//===-- WinEHPrepare - Prepare exception handling for code generation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass lowers LLVM IR exception handling into something closer to what the // backend wants for functions using a personality function from a runtime // provided by MSVC. Functions with other personality functions are left alone // and may be prepared by other passes. In particular, all supported MSVC // personality functions require cleanup code to be outlined, and the C++ // personality requires catch handler code to be outlined. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/LibCallSemantics.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "winehprepare" namespace { // This map is used to model frame variable usage during outlining, to // construct a structure type to hold the frame variables in a frame // allocation block, and to remap the frame variable allocas (including // spill locations as needed) to GEPs that get the variable from the // frame allocation structure. typedef MapVector> FrameVarInfoMap; // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't // quite null. AllocaInst *getCatchObjectSentinel() { return static_cast(nullptr) + 1; } typedef SmallSet VisitedBlockSet; class LandingPadActions; class LandingPadMap; typedef DenseMap CatchHandlerMapTy; typedef DenseMap CleanupHandlerMapTy; class WinEHPrepare : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid. WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) { if (TM) TheTriple = TM->getTargetTriple(); } bool runOnFunction(Function &Fn) override; bool doFinalization(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override; const char *getPassName() const override { return "Windows exception handling preparation"; } private: bool prepareExceptionHandlers(Function &F, SmallVectorImpl &LPads); void identifyEHBlocks(Function &F, SmallVectorImpl &LPads); void promoteLandingPadValues(LandingPadInst *LPad); void demoteValuesLiveAcrossHandlers(Function &F, SmallVectorImpl &LPads); void findSEHEHReturnPoints(Function &F, SetVector &EHReturnBlocks); void findCXXEHReturnPoints(Function &F, SetVector &EHReturnBlocks); void getPossibleReturnTargets(Function *ParentF, Function *HandlerF, SetVector &Targets); void completeNestedLandingPad(Function *ParentFn, LandingPadInst *OutlinedLPad, const LandingPadInst *OriginalLPad, FrameVarInfoMap &VarInfo); Function *createHandlerFunc(Function *ParentFn, Type *RetTy, const Twine &Name, Module *M, Value *&ParentFP); bool outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo); void addStubInvokeToHandlerIfNeeded(Function *Handler); void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks); void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, BasicBlock *EndBB); void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); Triple TheTriple; // All fields are reset by runOnFunction. DominatorTree *DT = nullptr; const TargetLibraryInfo *LibInfo = nullptr; EHPersonality Personality = EHPersonality::Unknown; CatchHandlerMapTy CatchHandlerMap; CleanupHandlerMapTy CleanupHandlerMap; DenseMap LPadMaps; SmallPtrSet NormalBlocks; SmallPtrSet EHBlocks; SetVector EHReturnBlocks; // This maps landing pad instructions found in outlined handlers to // the landing pad instruction in the parent function from which they // were cloned. The cloned/nested landing pad is used as the key // because the landing pad may be cloned into multiple handlers. // This map will be used to add the llvm.eh.actions call to the nested // landing pads after all handlers have been outlined. DenseMap NestedLPtoOriginalLP; // This maps blocks in the parent function which are destinations of // catch handlers to cloned blocks in (other) outlined handlers. This // handles the case where a nested landing pads has a catch handler that // returns to a handler function rather than the parent function. // The original block is used as the key here because there should only // ever be one handler function from which the cloned block is not pruned. // The original block will be pruned from the parent function after all // handlers have been outlined. This map will be used to adjust the // return instructions of handlers which return to the block that was // outlined into a handler. This is done after all handlers have been // outlined but before the outlined code is pruned from the parent function. DenseMap LPadTargetBlocks; // Map from outlined handler to call to parent local address. Only used for // 32-bit EH. DenseMap HandlerToParentFP; AllocaInst *SEHExceptionCodeSlot = nullptr; }; class WinEHFrameVariableMaterializer : public ValueMaterializer { public: WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo); ~WinEHFrameVariableMaterializer() override {} Value *materializeValueFor(Value *V) override; void escapeCatchObject(Value *V); private: FrameVarInfoMap &FrameVarInfo; IRBuilder<> Builder; }; class LandingPadMap { public: LandingPadMap() : OriginLPad(nullptr) {} void mapLandingPad(const LandingPadInst *LPad); bool isInitialized() { return OriginLPad != nullptr; } bool isOriginLandingPadBlock(const BasicBlock *BB) const; bool isLandingPadSpecificInst(const Instruction *Inst) const; void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, Value *SelectorValue) const; private: const LandingPadInst *OriginLPad; // We will normally only see one of each of these instructions, but // if more than one occurs for some reason we can handle that. TinyPtrVector ExtractedEHPtrs; TinyPtrVector ExtractedSelectors; }; class WinEHCloningDirectorBase : public CloningDirector { public: WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : Materializer(HandlerFn, ParentFP, VarInfo), SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), LPadMap(LPadMap), ParentFP(ParentFP) {} CloningAction handleInstruction(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap, const IndirectBrInst *IBr, BasicBlock *NewBB) = 0; virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) = 0; virtual CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) = 0; virtual CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, BasicBlock *NewBB) = 0; virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) = 0; ValueMaterializer *getValueMaterializer() override { return &Materializer; } protected: WinEHFrameVariableMaterializer Materializer; Type *SelectorIDType; Type *Int8PtrType; LandingPadMap &LPadMap; /// The value representing the parent frame pointer. Value *ParentFP; }; class WinEHCatchDirector : public WinEHCloningDirectorBase { public: WinEHCatchDirector( Function *CatchFn, Value *ParentFP, Value *Selector, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap, DenseMap &NestedLPads, DominatorTree *DT, SmallPtrSetImpl &EHBlocks) : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap), CurrentSelector(Selector->stripPointerCasts()), ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads), DT(DT), EHBlocks(EHBlocks) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleIndirectBr(ValueToValueMapTy &VMap, const IndirectBrInst *IBr, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, BasicBlock *NewBB) override; CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) override; Value *getExceptionVar() { return ExceptionObjectVar; } TinyPtrVector &getReturnTargets() { return ReturnTargets; } private: Value *CurrentSelector; Value *ExceptionObjectVar; TinyPtrVector ReturnTargets; // This will be a reference to the field of the same name in the WinEHPrepare // object which instantiates this WinEHCatchDirector object. DenseMap &NestedLPtoOriginalLP; DominatorTree *DT; SmallPtrSetImpl &EHBlocks; }; class WinEHCleanupDirector : public WinEHCloningDirectorBase { public: WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo, LPadMap) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleIndirectBr(ValueToValueMapTy &VMap, const IndirectBrInst *IBr, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, BasicBlock *NewBB) override; CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) override; }; class LandingPadActions { public: LandingPadActions() : HasCleanupHandlers(false) {} void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } void insertCleanupHandler(CleanupHandler *Action) { Actions.push_back(Action); HasCleanupHandlers = true; } bool includesCleanup() const { return HasCleanupHandlers; } SmallVectorImpl &actions() { return Actions; } SmallVectorImpl::iterator begin() { return Actions.begin(); } SmallVectorImpl::iterator end() { return Actions.end(); } private: // Note that this class does not own the ActionHandler objects in this vector. // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap // in the WinEHPrepare class. SmallVector Actions; bool HasCleanupHandlers; }; } // end anonymous namespace char WinEHPrepare::ID = 0; INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", false, false) FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { return new WinEHPrepare(TM); } bool WinEHPrepare::runOnFunction(Function &Fn) { // No need to prepare outlined handlers. if (Fn.hasFnAttribute("wineh-parent")) return false; SmallVector LPads; SmallVector Resumes; for (BasicBlock &BB : Fn) { if (auto *LP = BB.getLandingPadInst()) LPads.push_back(LP); if (auto *Resume = dyn_cast(BB.getTerminator())) Resumes.push_back(Resume); } // No need to prepare functions that lack landing pads. if (LPads.empty()) return false; // Classify the personality to see what kind of preparation we need. Personality = classifyEHPersonality(Fn.getPersonalityFn()); // Do nothing if this is not an MSVC personality. if (!isMSVCEHPersonality(Personality)) return false; DT = &getAnalysis().getDomTree(); LibInfo = &getAnalysis().getTLI(); // If there were any landing pads, prepareExceptionHandlers will make changes. prepareExceptionHandlers(Fn, LPads); return true; } bool WinEHPrepare::doFinalization(Module &M) { return false; } void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); } static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, Constant *&Selector, BasicBlock *&NextBB); // Finds blocks reachable from the starting set Worklist. Does not follow unwind // edges or blocks listed in StopPoints. static void findReachableBlocks(SmallPtrSetImpl &ReachableBBs, SetVector &Worklist, const SetVector *StopPoints) { while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); // Don't cross blocks that we should stop at. if (StopPoints && StopPoints->count(BB)) continue; if (!ReachableBBs.insert(BB).second) continue; // Already visited. // Don't follow unwind edges of invokes. if (auto *II = dyn_cast(BB->getTerminator())) { Worklist.insert(II->getNormalDest()); continue; } // Otherwise, follow all successors. Worklist.insert(succ_begin(BB), succ_end(BB)); } } // Attempt to find an instruction where a block can be split before // a call to llvm.eh.begincatch and its operands. If the block // begins with the begincatch call or one of its adjacent operands // the block will not be split. static Instruction *findBeginCatchSplitPoint(BasicBlock *BB, IntrinsicInst *II) { // If the begincatch call is already the first instruction in the block, // don't split. Instruction *FirstNonPHI = BB->getFirstNonPHI(); if (II == FirstNonPHI) return nullptr; // If either operand is in the same basic block as the instruction and // isn't used by another instruction before the begincatch call, include it // in the split block. auto *Op0 = dyn_cast(II->getOperand(0)); auto *Op1 = dyn_cast(II->getOperand(1)); Instruction *I = II->getPrevNode(); Instruction *LastI = II; while (I == Op0 || I == Op1) { // If the block begins with one of the operands and there are no other // instructions between the operand and the begincatch call, don't split. if (I == FirstNonPHI) return nullptr; LastI = I; I = I->getPrevNode(); } // If there is at least one instruction in the block before the begincatch // call and its operands, split the block at either the begincatch or // its operand. return LastI; } /// Find all points where exceptional control rejoins normal control flow via /// llvm.eh.endcatch. Add them to the normal bb reachability worklist. void WinEHPrepare::findCXXEHReturnPoints( Function &F, SetVector &EHReturnBlocks) { for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { BasicBlock *BB = BBI; for (Instruction &I : *BB) { if (match(&I, m_Intrinsic())) { Instruction *SplitPt = findBeginCatchSplitPoint(BB, cast(&I)); if (SplitPt) { // Split the block before the llvm.eh.begincatch call to allow // cleanup and catch code to be distinguished later. // Do not update BBI because we still need to process the // portion of the block that we are splitting off. SplitBlock(BB, SplitPt, DT); break; } } if (match(&I, m_Intrinsic())) { // Split the block after the call to llvm.eh.endcatch if there is // anything other than an unconditional branch, or if the successor // starts with a phi. auto *Br = dyn_cast(I.getNextNode()); if (!Br || !Br->isUnconditional() || isa(Br->getSuccessor(0)->begin())) { DEBUG(dbgs() << "splitting block " << BB->getName() << " with llvm.eh.endcatch\n"); BBI = SplitBlock(BB, I.getNextNode(), DT); } // The next BB is normal control flow. EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0)); break; } } } } static bool isCatchAllLandingPad(const BasicBlock *BB) { const LandingPadInst *LP = BB->getLandingPadInst(); if (!LP) return false; unsigned N = LP->getNumClauses(); return (N > 0 && LP->isCatch(N - 1) && isa(LP->getClause(N - 1))); } /// Find all points where exceptions control rejoins normal control flow via /// selector dispatch. void WinEHPrepare::findSEHEHReturnPoints( Function &F, SetVector &EHReturnBlocks) { for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { BasicBlock *BB = BBI; // If the landingpad is a catch-all, treat the whole lpad as if it is // reachable from normal control flow. // FIXME: This is imprecise. We need a better way of identifying where a // catch-all starts and cleanups stop. As far as LLVM is concerned, there // is no difference. if (isCatchAllLandingPad(BB)) { EHReturnBlocks.insert(BB); continue; } BasicBlock *CatchHandler; BasicBlock *NextBB; Constant *Selector; if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) { // Split the edge if there is a phi node. Returning from EH to a phi node // is just as impossible as having a phi after an indirectbr. if (isa(CatchHandler->begin())) { DEBUG(dbgs() << "splitting EH return edge from " << BB->getName() << " to " << CatchHandler->getName() << '\n'); BBI = CatchHandler = SplitCriticalEdge( BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler)); } EHReturnBlocks.insert(CatchHandler); } } } void WinEHPrepare::identifyEHBlocks(Function &F, SmallVectorImpl &LPads) { DEBUG(dbgs() << "Demoting values live across exception handlers in function " << F.getName() << '\n'); // Build a set of all non-exceptional blocks and exceptional blocks. // - Non-exceptional blocks are blocks reachable from the entry block while // not following invoke unwind edges. // - Exceptional blocks are blocks reachable from landingpads. Analysis does // not follow llvm.eh.endcatch blocks, which mark a transition from // exceptional to normal control. if (Personality == EHPersonality::MSVC_CXX) findCXXEHReturnPoints(F, EHReturnBlocks); else findSEHEHReturnPoints(F, EHReturnBlocks); DEBUG({ dbgs() << "identified the following blocks as EH return points:\n"; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " << BB->getName() << '\n'; }); // Join points should not have phis at this point, unless they are a // landingpad, in which case we will demote their phis later. #ifndef NDEBUG for (BasicBlock *BB : EHReturnBlocks) assert((BB->isLandingPad() || !isa(BB->begin())) && "non-lpad EH return block has phi"); #endif // Normal blocks are the blocks reachable from the entry block and all EH // return points. SetVector Worklist; Worklist = EHReturnBlocks; Worklist.insert(&F.getEntryBlock()); findReachableBlocks(NormalBlocks, Worklist, nullptr); DEBUG({ dbgs() << "marked the following blocks as normal:\n"; for (BasicBlock *BB : NormalBlocks) dbgs() << " " << BB->getName() << '\n'; }); // Exceptional blocks are the blocks reachable from landingpads that don't // cross EH return points. Worklist.clear(); for (auto *LPI : LPads) Worklist.insert(LPI->getParent()); findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks); DEBUG({ dbgs() << "marked the following blocks as exceptional:\n"; for (BasicBlock *BB : EHBlocks) dbgs() << " " << BB->getName() << '\n'; }); } /// Ensure that all values live into and out of exception handlers are stored /// in memory. /// FIXME: This falls down when values are defined in one handler and live into /// another handler. For example, a cleanup defines a value used only by a /// catch handler. void WinEHPrepare::demoteValuesLiveAcrossHandlers( Function &F, SmallVectorImpl &LPads) { DEBUG(dbgs() << "Demoting values live across exception handlers in function " << F.getName() << '\n'); // identifyEHBlocks() should have been called before this function. assert(!NormalBlocks.empty()); SetVector ArgsToDemote; SetVector InstrsToDemote; for (BasicBlock &BB : F) { bool IsNormalBB = NormalBlocks.count(&BB); bool IsEHBB = EHBlocks.count(&BB); if (!IsNormalBB && !IsEHBB) continue; // Blocks that are neither normal nor EH are unreachable. for (Instruction &I : BB) { for (Value *Op : I.operands()) { // Don't demote static allocas, constants, and labels. if (isa(Op) || isa(Op) || isa(Op)) continue; auto *AI = dyn_cast(Op); if (AI && AI->isStaticAlloca()) continue; if (auto *Arg = dyn_cast(Op)) { if (IsEHBB) { DEBUG(dbgs() << "Demoting argument " << *Arg << " used by EH instr: " << I << "\n"); ArgsToDemote.insert(Arg); } continue; } auto *OpI = cast(Op); BasicBlock *OpBB = OpI->getParent(); // If a value is produced and consumed in the same BB, we don't need to // demote it. if (OpBB == &BB) continue; bool IsOpNormalBB = NormalBlocks.count(OpBB); bool IsOpEHBB = EHBlocks.count(OpBB); if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) { DEBUG({ dbgs() << "Demoting instruction live in-out from EH:\n"; dbgs() << "Instr: " << *OpI << '\n'; dbgs() << "User: " << I << '\n'; }); InstrsToDemote.insert(OpI); } } } } // Demote values live into and out of handlers. // FIXME: This demotion is inefficient. We should insert spills at the point // of definition, insert one reload in each handler that uses the value, and // insert reloads in the BB used to rejoin normal control flow. Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt(); for (Instruction *I : InstrsToDemote) DemoteRegToStack(*I, false, AllocaInsertPt); // Demote arguments separately, and only for uses in EH blocks. for (Argument *Arg : ArgsToDemote) { auto *Slot = new AllocaInst(Arg->getType(), nullptr, Arg->getName() + ".reg2mem", AllocaInsertPt); SmallVector Users(Arg->user_begin(), Arg->user_end()); for (User *U : Users) { auto *I = dyn_cast(U); if (I && EHBlocks.count(I->getParent())) { auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I); U->replaceUsesOfWith(Arg, Reload); } } new StoreInst(Arg, Slot, AllocaInsertPt); } // Demote landingpad phis, as the landingpad will be removed from the machine // CFG. for (LandingPadInst *LPI : LPads) { BasicBlock *BB = LPI->getParent(); while (auto *Phi = dyn_cast(BB->begin())) DemotePHIToStack(Phi, AllocaInsertPt); } DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and " << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n"); } bool WinEHPrepare::prepareExceptionHandlers( Function &F, SmallVectorImpl &LPads) { // Don't run on functions that are already prepared. for (LandingPadInst *LPad : LPads) { BasicBlock *LPadBB = LPad->getParent(); for (Instruction &Inst : *LPadBB) if (match(&Inst, m_Intrinsic())) return false; } identifyEHBlocks(F, LPads); demoteValuesLiveAcrossHandlers(F, LPads); // These containers are used to re-map frame variables that are used in // outlined catch and cleanup handlers. They will be populated as the // handlers are outlined. FrameVarInfoMap FrameVarInfo; bool HandlersOutlined = false; Module *M = F.getParent(); LLVMContext &Context = M->getContext(); // Create a new function to receive the handler contents. PointerType *Int8PtrType = Type::getInt8PtrTy(Context); Type *Int32Type = Type::getInt32Ty(Context); Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); if (isAsynchronousEHPersonality(Personality)) { // FIXME: Switch the ehptr type to i32 and then switch this. SEHExceptionCodeSlot = new AllocaInst(Int8PtrType, nullptr, "seh_exception_code", F.getEntryBlock().getFirstInsertionPt()); } // In order to handle the case where one outlined catch handler returns // to a block within another outlined catch handler that would otherwise // be unreachable, we need to outline the nested landing pad before we // outline the landing pad which encloses it. if (!isAsynchronousEHPersonality(Personality)) std::sort(LPads.begin(), LPads.end(), [this](LandingPadInst *const &L, LandingPadInst *const &R) { return DT->properlyDominates(R->getParent(), L->getParent()); }); // This container stores the llvm.eh.recover and IndirectBr instructions // that make up the body of each landing pad after it has been outlined. // We need to defer the population of the target list for the indirectbr // until all landing pads have been outlined so that we can handle the // case of blocks in the target that are reached only from nested // landing pads. SmallVector, 4> LPadImpls; for (LandingPadInst *LPad : LPads) { // Look for evidence that this landingpad has already been processed. bool LPadHasActionList = false; BasicBlock *LPadBB = LPad->getParent(); for (Instruction &Inst : *LPadBB) { if (match(&Inst, m_Intrinsic())) { LPadHasActionList = true; break; } } // If we've already outlined the handlers for this landingpad, // there's nothing more to do here. if (LPadHasActionList) continue; // If either of the values in the aggregate returned by the landing pad is // extracted and stored to memory, promote the stored value to a register. promoteLandingPadValues(LPad); LandingPadActions Actions; mapLandingPadBlocks(LPad, Actions); HandlersOutlined |= !Actions.actions().empty(); for (ActionHandler *Action : Actions) { if (Action->hasBeenProcessed()) continue; BasicBlock *StartBB = Action->getStartBlock(); // SEH doesn't do any outlining for catches. Instead, pass the handler // basic block addr to llvm.eh.actions and list the block as a return // target. if (isAsynchronousEHPersonality(Personality)) { if (auto *CatchAction = dyn_cast(Action)) { processSEHCatchHandler(CatchAction, StartBB); continue; } } outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); } // Split the block after the landingpad instruction so that it is just a // call to llvm.eh.actions followed by indirectbr. assert(!isa(LPadBB->begin()) && "lpad phi not removed"); SplitBlock(LPadBB, LPad->getNextNode(), DT); // Erase the branch inserted by the split so we can insert indirectbr. LPadBB->getTerminator()->eraseFromParent(); // Replace all extracted values with undef and ultimately replace the // landingpad with undef. SmallVector SEHCodeUses; SmallVector EHUndefs; for (User *U : LPad->users()) { auto *E = dyn_cast(U); if (!E) continue; assert(E->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"); unsigned Idx = *E->idx_begin(); assert((Idx == 0 || Idx == 1) && "unexpected index"); if (Idx == 0 && isAsynchronousEHPersonality(Personality)) SEHCodeUses.push_back(E); else EHUndefs.push_back(E); } for (Instruction *E : EHUndefs) { E->replaceAllUsesWith(UndefValue::get(E->getType())); E->eraseFromParent(); } LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); // Rewrite uses of the exception pointer to loads of an alloca. for (Instruction *E : SEHCodeUses) { SmallVector Uses; for (Use &U : E->uses()) Uses.push_back(&U); for (Use *U : Uses) { auto *I = cast(U->getUser()); if (isa(I)) continue; LoadInst *LI; if (auto *Phi = dyn_cast(I)) LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, Phi->getIncomingBlock(*U)->getTerminator()); else LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I); U->set(LI); } E->replaceAllUsesWith(UndefValue::get(E->getType())); E->eraseFromParent(); } // Add a call to describe the actions for this landing pad. std::vector ActionArgs; for (ActionHandler *Action : Actions) { // Action codes from docs are: 0 cleanup, 1 catch. if (auto *CatchAction = dyn_cast(Action)) { ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); ActionArgs.push_back(CatchAction->getSelector()); // Find the frame escape index of the exception object alloca in the // parent. int FrameEscapeIdx = -1; Value *EHObj = const_cast(CatchAction->getExceptionVar()); if (EHObj && !isa(EHObj)) { auto I = FrameVarInfo.find(EHObj); assert(I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"); FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); } ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); } else { ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); } ActionArgs.push_back(Action->getHandlerBlockOrFunc()); } CallInst *Recover = CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB); SetVector ReturnTargets; for (ActionHandler *Action : Actions) { if (auto *CatchAction = dyn_cast(Action)) { const auto &CatchTargets = CatchAction->getReturnTargets(); ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end()); } } IndirectBrInst *Branch = IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB); for (BasicBlock *Target : ReturnTargets) Branch->addDestination(Target); if (!isAsynchronousEHPersonality(Personality)) { // C++ EH must repopulate the targets later to handle the case of // targets that are reached indirectly through nested landing pads. LPadImpls.push_back(std::make_pair(Recover, Branch)); } } // End for each landingpad // If nothing got outlined, there is no more processing to be done. if (!HandlersOutlined) return false; // Replace any nested landing pad stubs with the correct action handler. // This must be done before we remove unreachable blocks because it // cleans up references to outlined blocks that will be deleted. for (auto &LPadPair : NestedLPtoOriginalLP) completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); NestedLPtoOriginalLP.clear(); // Update the indirectbr instructions' target lists if necessary. SetVector CheckedTargets; SmallVector, 4> ActionList; for (auto &LPadImplPair : LPadImpls) { IntrinsicInst *Recover = cast(LPadImplPair.first); IndirectBrInst *Branch = LPadImplPair.second; // Get a list of handlers called by parseEHActions(Recover, ActionList); // Add an indirect branch listing possible successors of the catch handlers. SetVector ReturnTargets; for (const auto &Action : ActionList) { if (auto *CA = dyn_cast(Action.get())) { Function *Handler = cast(CA->getHandlerBlockOrFunc()); getPossibleReturnTargets(&F, Handler, ReturnTargets); } } ActionList.clear(); // Clear any targets we already knew about. for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) { BasicBlock *KnownTarget = Branch->getDestination(I); if (ReturnTargets.count(KnownTarget)) ReturnTargets.remove(KnownTarget); } for (BasicBlock *Target : ReturnTargets) { Branch->addDestination(Target); // The target may be a block that we excepted to get pruned. // If it is, it may contain a call to llvm.eh.endcatch. if (CheckedTargets.insert(Target)) { // Earlier preparations guarantee that all calls to llvm.eh.endcatch // will be followed by an unconditional branch. auto *Br = dyn_cast(Target->getTerminator()); if (Br && Br->isUnconditional() && Br != Target->getFirstNonPHIOrDbgOrLifetime()) { Instruction *Prev = Br->getPrevNode(); if (match(cast(Prev), m_Intrinsic())) Prev->eraseFromParent(); } } } } LPadImpls.clear(); F.addFnAttr("wineh-parent", F.getName()); // Delete any blocks that were only used by handlers that were