//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that splits the constant pool up into 'islands' // which are scattered through-out the function. This is required due to the // limited pc-relative displacements that ARM has. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-cp-islands" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMMachineFunctionInfo.h" #include "ARMInstrInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumCPEs, "Number of constpool entries"); STATISTIC(NumSplit, "Number of uncond branches inserted"); STATISTIC(NumCBrFixed, "Number of cond branches fixed"); STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); STATISTIC(NumTBs, "Number of table branches generated"); namespace { /// ARMConstantIslands - Due to limited PC-relative displacements, ARM /// requires constant pool entries to be scattered among the instructions /// inside a function. To do this, it completely ignores the normal LLVM /// constant pool; instead, it places constants wherever it feels like with /// special instructions. /// /// The terminology used in this pass includes: /// Islands - Clumps of constants placed in the function. /// Water - Potential places where an island could be formed. /// CPE - A constant pool entry that has been placed somewhere, which /// tracks a list of users. class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed /// by MBB Number. The two-byte pads required for Thumb alignment are /// counted as part of the following block (i.e., the offset and size for /// a padded block will both be ==2 mod 4). std::vector BBSizes; /// BBOffsets - the offset of each MBB in bytes, starting from 0. /// The two-byte pads required for Thumb alignment are counted as part of /// the following block. std::vector BBOffsets; /// WaterList - A sorted list of basic blocks where islands could be placed /// (i.e. blocks that don't fall through to the following block, due /// to a return, unreachable, or unconditional branch). std::vector WaterList; /// CPUser - One user of a constant pool, keeping the machine instruction /// pointer, the constant pool being referenced, and the max displacement /// allowed from the instruction to the CP. struct CPUser { MachineInstr *MI; MachineInstr *CPEMI; unsigned MaxDisp; bool NegOk; bool IsSoImm; CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, bool neg, bool soimm) : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {} }; /// CPUsers - Keep track of all of the machine instructions that use various /// constant pools and their max displacement. std::vector CPUsers; /// CPEntry - One per constant pool entry, keeping the machine instruction /// pointer, the constpool index, and the number of CPUser's which /// reference this entry. struct CPEntry { MachineInstr *CPEMI; unsigned CPI; unsigned RefCount; CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} }; /// CPEntries - Keep track of all of the constant pool entry machine /// instructions. For each original constpool index (i.e. those that /// existed upon entry to this pass), it keeps a vector of entries. /// Original elements are cloned as we go along; the clones are /// put in the vector of the original element, but have distinct CPIs. std::vector > CPEntries; /// ImmBranch - One per immediate branch, keeping the machine instruction /// pointer, conditional or unconditional, the max displacement, /// and (if isCond is true) the corresponding unconditional branch /// opcode. struct ImmBranch { MachineInstr *MI; unsigned MaxDisp : 31; bool isCond : 1; int UncondBr; ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} }; /// ImmBranches - Keep track of all the immediate branch instructions. /// std::vector ImmBranches; /// PushPopMIs - Keep track of all the Thumb push / pop instructions. /// SmallVector PushPopMIs; /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. SmallVector T2JumpTables; /// HasFarJump - True if any far jump instruction has been emitted during /// the branch fix up pass. bool HasFarJump; const TargetInstrInfo *TII; const ARMSubtarget *STI; ARMFunctionInfo *AFI; bool isThumb; bool isThumb1; bool isThumb2; public: static char ID; ARMConstantIslands() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM constant island placement and branch shortening pass"; } private: void DoInitialPlacement(MachineFunction &MF, std::vector &CPEMIs); CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); void InitialFunctionScan(MachineFunction &MF, const std::vector &CPEMIs); MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); bool LookForWater(CPUser&U, unsigned UserOffset, MachineBasicBlock** NewMBB); MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, std::vector::iterator IP); void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock** NewMBB); bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); void RemoveDeadCPEMI(MachineInstr *CPEMI); bool RemoveUnusedCPEntries(); bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned Disp, bool NegOk, bool DoDump = false); bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U); bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, bool NegativeOK, bool IsSoImm = false); bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); bool UndoLRSpillRestore(); bool OptimizeThumb2JumpTables(MachineFunction &MF); unsigned GetOffsetOf(MachineInstr *MI) const; void dumpBBs(); void verify(MachineFunction &MF); }; char ARMConstantIslands::ID = 0; } /// verify - check BBOffsets, BBSizes, alignment of islands