnalysisID ID) { assert(ID && "Pass class not registered!"); Required.push_back(ID); RequiredTransitive.push_back(ID); return *this; }