outlined above. removeUnreachableBlocks(F); BasicBlock *Entry = &F.getEntryBlock(); IRBuilder<> Builder(F.getParent()->getContext()); Builder.SetInsertPoint(Entry->getFirstInsertionPt()); Function *FrameEscapeFn = Intrinsic::getDeclaration(M, Intrinsic::localescape); Function *RecoverFrameFn = Intrinsic::getDeclaration(M, Intrinsic::localrecover); SmallVector AllocasToEscape; // Scan the entry block for an existing call to llvm.localescape. We need to // keep escaping those objects. for (Instruction &I : F.front()) { auto *II = dyn_cast(&I); if (II && II->getIntrinsicID() == Intrinsic::localescape) { auto Args = II->arg_operands(); AllocasToEscape.append(Args.begin(), Args.end()); II->eraseFromParent(); break; } } // Finally, replace all of the temporary allocas for frame variables used in // the outlined handlers with calls to llvm.localrecover. for (auto &VarInfoEntry : FrameVarInfo) { Value *ParentVal = VarInfoEntry.first; TinyPtrVector &Allocas = VarInfoEntry.second; AllocaInst *ParentAlloca = cast(ParentVal); // FIXME: We should try to sink unescaped allocas from the parent frame into // the child frame. If the alloca is escaped, we have to use the lifetime // markers to ensure that the alloca is only live within the child frame. // Add this alloca to the list of things to escape. AllocasToEscape.push_back(ParentAlloca); // Next replace all outlined allocas that are mapped to it. for (AllocaInst *TempAlloca : Allocas) { if (TempAlloca == getCatchObjectSentinel()) continue; // Skip catch parameter sentinels. Function *HandlerFn = TempAlloca->getParent()->getParent(); llvm::Value *FP = HandlerToParentFP[HandlerFn]; assert(FP); // FIXME: Sink this localrecover into the blocks where it is used. Builder.SetInsertPoint(TempAlloca); Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); Value *RecoverArgs[] = { Builder.CreateBitCast(&F, Int8PtrType, ""), FP, llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; Instruction *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs); // Add a pointer bitcast if the alloca wasn't an i8. if (RecoveredAlloca->getType() != TempAlloca->getType()) { RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); RecoveredAlloca = cast( Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType())); } TempAlloca->replaceAllUsesWith(RecoveredAlloca); TempAlloca->removeFromParent(); RecoveredAlloca->takeName(TempAlloca); delete TempAlloca; } } // End for each FrameVarInfo entry. // Insert 'call void (...)* @llvm.localescape(...)' at the end of the entry // block. Builder.SetInsertPoint(&F.getEntryBlock().back()); Builder.CreateCall(FrameEscapeFn, AllocasToEscape); if (SEHExceptionCodeSlot) { if (isAllocaPromotable(SEHExceptionCodeSlot)) { SmallPtrSet UserBlocks; for (User *U : SEHExceptionCodeSlot->users()) { if (auto *Inst = dyn_cast(U)) UserBlocks.insert(Inst->getParent()); } PromoteMemToReg(SEHExceptionCodeSlot, *DT); // After the promotion, kill off dead instructions. for (BasicBlock *BB : UserBlocks) SimplifyInstructionsInBlock(BB, LibInfo); } } // Clean up the handler action maps we created for this function DeleteContainerSeconds(CatchHandlerMap); CatchHandlerMap.clear(); DeleteContainerSeconds(CleanupHandlerMap); CleanupHandlerMap.clear(); HandlerToParentFP.clear(); DT = nullptr; LibInfo = nullptr; SEHExceptionCodeSlot = nullptr; EHBlocks.clear(); NormalBlocks.clear(); EHReturnBlocks.clear(); return HandlersOutlined; } void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { // If the return values of the landing pad instruction are extracted and // stored to memory, we want to promote the store locations to reg values. SmallVector EHAllocas; // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the // results of those extracts are often passed to store instructions. // In unoptimized code the stored value will often be loaded and then stored // again. for (auto *U : LPad->users()) { ExtractValueInst *Extract = dyn_cast(U); if (!Extract) continue; for (auto *EU : Extract->users()) { if (auto *Store = dyn_cast(EU)) { auto *AV = cast(Store->getPointerOperand()); EHAllocas.push_back(AV); } } } // We can't do this without a dominator tree. assert(DT); if (!EHAllocas.empty()) { PromoteMemToReg(EHAllocas, *DT); EHAllocas.clear(); } // After promotion, some extracts may be trivially dead. Remove them. SmallVector Users(LPad->user_begin(), LPad->user_end()); for (auto *U : Users) RecursivelyDeleteTriviallyDeadInstructions(U); } void WinEHPrepare::getPossibleReturnTargets(Function *ParentF, Function *HandlerF, SetVector &Targets) { for (BasicBlock &BB : *HandlerF) { // If the handler contains landing pads, check for any // handlers that may return directly to a block in the // parent function. if (auto *LPI = BB.getLandingPadInst()) { IntrinsicInst *Recover = cast(LPI->getNextNode()); SmallVector, 4> ActionList; parseEHActions(Recover, ActionList); for (const auto &Action : ActionList) { if (auto *CH = dyn_cast(Action.get())) { Function *NestedF = cast(CH->getHandlerBlockOrFunc()); getPossibleReturnTargets(ParentF, NestedF, Targets); } } } auto *Ret = dyn_cast(BB.getTerminator()); if (!Ret) continue; // Handler functions must always return a block address. BlockAddress *BA = cast(Ret->getReturnValue()); // If this is the handler for a nested landing pad, the // return address may have been remapped to a block in the // parent handler. We're not interested in those. if (BA->getFunction() != ParentF) continue; Targets.insert(BA->getBasicBlock()); } } void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, LandingPadInst *OutlinedLPad, const LandingPadInst *OriginalLPad, FrameVarInfoMap &FrameVarInfo) { // Get the nested block and erase the unreachable instruction that was // temporarily inserted as its terminator. LLVMContext &Context = ParentFn->getContext(); BasicBlock *OutlinedBB = OutlinedLPad->getParent(); // If the nested landing pad was outlined before the landing pad that enclosed // it, it will already be in outlined form. In that case, we just need to see // if the returns and the enclosing branch instruction need to be updated. IndirectBrInst *Branch = dyn_cast(OutlinedBB->getTerminator()); if (!Branch) { // If the landing pad wasn't in outlined form, it should be a stub with // an unreachable terminator. assert(isa(OutlinedBB->getTerminator())); OutlinedBB->getTerminator()->eraseFromParent(); // That should leave OutlinedLPad as the last instruction in its block. assert(&OutlinedBB->back() == OutlinedLPad); } // The original landing pad will have already had its action intrinsic // built by the outlining loop. We need to clone that into the outlined // location. It may also be necessary to add references to the exception // variables to the outlined handler in which this landing pad is nested // and remap return instructions in the nested handlers that should return // to an address in the outlined handler. Function *OutlinedHandlerFn = OutlinedBB->getParent(); BasicBlock::const_iterator II = OriginalLPad; ++II; // The instruction after the landing pad should now be a call to eh.actions. const Instruction *Recover = II; const IntrinsicInst *EHActions = cast(Recover); // Remap the return target in the nested handler. SmallVector ActionTargets; SmallVector, 4> ActionList; parseEHActions(EHActions, ActionList); for (const auto &Action : ActionList) { auto *Catch = dyn_cast(Action.get()); if (!Catch) continue; // The dyn_cast to function here selects C++ catch handlers and skips // SEH catch handlers. auto *Handler = dyn_cast(Catch->getHandlerBlockOrFunc()); if (!Handler) continue; // Visit all the return instructions, looking for places that return // to a location within OutlinedHandlerFn. for (BasicBlock &NestedHandlerBB : *Handler) { auto *Ret = dyn_cast(NestedHandlerBB.getTerminator()); if (!Ret) continue; // Handler functions must always return a block address. BlockAddress *BA = cast(Ret->getReturnValue()); // The original target will have been in the main parent function, // but if it is the address of a block that has been outlined, it // should be a block that was outlined into OutlinedHandlerFn. assert(BA->getFunction() == ParentFn); // Ignore targets that aren't part of an outlined handler function. if (!LPadTargetBlocks.count(BA->getBasicBlock())) continue; // If the return value is the address ofF a block that we // previously outlined into the parent handler function, replace // the return instruction and add the mapped target to the list // of possible return addresses. BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; assert(MappedBB->getParent() == OutlinedHandlerFn); BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); Ret->eraseFromParent(); ReturnInst::Create(Context, NewBA, &NestedHandlerBB); ActionTargets.push_back(NewBA); } } ActionList.clear(); if (Branch) { // If the landing pad was already in outlined form, just update its targets. for (unsigned int I = Branch->getNumDestinations(); I > 0; --I) Branch->removeDestination(I); // Add the previously collected action targets. for (auto *Target : ActionTargets) Branch->addDestination(Target->getBasicBlock()); } else { // If the landing pad was previously stubbed out, fill in its outlined form. IntrinsicInst *NewEHActions = cast(EHActions->clone()); OutlinedBB->getInstList().push_back(NewEHActions); // Insert