void ARMConstantIslands::verify(MachineFunction &MF) { assert(BBOffsets.size() == BBSizes.size()); for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); if (!isThumb) return; #ifndef NDEBUG for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; if (!MBB->empty() && MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { unsigned MBBId = MBB->getNumber(); assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); } } #endif } /// print block size and offset information - debugging void ARMConstantIslands::dumpBBs() { for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { DOUT << "block " << J << " offset " << BBOffsets[J] << " size " << BBSizes[J] << "\n"; } } /// createARMConstantIslandPass - returns an instance of the constpool /// island pass. FunctionPass *llvm::createARMConstantIslandPass() { return new ARMConstantIslands(); } bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { MachineConstantPool &MCP = *MF.getConstantPool(); TII = MF.getTarget().getInstrInfo(); AFI = MF.getInfo(); STI = &MF.getTarget().getSubtarget(); isThumb = AFI->isThumbFunction(); isThumb1 = AFI->isThumb1OnlyFunction(); isThumb2 = AFI->isThumb2Function(); HasFarJump = false; // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. MF.RenumberBlocks(); // Thumb1 functions containing constant pools get 4-byte alignment. // This is so we can keep exact track of where the alignment padding goes. // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte // aligned. AFI->setAlign(isThumb1 ? 1U : 2U); // Perform the initial placement of the constant pool entries. To start with, // we put them all at the end of the function. std::vector CPEMIs; if (!MCP.isEmpty()) { DoInitialPlacement(MF, CPEMIs); if (isThumb1) AFI->setAlign(2U); } /// The next UID to take is the first unused one. AFI->initConstPoolEntryUId(CPEMIs.size()); // Do the initial scan of the function, building up information about the // sizes of each block, the location of all the water, and finding all of the // constant pool users. InitialFunctionScan(MF, CPEMIs); CPEMIs.clear(); /// Remove dead constant pool entries. RemoveUnusedCPEntries(); // Iteratively place constant pool entries and fix up branches until there // is no change. bool MadeChange = false; unsigned NoCPIters = 0, NoBRIters = 0; while (true) { bool CPChange = false; for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) CPChange |= HandleConstantPoolUser(MF, i); if (CPChange && ++NoCPIters > 30) llvm_unreachable("Constant Island pass failed to converge!"); DEBUG(dumpBBs()); bool BRChange = false; for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); if (BRChange && ++NoBRIters > 30) llvm_unreachable("Branch Fix Up pass failed to converge!"); DEBUG(dumpBBs()); if (!CPChange && !BRChange) break; MadeChange = true; } // Let's see if we can use tbb / tbh to do jump tables. MadeChange |= OptimizeThumb2JumpTables(MF); // After a while, this might be made debug-only, but it is not expensive. verify(MF); // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. // Undo the spill / restore of LR if possible. if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) MadeChange |= UndoLRSpillRestore(); BBSizes.clear(); BBOffsets.clear(); WaterList.clear(); CPUsers.clear(); CPEntries.clear(); ImmBranches.clear(); PushPopMIs.clear(); T2JumpTables.clear(); return MadeChange; } /// DoInitialPlacement - Perform the initial placement of the constant pool /// entries. To start with, we put them all at the end of the function. void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, std::vector &CPEMIs) { // Create the basic block to hold the CPE's. MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); MF.push_back(BB); // Add all of the constants from the constant pool to the end block, use an // identity mapping of CPI's to CPE's. const std::vector &CPs = MF.getConstantPool()->getConstants(); const TargetData &TD = *MF.getTarget().getTargetData(); for (unsigned i = 0, e = CPs.size(); i != e; ++i) { unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); // Verify that all constant pool entries are a multiple of 4 bytes. If not, // we would have to pad them out or something so that instructions stay // aligned. assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); MachineInstr *CPEMI = BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(i).addConstantPoolIndex(i).addImm(Size); CPEMIs.push_back(CPEMI); // Add a new CPEntry, but no corresponding CPUser yet. std::vector CPEs; CPEs.push_back(CPEntry(CPEMI, i)); CPEntries.push_back(CPEs); NumCPEs++; DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; } } /// BBHasFallthrough - Return true if the specified basic block can fallthrough /// into the block immediately after it. static bool BBHasFallthrough(MachineBasicBlock *MBB) { // Get the next machine basic block in the function. MachineFunction::iterator MBBI = MBB; if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. return false; MachineBasicBlock *NextBB = next(MBBI); for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I == NextBB) return true; return false; } /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, /// look up the corresponding CPEntry. ARMConstantIslands::CPEntry *ARMConstantIslands::findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI) { std::vector &CPEs = CPEntries[CPI]; // Number of entries per constpool index should be small, just do a // linear search. for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { if (CPEs[i].CPEMI == CPEMI) return &CPEs[i]; } return NULL; } /// InitialFunctionScan - Do the initial scan of the function, building up /// information about the sizes of each block, the location of all the water, /// and finding all of the constant pool users. void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, const std::vector &CPEMIs) { unsigned Offset = 0; for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); MBBI != E; ++MBBI) { MachineBasicBlock &MBB = *MBBI; // If this block doesn't fall through into the next MBB, then this is // 'water' that a constant pool island could be placed. if (!BBHasFallthrough(&MBB)) WaterList.push_back(&MBB); unsigned MBBSize = 0; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { // Add instruction size to MBBSize. MBBSize += TII->GetInstSizeInBytes(I); int Opc = I->getOpcode(); if (I->getDesc().isBranch()) { bool isCond = false; unsigned Bits = 0; unsigned Scale = 1; int UOpc = Opc; switch (Opc) { default: continue; // Ignore other JT branches case ARM::tBR_JTr: // A Thumb1 table jump may involve padding; for the offsets to // be right, functions containing these must be 4-byte aligned. AFI->setAlign(2U); if ((Offset+MBBSize)%4 != 0) // FIXME: Add a pseudo ALIGN instruction instead. MBBSize += 2; // padding continue; // Does not get an entry in ImmBranches case ARM::t2BR_JT: T2JumpTables.push_back(I); continue; // Does not get an entry in ImmBranches case ARM::Bcc: isCond = true; UOpc = ARM::B; // Fallthrough case ARM::B: Bits = 24; Scale = 4; break; case ARM::tBcc: isCond = true; UOpc = ARM::tB; Bits = 8; Scale = 2; break; case ARM::tB: Bits = 11; Scale = 2; break; case ARM::t2Bcc: isCond = true; UOpc = ARM::t2B; Bits = 20; Scale = 2; break; case ARM::t2B: Bits = 24; Scale = 2; break; } // Record this immediate branch. unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); } if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) PushPopMIs.push_back(I); if (Opc == ARM::CONSTPOOL_ENTRY) continue; // Scan the instructions for constant pool operands. for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (I->getOperand(op).isCPI()) { // We found one. The addressing mode tells us the max displacement // from the PC that this instruction permits. // Basic size info comes from the TSFlags field. unsigned Bits = 0; unsigned Scale = 1; bool NegOk = false; bool IsSoImm = false; // FIXME: Temporary workaround until I can figure out what's going on. unsigned Slack = T2JumpTables.empty() ? 0 : 4; switch (Opc) { default: llvm_unreachable("Unknown addressing mode for CP reference!"); break; // Taking the address of a CP entry. case ARM::LEApcrel: // This takes a SoImm, which is 8 bit immediate rotated. We'll // pretend the maximum offset is 255 * 4. Since each instruction // 4 byte wide, this is always correct. We'llc heck for other // displacements that fits in a SoImm as well. Bits = 8; Scale = 4; NegOk = true; IsSoImm = true; break; case ARM::t2LEApcrel: Bits = 12; NegOk = true; break; case ARM::tLEApcrel: Bits = 8; Scale = 4; break; case ARM::LDR: case ARM::LDRcp: case ARM::t2LDRpci: Bits = 12; // +-offset_12 NegOk = true; break; case ARM::tLDRpci: case ARM::tLDRcp: Bits = 8; Scale = 4; // +(offset_8*4) break; case ARM::FLDD: case ARM::FLDS: Bits = 8; Scale = 4; // +-(offset_8*4) NegOk = true; break; } // Remember that this is a user of a CP entry. unsigned CPI = I->getOperand(op).getIndex(); MachineInstr *CPEMI = CPEMIs[CPI]; unsigned MaxOffs = ((1 << Bits)-1) * Scale - Slack; CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); // Increment corresponding CPEntry reference count. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Cannot find a corresponding CPEntry!"); CPE->RefCount++; // Instructions can only use one CP entry, don't bother scanning the // rest of the operands. break; } } // In thumb mode, if this block is a constpool island, we may need padding // so it's aligned on 4 byte boundary. if (isThumb && !MBB.empty() && MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && (Offset%4) != 0) MBBSize += 2; BBSizes.push_back(MBBSize); BBOffsets.push_back(Offset); Offset += MBBSize; } } /// GetOffsetOf - Return the current offset of the specified machine instruction /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = BBOffsets[MBB->getNumber()]; // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has // alignment padding, and compensate if so. if (isThumb && MI->getOpcode() == ARM::CONSTPOOL_ENTRY && Offset%4 != 0) Offset += 2; // Sum instructions before MI in MBB. for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); if (&*I == MI) return Offset; Offset += TII->GetInstSizeInBytes(I); } } /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB /// ID. static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { return LHS->getNumber() < RHS->getNumber(); } /// UpdateForInsertedWaterBlock - When a block is newly inserted into the /// machine function, it upsets all of the block numbers. Renumber the blocks /// and update the arrays that parallel this numbering. void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { // Renumber the MBB's to keep them consequtive. NewBB->getParent()->RenumberBlocks(NewBB); // Insert a size into BBSizes to align it properly with the (newly // renumbered) block numbers. BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); // Likewise for BBOffsets. BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); // Next, update WaterList. Specifically, we need to add NewMBB as having // available