//===- LoopPass.cpp - Loop Pass and Loop Pass Manager ---------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Devang Patel and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements LoopPass and LPPassManager. All loop optimization // and transformation passes are derived from LoopPass. LPPassManager is // responsible for managing LoopPasses. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" using namespace llvm; //===----------------------------------------------------------------------===// // LPPassManager // char LPPassManager::ID = 0; /// LPPassManager manages FPPassManagers and CalLGraphSCCPasses. LPPassManager::LPPassManager(int Depth) : FunctionPass((intptr_t)&ID), PMDataManager(Depth) { skipThisLoop = false; redoThisLoop = false; LI = NULL; CurrentLoop = NULL; } /// Delete loop from the loop queue and loop hierarcy (LoopInfo). void LPPassManager::deleteLoopFromQueue(Loop *L) { if (Loop *ParentLoop = L->getParentLoop()) { // Not a top-level loop. // Reparent all of the blocks in this loop. Since BBLoop had a parent, // they are now all in it. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) if (LI->getLoopFor(*I) == L) // Don't change blocks in subloops. LI->changeLoopFor(*I, ParentLoop); // Remove the loop from its parent loop. for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();; ++I) { assert(I != E && "Couldn't find loop"); if (*I == L) { ParentLoop->removeChildLoop(I); break; } } // Move all subloops into the parent loop. while (L->begin() != L->end()) ParentLoop->addChildLoop(L->removeChildLoop(L->end()-1)); } else { // Reparent all of the blocks in this loop. Since BBLoop had no parent, // they no longer in a loop at all. for (unsigned i = 0; i != L->getBlocks().size(); ++i) { // Don't change blocks in subloops. if (LI->getLoopFor(L->getBlocks()[i]) == L) { LI->removeBlock(L->getBlocks()[i]); --i; } } // Remove the loop from the top-level LoopInfo object. for (LoopInfo::iterator I = LI->begin(), E = LI->end();; ++I) { assert(I != E && "Couldn't find loop"); if (*I == L) { LI->removeLoop(I); break; } } // Move all of the subloops to the top-level. while (L->begin() != L->end()) LI->addTopLevelLoop(L->removeChildLoop(L->end()-1)); } delete L; // If L is current loop then skip rest of the passes and let // runOnFunction remove L from LQ. Otherwise, remove L from LQ now // and continue applying other passes on CurrentLoop. if (CurrentLoop == L) { skipThisLoop = true; return; } for (std::deque::iterator I = LQ.begin(), E = LQ.end(); I != E; ++I) { if (*I == L) { LQ.erase(I); break; } } } // Inset loop into loop nest (LoopInfo) and loop queue (LQ). void LPPassManager::insertLoop(Loop *L, Loop *ParentLoop) { assert (CurrentLoop != L && "Cannot insert CurrentLoop"); // Insert into loop nest if (ParentLoop) ParentLoop->addChildLoop(L); else LI->addTopLevelLoop(L); // Insert L into loop queue if (L == CurrentLoop) redoLoop(L); else if (!ParentLoop) // This is top level loop. LQ.push_front(L); else { // Insert L after ParentLoop for (std::deque::iterator I = LQ.begin(), E = LQ.end(); I != E; ++I) { if (*I == ParentLoop) { // deque does not support insert after. ++I; LQ.insert(I, 1, L); break; } } } } // Reoptimize this loop. LPPassManager will re-insert this loop into the // queue. This allows LoopPass to change loop nest for the loop. This // utility may send LPPassManager into infinite loops so use caution. void LPPassManager::redoLoop(Loop *L) { assert (CurrentLoop == L && "Can redo only CurrentLoop"); redoThisLoop = true; } // Recurse through all subloops and all loops into LQ. static void addLoopIntoQueue(Loop *L, std::deque &LQ) { LQ.push_back(L); for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) addLoopIntoQueue(*I, LQ); } /// Pass Manager itself does not invalidate any analysis info. void LPPassManager::getAnalysisUsage(AnalysisUsage &Info) const { // LPPassManager needs LoopInfo. In the long term LoopInfo class will // become part of LPPassManager. Info.addRequired(); // Used by IndVar doInitialization. Info.addRequired(); Info.setPreservesAll(); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the function, and if so, return true. bool LPPassManager::runOnFunction(Function &F) { LI = &getAnalysis(); bool Changed = false; // Populate Loop Queue for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) addLoopIntoQueue(*I, LQ); // Initialization for (std::deque::const_iterator I = LQ.begin(), E = LQ.end(); I != E; ++I) { Loop *L = *I; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); LoopPass *LP = dynamic_cast(P); if (LP) Changed |= LP->doInitialization(L, *this); } } // Walk Loops while (!LQ.empty()) { CurrentLoop = LQ.back(); skipThisLoop = false; redoThisLoop = false; // Run all passes on current SCC for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); dumpPassInfo(P, EXECUTION_MSG, ON_LOOP_MSG, ""); dumpAnalysisSetInfo("Required", P, AnUsage.getRequiredSet()); initializeAnalysisImpl(P); StartPassTimer(P); LoopPass *LP = dynamic_cast(P); assert (LP && "Invalid LPPassManager member"); LP->runOnLoop(CurrentLoop, *this); StopPassTimer(P); if (Changed) dumpPassInfo(P, MODIFICATION_MSG, ON_LOOP_MSG, ""); dumpAnalysisSetInfo("Preserved", P, AnUsage.getPreservedSet()); verifyPreservedAnalysis(LP); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P, "", ON_LOOP_MSG); if (skipThisLoop) // Do not run other passes on this loop. break; } // Pop the loop from queue after running all passes. LQ.pop_back(); if (redoThisLoop) LQ.push_back(CurrentLoop); } // Finalization for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); LoopPass *LP = dynamic_cast (P); if (LP) Changed |= LP->doFinalization(); } return Changed; } //===----------------------------------------------------------------------===// // LoopPass // Check if this pass is suitable for the current LPPassManager, if // available. This pass P is not suitable for a LPPassManager if P // is not preserving higher level analysis info used by other // LPPassManager passes. In such case, pop LPPassManager from the // stack. This will force assignPassManager() to create new // LPPassManger as expected. void LoopPass::preparePassManager(PMStack &PMS) { // Find LPPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_LoopPassManager) PMS.pop(); LPPassManager *LPPM = dynamic_cast(PMS.top()); // If this pass is destroying high level information that is used // by other passes that are managed by LPM then do not insert // this pass in current LPM. Use new LPPassManager. if (LPPM && !LPPM->preserveHigherLevelAnalysis(this)) PMS.pop(); } /// Assign pass manager to manage this pass. void LoopPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find LPPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_LoopPassManager) PMS.pop(); LPPassManager *LPPM = dynamic_cast(PMS.top()); // Create new Loop Pass Manager if it does not exist. if (!LPPM) { assert (!PMS.empty() && "Unable to create Loop Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Call Graph Pass Manager LPPM = new LPPassManager(PMD->getDepth() + 1); LPPM->populateInheritedAnalysis(PMS); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(LPPM); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = dynamic_cast(LPPM); TPM->schedulePass(P); // [4] Push new manager into PMS PMS.push(LPPM); } LPPM->add(this); }