an indirect branch into the outlined landing pad BB. IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB); // Add the previously collected action targets. for (auto *Target : ActionTargets) IBr->addDestination(Target->getBasicBlock()); } } // This function examines a block to determine whether the block ends with a // conditional branch to a catch handler based on a selector comparison. // This function is used both by the WinEHPrepare::findSelectorComparison() and // WinEHCleanupDirector::handleTypeIdFor(). static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, Constant *&Selector, BasicBlock *&NextBB) { ICmpInst::Predicate Pred; BasicBlock *TBB, *FBB; Value *LHS, *RHS; if (!match(BB->getTerminator(), m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) return false; if (!match(LHS, m_Intrinsic(m_Constant(Selector))) && !match(RHS, m_Intrinsic(m_Constant(Selector)))) return false; if (Pred == CmpInst::ICMP_EQ) { CatchHandler = TBB; NextBB = FBB; return true; } if (Pred == CmpInst::ICMP_NE) { CatchHandler = FBB; NextBB = TBB; return true; } return false; } static bool isCatchBlock(BasicBlock *BB) { for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { if (match(cast(II), m_Intrinsic())) return true; } return false; } static BasicBlock *createStubLandingPad(Function *Handler) { // FIXME: Finish this! LLVMContext &Context = Handler->getContext(); BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); Handler->getBasicBlockList().push_back(StubBB); IRBuilder<> Builder(StubBB); LandingPadInst *LPad = Builder.CreateLandingPad( llvm::StructType::get(Type::getInt8PtrTy(Context), Type::getInt32Ty(Context), nullptr), 0); // Insert a call to llvm.eh.actions so that we don't try to outline this lpad. Function *ActionIntrin = Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions); Builder.CreateCall(ActionIntrin, {}, "recover"); LPad->setCleanup(true); Builder.CreateUnreachable(); return StubBB; } // Cycles through the blocks in an outlined handler function looking for an // invoke instruction and inserts an invoke of llvm.donothing with an empty // landing pad if none is found. The code that generates the .xdata tables for // the handler needs at least one landing pad to identify the parent function's // personality. void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) { ReturnInst *Ret = nullptr; UnreachableInst *Unreached = nullptr; for (BasicBlock &BB : *Handler) { TerminatorInst *Terminator = BB.getTerminator(); // If we find an invoke, there is nothing to be done. auto *II = dyn_cast(Terminator); if (II) return; // If we've already recorded a return instruction, keep looking for invokes. if (!Ret) Ret = dyn_cast(Terminator); // If we haven't recorded an unreachable instruction, try this terminator. if (!Unreached) Unreached = dyn_cast(Terminator); } // If we got this far, the handler contains no invokes. We should have seen // at least one return or unreachable instruction. We'll insert an invoke of // llvm.donothing ahead of that instruction. assert(Ret || Unreached); TerminatorInst *Term; if (Ret) Term = Ret; else Term = Unreached; BasicBlock *OldRetBB = Term->getParent(); BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT); // SplitBlock adds an unconditional branch instruction at the end of the // parent block. We want to replace that with an invoke call, so we can // erase it now. OldRetBB->getTerminator()->eraseFromParent(); BasicBlock *StubLandingPad = createStubLandingPad(Handler); Function *F = Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); } // FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering // usually doesn't build LLVM IR, so that's probably the wrong place. Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy, const Twine &Name, Module *M, Value *&ParentFP) { // x64 uses a two-argument prototype where the parent FP is the second // argument. x86 uses no arguments, just the incoming EBP value. LLVMContext &Context = M->getContext(); Type *Int8PtrType = Type::getInt8PtrTy(Context); FunctionType *FnType; if (TheTriple.getArch() == Triple::x86_64) { Type *ArgTys[2] = {Int8PtrType, Int8PtrType}; FnType = FunctionType::get(RetTy, ArgTys, false); } else { FnType = FunctionType::get(RetTy, None, false); } Function *Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M); BasicBlock *Entry = BasicBlock::Create(Context, "entry"); Handler->getBasicBlockList().push_front(Entry); if (TheTriple.getArch() == Triple::x86_64) { ParentFP = &(Handler->getArgumentList().back()); } else { assert(M); Function *FrameAddressFn = Intrinsic::getDeclaration(M, Intrinsic::frameaddress); Function *RecoverFPFn = Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp); IRBuilder<> Builder(&Handler->getEntryBlock()); Value *EBP = Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp"); Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType); ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP}); } return Handler; } bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo) { Module *M = SrcFn->getParent(); LLVMContext &Context = M->getContext(); Type *Int8PtrType = Type::getInt8PtrTy(Context); // Create a new function to receive the handler contents. Value *ParentFP; Function *Handler; if (Action->getType() == Catch) { Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M, ParentFP); } else { Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context), SrcFn->getName() + ".cleanup", M, ParentFP); } Handler->setPersonalityFn(SrcFn->getPersonalityFn()); HandlerToParentFP[Handler] = ParentFP; Handler->addFnAttr("wineh-parent", SrcFn->getName()); BasicBlock *Entry = &Handler->getEntryBlock(); // Generate a standard prolog to setup the frame recovery structure. IRBuilder<> Builder(Context); Builder.SetInsertPoint(Entry); Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); std::unique_ptr Director; ValueToValueMapTy VMap; LandingPadMap &LPadMap = LPadMaps[LPad]; if (!LPadMap.isInitialized()) LPadMap.mapLandingPad(LPad); if (auto *CatchAction = dyn_cast(Action)) { Constant *Sel = CatchAction->getSelector(); Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo, LPadMap, NestedLPtoOriginalLP, DT, EHBlocks)); LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), ConstantInt::get(Type::getInt32Ty(Context), 1)); } else { Director.reset( new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap)); LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), UndefValue::get(Type::getInt32Ty(Context))); } SmallVector Returns; ClonedCodeInfo OutlinedFunctionInfo; // If the start block contains PHI nodes, we need to map them. BasicBlock::iterator II = StartBB->begin(); while (auto *PN = dyn_cast(II)) { bool Mapped = false; // Look for PHI values that we have already mapped (such as the selector). for (Value *Val : PN->incoming_values()) { if (VMap.count(Val)) { VMap[PN] = VMap[Val]; Mapped = true; } } // If we didn't find a match for this value, map it as an undef. if (!Mapped) { VMap[PN] = UndefValue::get(PN->getType()); } ++II; } // The landing pad value may be used by PHI nodes. It will ultimately be // eliminated, but we need it in the map for intermediate handling. VMap[LPad] = UndefValue::get(LPad->getType()); // Skip over PHIs and, if applicable, landingpad instructions. II = StartBB->getFirstInsertionPt(); CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, /*ModuleLevelChanges=*/false, Returns, "", &OutlinedFunctionInfo, Director.get()); // Move all the instructions in the cloned "entry" block into our entry block. // Depending on how the parent function was laid out, the block that will // correspond to the outlined entry block may not be the first block in the // list. We can recognize it, however, as the cloned block which has no // predecessors. Any other block wouldn't have been cloned if it didn't // have a predecessor which was also cloned. Function::iterator ClonedIt = std::next(Function::iterator(Entry)); while (!pred_empty(ClonedIt)) ++ClonedIt; BasicBlock *ClonedEntryBB = ClonedIt; assert(ClonedEntryBB); Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList()); ClonedEntryBB->eraseFromParent(); // Make sure we can identify the handler's personality later. addStubInvokeToHandlerIfNeeded(Handler); if (auto *CatchAction = dyn_cast(Action)) { WinEHCatchDirector *CatchDirector = reinterpret_cast(Director.get()); CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); // Look for blocks that are not part of the landing pad that we just // outlined but terminate with a call to llvm.eh.endcatch and a // branch to a block that is in the handler we just outlined. // These blocks will be part of a nested landing pad that intends to // return to an address in this handler. This case is best handled // after both landing pads have been outlined, so for now we'll just // save the association of the blocks in LPadTargetBlocks. The // return instructions which are created from these branches will be // replaced after all landing pads have been outlined. for (const auto MapEntry : VMap) { // VMap maps all values and blocks that were just cloned, but dead // blocks which were pruned will map to nullptr. if (!isa(MapEntry.first) || MapEntry.second == nullptr) continue; const BasicBlock *MappedBB = cast(MapEntry.first); for (auto *Pred : predecessors(const_cast(MappedBB))) { auto *Branch = dyn_cast(Pred->getTerminator()); if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) continue; BasicBlock::iterator II = const_cast(Branch); --II; if (match(cast(II), m_Intrinsic())) { // This would indicate that a nested landing pad wants to return // to a block that is outlined into two different handlers. assert(!LPadTargetBlocks.count(MappedBB)); LPadTargetBlocks[MappedBB] = cast(MapEntry.second); } } } } // End if (CatchAction) Action->setHandlerBlockOrFunc(Handler); return true; } /// This BB must end in a selector dispatch. All we need to do is pass the /// handler block to llvm.eh.actions and list it as a possible indirectbr /// target. void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, BasicBlock *StartBB) { BasicBlock *HandlerBB; BasicBlock *NextBB; Constant *Selector; bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); if (Res) { // If this was EH dispatch, this must be a conditional branch to the handler // block. // FIXME: Handle instructions in the dispatch block. Currently we drop them, // leading to crashes if some optimization hoists stuff here. assert(CatchAction->getSelector() && HandlerBB && "expected catch EH dispatch"); } else { // This must be a catch-all. Split the block after the landingpad. assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT); } IRBuilder<> Builder(HandlerBB->getFirstInsertionPt()); Function *EHCodeFn = Intrinsic::getDeclaration( StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode); Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode"); Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType()); Builder.CreateStore(Code, SEHExceptionCodeSlot); CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); TinyPtrVector Targets(HandlerBB); CatchAction->setReturnTargets(Targets); } void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { // Each instance of this class should only ever be used to map a single // landing pad. assert(OriginLPad == nullptr || OriginLPad == LPad); // If the landing pad has already been mapped, there's nothing more to do. if (OriginLPad == LPad) return; OriginLPad = LPad; // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the // results of those extracts will have been promoted to reg values before // this routine is called. for (auto *U : LPad->users()) { const ExtractValueInst *Extract = dyn_cast(U); if (!Extract) continue; assert(Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"); unsigned int Idx = *(Extract->idx_begin()); assert((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"); if (Idx == 0) { ExtractedEHPtrs.push_back(Extract); } else if (Idx == 1) { ExtractedSelectors.push_back(Extract); } } } bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { return BB->getLandingPadInst() == OriginLPad; } bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { if (Inst == OriginLPad) return true; for (auto *Extract : ExtractedEHPtrs) { if (Inst == Extract) return true; } for (auto *Extract : ExtractedSelectors) { if (Inst == Extract) return true; } return false; } void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, Value *SelectorValue) const { // Remap all landing pad extract instructions to the specified values. for (auto *Extract : ExtractedEHPtrs) VMap[Extract] = EHPtrValue; for (auto *Extract : ExtractedSelectors) VMap[Extract] = SelectorValue; } static bool isLocalAddressCall(const Value *V) { return match(const_cast(V), m_Intrinsic()); } CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If this is one of the boilerplate landing pad instructions, skip it. // The instruction will have already been remapped in VMap. if (LPadMap.isLandingPadSpecificInst(Inst)) return CloningDirector::SkipInstruction; // Nested landing pads that have not already been outlined will be cloned as // stubs, with just the landingpad instruction and an unreachable instruction. // When all landingpads have been outlined, we'll replace this with the // llvm.eh.actions call and indirect branch created when the landing pad was // outlined. if (auto *LPad = dyn_cast(Inst)) { return handleLandingPad(VMap, LPad, NewBB); } // Nested landing pads that have already been outlined will be cloned in their // outlined form, but we need to intercept the ibr instruction to filter out // targets that do not return to the handler we are outlining. if (auto *IBr = dyn_cast(Inst)) { return handleIndirectBr(VMap, IBr, NewBB); } if (auto *Invoke = dyn_cast(Inst)) return handleInvoke(VMap, Invoke, NewBB); if (auto *Resume = dyn_cast(Inst)) return handleResume(VMap, Resume, NewBB); if (auto *Cmp = dyn_cast(Inst)) return handleCompare(VMap, Cmp, NewBB); if (match(Inst, m_Intrinsic())) return handleBeginCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic())) return handleEndCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic())) return handleTypeIdFor(VMap, Inst, NewBB); // When outlining llvm.localaddress(), remap that to the second argument, // which is the FP of the parent. if (isLocalAddressCall(Inst)) { VMap[Inst] = ParentFP; return CloningDirector::SkipInstruction; } // Continue with the default cloning behavior. return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { // If the instruction after the landing pad is a call to llvm.eh.actions // the landing pad has already been outlined. In this case, we should // clone it because it may return to a block in the handler we are // outlining now that would otherwise be unreachable. The landing pads // are sorted before outlining begins to enable this case to work // properly. const Instruction *NextI = LPad->getNextNode(); if (match(NextI, m_Intrinsic())) return CloningDirector::CloneInstruction; // If the landing pad hasn't been outlined yet, the landing pad we are // outlining now does not dominate it and so it cannot return to a block // in this handler. In that case, we can just insert a stub landing // pad now and patch it up later. Instruction *NewInst = LPad->clone(); if (LPad->hasName()) NewInst->setName(LPad->getName()); // Save this correlation for later processing. NestedLPtoOriginalLP[cast(NewInst)] = LPad; VMap[LPad] = NewInst; BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(NewInst); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // The argument to the call is some form of the first element of the // landingpad aggregate value, but that doesn't matter. It isn't used // here. // The second argument is an outparameter where the exception object will be // stored. Typically the exception object is a scalar, but it can be an // aggregate when catching by value. // FIXME: Leave something behind to indicate where the exception object lives // for this handler. Should it be part of llvm.eh.actions? assert(ExceptionObjectVar == nullptr && "Multiple calls to " "llvm.eh.begincatch found while " "outlining catch handler."); ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); if (isa(ExceptionObjectVar)) return CloningDirector::SkipInstruction; assert(cast(ExceptionObjectVar)->isStaticAlloca() && "catch parameter is not static alloca"); Materializer.escapeCatchObject(ExceptionObjectVar); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast(Inst); // It might be interesting to track whether or not we are inside a catch // function, but that might make the algorithm more brittle than it needs // to be. // The end catch call can occur in one of two places: either in a // landingpad block that is part of the catch handlers exception mechanism, // or at the end of the catch block. However, a catch-all handler may call // end catch from the original landing pad. If the call occurs in a nested // landing pad block, we must skip it and continue so that the landing pad // gets cloned. auto *ParentBB = IntrinCall->getParent(); if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) return CloningDirector::SkipInstruction; // If an end catch occurs anywhere else we want to terminate the handler // with a return to the code that follows the endcatch call. If the // next instruction is not an unconditional branch, we need to split the // block to provide a clear target for the return instruction. BasicBlock *ContinueBB; auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); const BranchInst *Branch = dyn_cast(Next); if (!Branch || !Branch->isUnconditional()) { // We're interrupting the cloning process at this location, so the // const_cast we're doing here will not cause a problem. ContinueBB = SplitBlock(const_cast(ParentBB), const_cast(cast(Next))); } else { ContinueBB = Branch->getSuccessor(0); } ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); ReturnTargets.push_back(ContinueBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast(Inst); Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); // This causes a replacement that will collapse the landing pad CFG based // on the filter function we intend to match. if (Selector == CurrentSelector) VMap[Inst] = ConstantInt::get(SelectorIDType, 1); else VMap[Inst] = ConstantInt::get(SelectorIDType, 0); // Tell the caller not to clone this instruction. return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr( ValueToValueMapTy &VMap, const IndirectBrInst *IBr, BasicBlock *NewBB) { // If this indirect branch is