water after it. std::vector::iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, CompareMBBNumbers); WaterList.insert(IP, NewBB); } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update datastructures and renumber blocks to /// account for this change and returns the newly created block. MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { MachineBasicBlock *OrigBB = MI->getParent(); MachineFunction &MF = *OrigBB->getParent(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); MachineFunction::iterator MBBI = OrigBB; ++MBBI; MF.insert(MBBI, NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond to anything in the source. unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB); NumSplit++; // Update the CFG. All succs of OrigBB are now succs of NewBB. while (!OrigBB->succ_empty()) { MachineBasicBlock *Succ = *OrigBB->succ_begin(); OrigBB->removeSuccessor(Succ); NewBB->addSuccessor(Succ); // This pass should be run after register allocation, so there should be no // PHI nodes to update. assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) && "PHI nodes should be eliminated by now!"); } // OrigBB branches to NewBB. OrigBB->addSuccessor(NewBB); // Update internal data structures to account for the newly inserted MBB. // This is almost the same as UpdateForInsertedWaterBlock, except that // the Water goes after OrigBB, not NewBB. MF.RenumberBlocks(NewBB); // Insert a size into BBSizes to align it properly with the (newly // renumbered) block numbers. BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); // Likewise for BBOffsets. BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); // Next, update WaterList. Specifically, we need to add OrigMBB as having // available water after it (but not if it's already there, which happens // when splitting before a conditional branch that is followed by an // unconditional branch - in that case we want to insert NewBB). std::vector::iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, CompareMBBNumbers); MachineBasicBlock* WaterBB = *IP; if (WaterBB == OrigBB) WaterList.insert(next(IP), NewBB); else WaterList.insert(IP, OrigBB); // Figure out how large the first NewMBB is. (It cannot // contain a constpool_entry or tablejump.) unsigned NewBBSize = 0; for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); I != E; ++I) NewBBSize += TII->GetInstSizeInBytes(I); unsigned OrigBBI = OrigBB->getNumber(); unsigned NewBBI = NewBB->getNumber(); // Set the size of NewBB in BBSizes. BBSizes[NewBBI] = NewBBSize; // We removed instructions from UserMBB, subtract that off from its size. // Add 2 or 4 to the block to count the unconditional branch we added to it. int delta = isThumb1 ? 2 : 4; BBSizes[OrigBBI] -= NewBBSize - delta; // ...and adjust BBOffsets for NewBB accordingly. BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; // All BBOffsets following these blocks must be modified. AdjustBBOffsetsAfter(NewBB, delta); return NewBB; } /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool /// reference) is within MaxDisp of TrialOffset (a proposed location of a /// constant pool entry). bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK, bool IsSoImm) { // On Thumb offsets==2 mod 4 are rounded down by the hardware for // purposes of the displacement computation; compensate for that here. // Effectively, the valid range of displacements is 2 bytes smaller for such // references. if (isThumb && UserOffset%4 !=0) UserOffset -= 2; // CPEs will be rounded up to a multiple of 4. if (isThumb && TrialOffset%4 != 0) TrialOffset += 2; if (UserOffset <= TrialOffset) { // User before the Trial. if (TrialOffset - UserOffset <= MaxDisp) return true; // FIXME: Make use full range of soimm values. } else if (NegativeOK) { if (UserOffset - TrialOffset <= MaxDisp) return true; // FIXME: Make use full range of soimm values. } return false; } /// WaterIsInRange - Returns true if a CPE placed after the specified /// Water (a basic block) will be in range for the specific MI. bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, MachineBasicBlock* Water, CPUser &U) { unsigned MaxDisp = U.MaxDisp; unsigned CPEOffset = BBOffsets[Water->getNumber()] + BBSizes[Water->getNumber()]; // If the CPE is to be inserted before the instruction, that will raise // the offset of the instruction. (Currently applies only to ARM, so // no alignment compensation attempted here.) if (CPEOffset < UserOffset) UserOffset += U.CPEMI->getOperand(2).getImm(); return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); } /// CPEIsInRange - Returns true if the distance between specific MI and /// specific ConstPool entry instruction can fit in MI's displacement field. bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned MaxDisp, bool NegOk, bool DoDump) { unsigned CPEOffset = GetOffsetOf(CPEMI); assert(CPEOffset%4 == 0 && "Misaligned CPE"); if (DoDump) { DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() << " max delta=" << MaxDisp << " insn address=" << UserOffset << " CPE address=" << CPEOffset << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI; } return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); } #ifndef NDEBUG /// BBIsJumpedOver - Return true of the specified basic block's only predecessor /// unconditionally branches to its only successor. static bool BBIsJumpedOver(MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; MachineBasicBlock *Succ = *MBB->succ_begin(); MachineBasicBlock *Pred = *MBB->pred_begin(); MachineInstr *PredMI = &Pred->back(); if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB || PredMI->getOpcode() == ARM::t2B) return PredMI->getOperand(0).getMBB() == Succ; return false; } #endif // NDEBUG void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta) { MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); i < e; ++i) { BBOffsets[i] += delta; // If some existing blocks have padding, adjust the padding as needed, a // bit tricky. delta can be negative so don't use % on that. if (!isThumb) continue; MachineBasicBlock *MBB = MBBI; if (!MBB->empty()) { // Constant pool entries require padding. if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { unsigned OldOffset = BBOffsets[i] - delta; if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { // add new padding BBSizes[i] += 2; delta += 2; } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { // remove existing padding BBSizes[i] -= 2; delta -= 2; } } // Thumb1 jump tables require padding. They should be at the end; // following unconditional branches are removed by AnalyzeBranch. MachineInstr *ThumbJTMI = prior(MBB->end()); if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); unsigned OldMIOffset = NewMIOffset - delta; if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { // remove existing padding BBSizes[i] -= 2; delta -= 2; } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { // add new padding BBSizes[i] += 2; delta += 2; } } if (delta==0) return; } MBBI = next(MBBI); } } /// DecrementOldEntry - find the constant pool entry with index CPI /// and instruction CPEMI, and decrement its refcount. If the refcount /// becomes 0 remove the entry and instruction. Returns true if we removed /// the entry, false if we didn't. bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { // Find the old entry. Eliminate it if it is no longer used. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Unexpected!"); if (--CPE->RefCount == 0) { RemoveDeadCPEMI(CPEMI); CPE->CPEMI = NULL; NumCPEs--; return true; } return false; } /// LookForCPEntryInRange - see if the currently referenced CPE is in range; /// if not, see if an in-range clone of the CPE is in range, and if so, /// change the data structures so the user references the clone. Returns: /// 0 = no existing entry found /// 1 = entry found, and there were no code insertions or deletions /// 2 = entry found, and there were code insertions or deletions int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) { MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { DOUT << "In range\n"; return 1; } // No. Look for previously created clones of the CPE that are in range. unsigned CPI = CPEMI->getOperand(1).getIndex(); std::vector &CPEs = CPEntries[CPI]; for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { // We already tried this one if (CPEs[i].CPEMI == CPEMI) continue; // Removing CPEs can leave empty entries, skip if (CPEs[i].CPEMI == NULL) continue; if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"; // Point the CPUser node to the replacement U.CPEMI = CPEs[i].CPEMI; // Change the CPI in the instruction operand to refer to the clone. for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) if (UserMI->getOperand(j).isCPI()) { UserMI->getOperand(j).setIndex(CPEs[i].CPI); break; } // Adjust the refcount of the clone... CPEs[i].RefCount++; // ...and the original. If we didn't remove the old entry, none of the // addresses changed, so we don't need another pass. return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; } } return 0; } /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in /// the specific unconditional branch instruction. static inline unsigned getUnconditionalBrDisp(int Opc) { switch (Opc) { case ARM::tB: return ((1<<10)-1)*2; case ARM::t2B: return ((1<<23)-1)*2; default: break; } return ((1<<23)-1)*4; } /// AcceptWater - Small amount of common code factored out of the following. MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, std::vector::iterator IP) { DOUT << "found water in range\n"; // Remove the original WaterList entry; we want subsequent // insertions in this vicinity to go after the one we're // about to insert. This considerably reduces the number // of times we have to move the same CPE more than once. WaterList.erase(IP); // CPE goes before following block (NewMBB). return next(MachineFunction::iterator(WaterBB)); } /// LookForWater - look for an existing entry in the WaterList in which /// we can place the CPE referenced from U so it's within range of U's MI. /// Returns true if found, false if not. If it returns true, *NewMBB /// is set to the WaterList entry. /// For ARM, we prefer the water that's farthest away. For Thumb, prefer /// water that will not introduce padding to water that will; within each /// group, prefer the water that's farthest away. bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, MachineBasicBlock** NewMBB) { std::vector::iterator IPThatWouldPad; MachineBasicBlock* WaterBBThatWouldPad = NULL; if (!WaterList.empty()) { for (std::vector::iterator IP = prior(WaterList.end()), B = WaterList.begin();; --IP) { MachineBasicBlock* WaterBB = *IP; if (WaterIsInRange(UserOffset, WaterBB, U)) { unsigned WBBId = WaterBB->getNumber(); if (isThumb && (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { // This is valid Water, but would introduce padding. Remember // it in case we don't find any Water that doesn't do this. if (!WaterBBThatWouldPad) { WaterBBThatWouldPad = WaterBB; IPThatWouldPad = IP; } } else { *NewMBB = AcceptWater(WaterBB, IP); return true; } } if (IP == B) break; } } if (isThumb && WaterBBThatWouldPad) { *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad); return true; } return false; } /// CreateNewWater - No existing WaterList entry will work for /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the /// block is used if in range, and the conditional branch munged so control /// flow is correct. Otherwise the block is split to create a hole with an /// unconditional branch around it. In either case *NewMBB is set to a /// block following which the new island can be inserted (the WaterList /// is not adjusted). void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock** NewMBB) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; MachineBasicBlock *UserMBB = UserMI->getParent(); unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + BBSizes[UserMBB->getNumber()]; assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); // If the use is at the end of the block, or the end of the block // is within range, make new water there. (The addition below is // for the unconditional branch we will be adding: 4 bytes on ARM + Thumb2, // 2 on Thumb1. Possible Thumb1 alignment padding is allowed for // inside OffsetIsInRange. // If the block ends in an unconditional branch already, it is water, // and is known to be out of range, so we'll always be adding a branch.) if (&UserMBB->back() == UserMI || OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), U.MaxDisp, U.NegOk, U.IsSoImm)) { DOUT << "Split at end of block\n"; if (&UserMBB->back() == UserMI) assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); *NewMBB = next(MachineFunction::iterator(UserMBB)); // Add an unconditional branch from UserMBB to fallthrough block. // Record it for branch lengthening; this new branch will not get out of // range, but if the preceding conditional branch is out of range, the // targets will be exchanged, and the altered branch may be out of // range, so the machinery has to know about it. int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; BuildMI(UserMBB, DebugLoc::getUnknownLoc(), TII->get(UncondBr)).addMBB(*NewMBB); unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); ImmBranches.push_back(ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); int delta = isThumb1 ? 2 : 4; BBSizes[UserMBB->getNumber()] += delta; AdjustBBOffsetsAfter(UserMBB, delta); } else { // What a big block. Find a place within the block to split it. // This is a little tricky on Thumb1 since instructions are 2 bytes // and constant pool entries are 4 bytes: if instruction I references // island CPE, and instruction I+1 references CPE', it will // not work well to put CPE as far forward as possible, since then // CPE' cannot immediately follow it (that location is 2 bytes // farther away from I+1 than CPE was from I) and we'd need to create // a new island. So, we make a first guess, then walk through the // instructions between the one currently being looked at and the // possible insertion point, and make sure any other instructions // that reference CPEs will be able to use the same island area; // if not, we back up the insertion point. // The 4 in the following is for the unconditional branch we'll be // inserting (allows for long branch on Thumb1). Alignment of the // island is handled inside OffsetIsInRange. unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; // This could point off the end of the block if we've already got // constant pool entries following this block; only the last one is // in the water list. Back past any possible branches (allow for a // conditional and a maximally long unconditional). if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - (isThumb1 ? 6 : 8); unsigned EndInsertOffset = BaseInsertOffset + CPEMI->getOperand(2).getImm(); MachineBasicBlock::iterator MI = UserMI; ++MI; unsigned CPUIndex = CPUserIndex+1; for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); Offset < BaseInsertOffset; Offset += TII->GetInstSizeInBytes(MI), MI = next(MI)) { if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { CPUser &U = CPUsers[CPUIndex]; if (!OffsetIsInRange(Offset, EndInsertOffset, U.MaxDisp, U.NegOk, U.IsSoImm)) { BaseInsertOffset -= (isThumb1 ? 2 : 4); EndInsertOffset -= (isThumb1 ? 2 : 4); } // This is overly conservative, as we don't account for CPEMIs // being reused within the block, but it doesn't matter much. EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); CPUIndex++; } } DOUT << "Split in middle of big block\n"; *NewMBB = SplitBlockBeforeInstr(prior(MI)); } } /// HandleConstantPoolUser - Analyze the specified user, checking to see if it /// is out-of-range. If so, pick up the constant pool value and move it some /// place in-range. Return true if we changed any addresses (thus must run /// another pass of branch lengthening), false otherwise. bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPI = CPEMI->getOperand(1).getIndex(); unsigned Size = CPEMI->getOperand(2).getImm(); MachineBasicBlock *NewMBB; // Compute this only once, it's expensive. The 4 or 8 is the value the // hardware keeps in the PC (2 insns ahead of the reference). unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); // See if the current entry is within range, or there is a clone of it // in range. int result = LookForExistingCPEntry(U, UserOffset); if (result==1) return false; else if (result==2) return true; // No existing clone of this CPE is