not part of a landing pad block, just clone it. const BasicBlock *ParentBB = IBr->getParent(); if (!ParentBB->isLandingPad()) return CloningDirector::CloneInstruction; // If it is part of a landing pad, we want to filter out target blocks // that are not part of the handler we are outlining. const LandingPadInst *LPad = ParentBB->getLandingPadInst(); // Save this correlation for later processing. NestedLPtoOriginalLP[cast(VMap[LPad])] = LPad; // We should only get here for landing pads that have already been outlined. assert(match(LPad->getNextNode(), m_Intrinsic())); // Copy the indirectbr, but only include targets that were previously // identified as EH blocks and are dominated by the nested landing pad. SetVector ReturnTargets; for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) { auto *TargetBB = IBr->getDestination(I); if (EHBlocks.count(const_cast(TargetBB)) && DT->dominates(ParentBB, TargetBB)) { DEBUG(dbgs() << " Adding destination " << TargetBB->getName() << "\n"); ReturnTargets.insert(TargetBB); } } IndirectBrInst *NewBranch = IndirectBrInst::Create(const_cast(IBr->getAddress()), ReturnTargets.size(), NewBB); for (auto *Target : ReturnTargets) NewBranch->addDestination(const_cast(Target)); // The operands and targets of the branch instruction are remapped later // because it is a terminator. Tell the cloning code to clone the // blocks we just added to the target list. return CloningDirector::CloneSuccessors; } CloningDirector::CloningAction WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { // Resume instructions shouldn't be reachable from catch handlers. // We still need to handle it, but it will be pruned. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, BasicBlock *NewBB) { const IntrinsicInst *IntrinCall = nullptr; if (match(Compare->getOperand(0), m_Intrinsic())) { IntrinCall = dyn_cast(Compare->getOperand(0)); } else if (match(Compare->getOperand(1), m_Intrinsic())) { IntrinCall = dyn_cast(Compare->getOperand(1)); } if (IntrinCall) { Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); // This causes a replacement that will collapse the landing pad CFG based // on the filter function we intend to match. if (Selector == CurrentSelector->stripPointerCasts()) { VMap[Compare] = ConstantInt::get(SelectorIDType, 1); } else { VMap[Compare] = ConstantInt::get(SelectorIDType, 0); } return CloningDirector::SkipInstruction; } return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { // The MS runtime will terminate the process if an exception occurs in a // cleanup handler, so we shouldn't encounter landing pads in the actual // cleanup code, but they may appear in catch blocks. Depending on where // we started cloning we may see one, but it will get dropped during dead // block pruning. Instruction *NewInst = new UnreachableInst(NewBB->getContext()); VMap[LPad] = NewInst; BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(NewInst); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Cleanup code may flow into catch blocks or the catch block may be part // of a branch that will be optimized away. We'll insert a return // instruction now, but it may be pruned before the cloning process is // complete. ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Cleanup handlers nested within catch handlers may begin with a call to // eh.endcatch. We can just ignore that instruction. return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If we encounter a selector comparison while cloning a cleanup handler, // we want to stop cloning immediately. Anything after the dispatch // will be outlined into a different handler. BasicBlock *CatchHandler; Constant *Selector; BasicBlock *NextBB; if (isSelectorDispatch(const_cast(Inst->getParent()), CatchHandler, Selector, NextBB)) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } // If eg.typeid.for is called for any other reason, it can be ignored. VMap[Inst] = ConstantInt::get(SelectorIDType, 0); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr( ValueToValueMapTy &VMap, const IndirectBrInst *IBr, BasicBlock *NewBB) { // No special handling is required for cleanup cloning. return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { // All invokes in cleanup handlers can be replaced with calls. SmallVector CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); // Insert a normal call instruction... CallInst *NewCall = CallInst::Create(const_cast(Invoke->getCalledValue()), CallArgs, Invoke->getName(), NewBB); NewCall->setCallingConv(Invoke->getCallingConv()); NewCall->setAttributes(Invoke->getAttributes()); NewCall->setDebugLoc(Invoke->getDebugLoc()); VMap[Invoke] = NewCall; // Remap the operands. llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); // Insert an unconditional branch to the normal destination. BranchInst::Create(Invoke->getNormalDest(), NewBB); // The unwind destination won't be cloned into the new function, so // we don't need to clean up its phi nodes. // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block. return CloningDirector::CloneSuccessors; } CloningDirector::CloningAction WinEHCleanupDirector::handleResume( ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, BasicBlock *NewBB) { if (match(Compare->getOperand(0), m_Intrinsic()) || match(Compare->getOperand(1), m_Intrinsic())) { VMap[Compare] = ConstantInt::get(SelectorIDType, 1); return CloningDirector::SkipInstruction; } return CloningDirector::CloneInstruction; } WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo) : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); // New allocas should be inserted in the entry block, but after the parent FP // is established if it is an instruction. Instruction *InsertPoint = EntryBB->getFirstInsertionPt(); if (auto *FPInst = dyn_cast(ParentFP)) InsertPoint = FPInst->getNextNode(); Builder.SetInsertPoint(EntryBB, InsertPoint); } Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { // If we're asked to materialize a static alloca, we temporarily create an // alloca in the outlined function and add this to the FrameVarInfo map. When // all the outlining is complete, we'll replace these temporary allocas with // calls to llvm.localrecover. if (auto *AV = dyn_cast(V)) { assert(AV->isStaticAlloca() && "cannot materialize un-demoted dynamic alloca"); AllocaInst *NewAlloca = dyn_cast(AV->clone()); Builder.Insert(NewAlloca, AV->getName()); FrameVarInfo[AV].push_back(NewAlloca); return NewAlloca; } if (isa(V) || isa(V)) { Function *Parent = isa(V) ? cast(V)->getParent()->getParent() : cast(V)->getParent(); errs() << "Failed to demote instruction used in exception handler of function " << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n"; errs() << " " << *V << '\n'; report_fatal_error("WinEHPrepare failed to demote instruction"); } // Don't materialize other values. return nullptr; } void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { // Catch parameter objects have to live in the parent frame. When we see a use // of a catch parameter, add a sentinel to the multimap to indicate that it's // used from another handler. This will prevent us from trying to sink the // alloca into the handler and ensure that the catch parameter is present in // the call to llvm.localescape. FrameVarInfo[V].push_back(getCatchObjectSentinel()); } // This function maps the catch and cleanup handlers that are reachable from the // specified landing pad. The landing pad sequence will have this basic shape: // // // // // // // // // ... // // Any of the cleanup slots may be absent. The cleanup slots may be occupied by // any arbitrary control flow, but all paths through the cleanup code must // eventually reach the next selector comparison and no path can skip to a // different selector comparisons, though some paths may terminate abnormally. // Therefore, we will use a depth first search from the start of any given // cleanup block and stop searching when we find the next selector comparison. // // If the landingpad instruction does not have a catch clause, we will assume // that any instructions other than selector comparisons and catch handlers can // be ignored. In practice, these will only be the boilerplate instructions. // // The catch handlers may also have any control structure, but we are only // interested in the start of the catch handlers, so we don't need to actually // follow the flow of the catch handlers. The start of the catch handlers can // be located from the compare instructions, but they can be skipped in the // flow by following the contrary branch. void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions) { unsigned int NumClauses = LPad->getNumClauses(); unsigned int HandlersFound = 0; BasicBlock *BB = LPad->getParent(); DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); if (NumClauses == 0) { findCleanupHandlers(Actions, BB, nullptr); return; } VisitedBlockSet VisitedBlocks; while (HandlersFound != NumClauses) { BasicBlock *NextBB = nullptr; // Skip over filter clauses. if (LPad->isFilter(HandlersFound)) { ++HandlersFound; continue; } // See if the clause we're looking for is a catch-all. // If so, the catch begins immediately. Constant *ExpectedSelector = LPad->getClause(HandlersFound)->stripPointerCasts(); if (isa(ExpectedSelector)) { // The catch all must occur