within range. // We will be generating a new clone. Get a UID for it. unsigned ID = AFI->createConstPoolEntryUId(); // Look for water where we can place this CPE. We look for the farthest one // away that will work. Forward references only for now (although later // we might find some that are backwards). if (!LookForWater(U, UserOffset, &NewMBB)) { // No water found. DOUT << "No water found\n"; CreateNewWater(CPUserIndex, UserOffset, &NewMBB); } // Okay, we know we can put an island before NewMBB now, do it! MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); MF.insert(NewMBB, NewIsland); // Update internal data structures to account for the newly inserted MBB. UpdateForInsertedWaterBlock(NewIsland); // Decrement the old entry, and remove it if refcount becomes 0. DecrementOldEntry(CPI, CPEMI); // Now that we have an island to add the CPE to, clone the original CPE and // add it to the island. U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); NumCPEs++; BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; // Compensate for .align 2 in thumb mode. if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) Size += 2; // Increase the size of the island block to account for the new entry. BBSizes[NewIsland->getNumber()] += Size; AdjustBBOffsetsAfter(NewIsland, Size); // Finally, change the CPI in the instruction operand to be ID. for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) if (UserMI->getOperand(i).isCPI()) { UserMI->getOperand(i).setIndex(ID); break; } DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; return true; } /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update /// sizes and offsets of impacted basic blocks. void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { MachineBasicBlock *CPEBB = CPEMI->getParent(); unsigned Size = CPEMI->getOperand(2).getImm(); CPEMI->eraseFromParent(); BBSizes[CPEBB->getNumber()] -= Size; // All succeeding offsets have the current size value added in, fix this. if (CPEBB->empty()) { // In thumb1 mode, the size of island may be padded by two to compensate for // the alignment requirement. Then it will now be 2 when the block is // empty, so fix this. // All succeeding offsets have the current size value added in, fix this. if (BBSizes[CPEBB->getNumber()] != 0) { Size += BBSizes[CPEBB->getNumber()]; BBSizes[CPEBB->getNumber()] = 0; } } AdjustBBOffsetsAfter(CPEBB, -Size); // An island has only one predecessor BB and one successor BB. Check if // this BB's predecessor jumps directly to this BB's successor. This // shouldn't happen currently. assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); // FIXME: remove the empty blocks after all the work is done? } /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts /// are zero. bool ARMConstantIslands::RemoveUnusedCPEntries() { unsigned MadeChange = false; for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { std::vector &CPEs = CPEntries[i]; for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { RemoveDeadCPEMI(CPEs[j].CPEMI); CPEs[j].CPEMI = NULL; MadeChange = true; } } } return MadeChange; } /// BBIsInRange - Returns true if the distance between specific MI and /// specific BB can fit in MI's displacement field. bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { unsigned PCAdj = isThumb ? 4 : 8; unsigned BrOffset = GetOffsetOf(MI) + PCAdj; unsigned DestOffset = BBOffsets[DestBB->getNumber()]; DOUT << "Branch of destination BB#" << DestBB->getNumber() << " from BB#" << MI->getParent()->getNumber() << " max delta=" << MaxDisp << " from " << GetOffsetOf(MI) << " to " << DestOffset << " offset " << int(DestOffset-BrOffset) << "\t" << *MI; if (BrOffset <= DestOffset) { // Branch before the Dest. if (DestOffset-BrOffset <= MaxDisp) return true; } else { if (BrOffset-DestOffset <= MaxDisp) return true; } return false; } /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far /// away to fit in its displacement field. bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); // Check to see if the DestBB is already in-range. if (BBIsInRange(MI, DestBB, Br.MaxDisp)) return false; if (!Br.isCond) return FixUpUnconditionalBr(MF, Br); return FixUpConditionalBr(MF, Br); } /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is /// too far away to fit in its displacement field. If the LR register has been /// spilled in the epilogue, then we can use BL to implement a far jump. /// Otherwise, add an intermediate branch instruction to a branch. bool ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *MBB = MI->getParent(); if (!isThumb1) llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); // Use BL to implement far jump. Br.MaxDisp = (1 << 21) * 2; MI->setDesc(TII->get(ARM::tBfar)); BBSizes[MBB->getNumber()] += 2; AdjustBBOffsetsAfter(MBB, 2); HasFarJump = true; NumUBrFixed++; DOUT << " Changed B to long jump " << *MI; return true; } /// FixUpConditionalBr - Fix up a conditional branch whose destination is too /// far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); // Add an unconditional branch to the destination and invert the branch // condition to jump over it: // blt L1 // => // bge L2 // b L1 // L2: ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); CC = ARMCC::getOppositeCondition(CC); unsigned CCReg = MI->getOperand(2).getReg(); // If the branch is at the end of its MBB and that has a fall-through block, // direct the updated conditional branch to the fall-through block. Otherwise, // split the MBB before the next instruction. MachineBasicBlock *MBB = MI->getParent(); MachineInstr *BMI = &MBB->back(); bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); NumCBrFixed++; if (BMI != MI) { if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && BMI->getOpcode() == Br.UncondBr) { // Last MI in the BB is an unconditional branch. Can we simply invert the // condition and swap destinations: // beq L1 // b L2 // => // bne L2 // b L1 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { DOUT << " Invert Bcc condition and swap its destination with " << *BMI; BMI->getOperand(0).setMBB(DestBB); MI->getOperand(0).setMBB(NewDest); MI->getOperand(1).setImm(CC); return true; } } } if (NeedSplit) { SplitBlockBeforeInstr(MI); // No need for the branch to the next block. We're adding an unconditional // branch to the destination. int delta = TII->GetInstSizeInBytes(&MBB->back()); BBSizes[MBB->getNumber()] -= delta; MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); AdjustBBOffsetsAfter(SplitBB, -delta); MBB->back().eraseFromParent(); // BBOffsets[SplitBB] is wrong temporarily, fixed below } MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); DOUT << " Insert B to BB#" << DestBB->getNumber() << " also invert condition and change dest. to BB#" << NextBB->getNumber() << "\n"; // Insert a new conditional branch and a new unconditional branch. // Also update the ImmBranch as well as adding a new entry for the new branch. BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(MI->getOpcode())) .addMBB(NextBB).addImm(CC).addReg(CCReg); Br.MI = &MBB->back(); BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); // Remove the old conditional branch. It may or may not still be in MBB. BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); MI->eraseFromParent(); // The net size change is an addition of one unconditional branch. int delta = TII->GetInstSizeInBytes(&MBB->back()); AdjustBBOffsetsAfter(MBB, delta); return true; } /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills /// LR / restores LR to pc. FIXME: This is done here because it's only possible /// to do this if tBfar is not used. bool ARMConstantIslands::UndoLRSpillRestore() { bool MadeChange = false; for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { MachineInstr *MI = PushPopMIs[i]; if (MI->getOpcode() == ARM::tPOP_RET && MI->getOperand(0).getReg() == ARM::PC && MI->getNumExplicitOperands() == 1) { BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); MI->eraseFromParent(); MadeChange = true; } } return MadeChange; } bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { bool MadeChange = false; // FIXME: After the tables are shrunk, can we get rid some of the // constantpool tables? const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { MachineInstr *MI = T2JumpTables[i]; const TargetInstrDesc &TID = MI->getDesc(); unsigned NumOps = TID.getNumOperands(); unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); MachineOperand JTOP = MI->getOperand(JTOpIdx); unsigned JTI = JTOP.getIndex(); assert(JTI < JT.size()); bool ByteOk = true; bool HalfWordOk = true; unsigned JTOffset = GetOffsetOf(MI) + 4; const std::vector &JTBBs = JT[JTI].MBBs; for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { MachineBasicBlock *MBB = JTBBs[j]; unsigned DstOffset = BBOffsets[MBB->getNumber()]; // Negative offset is not ok. FIXME: We should change BB layout to make // sure all the branches are forward. if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) ByteOk = false; unsigned TBHLimit = ((1<<16)-1)*2; if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) HalfWordOk = false; if (!ByteOk && !HalfWordOk) break; } if (ByteOk || HalfWordOk) { MachineBasicBlock *MBB = MI->getParent(); unsigned BaseReg = MI->getOperand(0).getReg(); bool BaseRegKill = MI->getOperand(0).isKill(); if (!BaseRegKill) continue; unsigned IdxReg = MI->getOperand(1).getReg(); bool IdxRegKill = MI->getOperand(1).isKill(); MachineBasicBlock::iterator PrevI = MI; if (PrevI == MBB->begin()) continue; MachineInstr *AddrMI = --PrevI; bool OptOk = true; // Examine the instruction that calculate the jumptable entry address. // If it's not the one just before the t2BR_JT, we won't delete it, then // it's not worth doing the optimization. for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { const MachineOperand &MO = AddrMI->getOperand(k); if (!MO.isReg() || !MO.getReg()) continue; if (MO.isDef() && MO.getReg() != BaseReg) { OptOk = false; break; } if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { OptOk = false; break; } } if (!OptOk) continue; // The previous instruction should be a t2LEApcrelJT, we want to delete // it as well. MachineInstr *LeaMI = --PrevI; if (LeaMI->getOpcode() != ARM::t2LEApcrelJT || LeaMI->getOperand(0).getReg() != BaseReg) OptOk = false; if (!OptOk) continue; unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) .addReg(IdxReg, getKillRegState(IdxRegKill)) .addJumpTableIndex(JTI, JTOP.getTargetFlags()) .addImm(MI->getOperand(JTOpIdx+1).getImm()); // FIXME: Insert an "ALIGN" instruction to ensure the next instruction // is 2-byte aligned. For now, asm printer will fix it up. unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); OrigSize += TII->GetInstSizeInBytes(LeaMI); OrigSize += TII->GetInstSizeInBytes(MI); AddrMI->eraseFromParent(); LeaMI->eraseFromParent(); MI->eraseFromParent(); int delta = OrigSize - NewSize; BBSizes[MBB->getNumber()] -= delta; AdjustBBOffsetsAfter(MBB, -delta); ++NumTBs; MadeChange = true; } } return MadeChange; }