last. assert(HandlersFound == NumClauses - 1); // There can be additional selector dispatches in the call chain that we // need to ignore. BasicBlock *CatchBlock = nullptr; Constant *Selector; while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { DEBUG(dbgs() << " Found extra catch dispatch in block " << CatchBlock->getName() << "\n"); BB = NextBB; } // Add the catch handler to the action list. CatchHandler *Action = nullptr; if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { // If the CatchHandlerMap already has an entry for this BB, re-use it. Action = CatchHandlerMap[BB]; assert(Action->getSelector() == ExpectedSelector); } else { // We don't expect a selector dispatch, but there may be a call to // llvm.eh.begincatch, which separates catch handling code from // cleanup code in the same control flow. This call looks for the // begincatch intrinsic. Action = findCatchHandler(BB, NextBB, VisitedBlocks); if (Action) { // For C++ EH, check if there is any interesting cleanup code before // we begin the catch. This is important because cleanups cannot // rethrow exceptions but code called from catches can. For SEH, it // isn't important if some finally code before a catch-all is executed // out of line or after recovering from the exception. if (Personality == EHPersonality::MSVC_CXX) findCleanupHandlers(Actions, BB, BB); } else { // If an action was not found, it means that the control flows // directly into the catch-all handler and there is no cleanup code. // That's an expected situation and we must create a catch action. // Since this is a catch-all handler, the selector won't actually // appear in the code anywhere. ExpectedSelector here is the constant // null ptr that we got from the landing pad instruction. Action = new CatchHandler(BB, ExpectedSelector, nullptr); CatchHandlerMap[BB] = Action; } } Actions.insertCatchHandler(Action); DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); ++HandlersFound; // Once we reach a catch-all, don't expect to hit a resume instruction. BB = nullptr; break; } CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); assert(CatchAction); // See if there is any interesting code executed before the dispatch. findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); // When the source program contains multiple nested try blocks the catch // handlers can get strung together in such a way that we can encounter // a dispatch for a selector that we've already had a handler for. if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) { ++HandlersFound; // Add the catch handler to the action list. DEBUG(dbgs() << " Found catch dispatch in block " << CatchAction->getStartBlock()->getName() << "\n"); Actions.insertCatchHandler(CatchAction); } else { // Under some circumstances optimized IR will flow unconditionally into a // handler block without checking the selector. This can only happen if // the landing pad has a catch-all handler and the handler for the // preceeding catch clause is identical to the catch-call handler // (typically an empty catch). In this case, the handler must be shared // by all remaining clauses. if (isa( CatchAction->getSelector()->stripPointerCasts())) { DEBUG(dbgs() << " Applying early catch-all handler in block " << CatchAction->getStartBlock()->getName() << " to all remaining clauses.\n"); Actions.insertCatchHandler(CatchAction); return; } DEBUG(dbgs() << " Found extra catch dispatch in block " << CatchAction->getStartBlock()->getName() << "\n"); } // Move on to the block after the catch handler. BB = NextBB; } // If we didn't wind up in a catch-all, see if there is any interesting code // executed before the resume. findCleanupHandlers(Actions, BB, BB); // It's possible that some optimization moved code into a landingpad that // wasn't // previously being used for cleanup. If that happens, we need to execute // that // extra code from a cleanup handler. if (Actions.includesCleanup() && !LPad->isCleanup()) LPad->setCleanup(true); } // This function searches starting with the input block for the next // block that terminates with a branch whose condition is based on a selector // comparison. This may be the input block. See the mapLandingPadBlocks // comments for a discussion of control flow assumptions. // CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks) { // See if we've already found a catch handler use it. // Call count() first to avoid creating a null entry for blocks // we haven't seen before. if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { CatchHandler *Action = cast(CatchHandlerMap[BB]); NextBB = Action->getNextBB(); return Action; } // VisitedBlocks applies only to the current search. We still // need to consider blocks that we've visited while mapping other // landing pads. VisitedBlocks.insert(BB); BasicBlock *CatchBlock = nullptr; Constant *Selector = nullptr; // If this is the first time we've visited this block from any landing pad // look to see if it is a selector dispatch block. if (!CatchHandlerMap.count(BB)) { if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); CatchHandlerMap[BB] = Action; return Action; } // If we encounter a block containing an llvm.eh.begincatch before we // find a selector dispatch block, the handler is assumed to be // reached unconditionally. This happens for catch-all blocks, but // it can also happen for other catch handlers that have been combined // with the catch-all handler during optimization. if (isCatchBlock(BB)) { PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext()); Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy); CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr); CatchHandlerMap[BB] = Action; return Action; } } // Visit each successor, looking for the dispatch. // FIXME: We expect to find the dispatch quickly, so this will probably // work better as a breadth first search. for (BasicBlock *Succ : successors(BB)) { if (VisitedBlocks.count(Succ)) continue; CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); if (Action) return Action; } return nullptr; } // These are helper functions to combine repeated code from findCleanupHandlers. static void createCleanupHandler(LandingPadActions &Actions, CleanupHandlerMapTy &CleanupHandlerMap, BasicBlock *BB) { CleanupHandler *Action = new CleanupHandler(BB); CleanupHandlerMap[BB] = Action; Actions.insertCleanupHandler(Action); DEBUG(dbgs() << " Found cleanup code in block " << Action->getStartBlock()->getName() << "\n"); } static CallSite matchOutlinedFinallyCall(BasicBlock *BB, Instruction *MaybeCall) { // Look for finally blocks that Clang has already outlined for us. // %fp = call i8* @llvm.localaddress() // call void @"fin$parent"(iN 1, i8* %fp) if (isLocalAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) MaybeCall = MaybeCall->getNextNode(); CallSite FinallyCall(MaybeCall); if (!FinallyCall || FinallyCall.arg_size() != 2) return CallSite(); if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) return CallSite(); if (!isLocalAddressCall(FinallyCall.getArgument(1))) return CallSite(); return FinallyCall; } static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { // Skip single ubr blocks. while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { auto *Br = dyn_cast(BB->getTerminator()); if (Br && Br->isUnconditional()) BB = Br->getSuccessor(0); else return BB; } return BB; } // This function searches starting with the input block for the next block that // contains code that is not part of a catch handler and would not be eliminated // during handler outlining. // void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, BasicBlock *EndBB) { // Here we will skip over the following: // // landing pad prolog: // // Unconditional branches // // Selector dispatch // // Resume pattern // // Anything else marks the start of an interesting block BasicBlock *BB = StartBB; // Anything other than an unconditional branch will kick us out of this loop // one way or another. while (BB) { BB = followSingleUnconditionalBranches(BB); // If we've already scanned this block, don't scan it again. If it is // a cleanup block, there will be an action in the CleanupHandlerMap. // If we've scanned it and it is not a cleanup block, there will be a // nullptr in the CleanupHandlerMap. If we have not scanned it, there will // be no entry in the CleanupHandlerMap. We must call count() first to // avoid creating a null entry for blocks we haven't scanned. if (CleanupHandlerMap.count(BB)) { if (auto *Action = CleanupHandlerMap[BB]) { Actions.insertCleanupHandler(Action); DEBUG(dbgs() << " Found cleanup code in block " << Action->getStartBlock()->getName() << "\n"); // FIXME: This cleanup might chain into another, and we need to discover // that. return; } else { // Here we handle the case where the cleanup handler map contains a // value for this block but the value is a nullptr. This means that // we have previously analyzed the block and determined that it did // not contain any cleanup code. Based on the earlier analysis, we // know the block must end in either an unconditional branch, a // resume or a conditional branch that is predicated on a comparison // with a selector. Either the resume or the selector dispatch // would terminate the search for cleanup code, so the unconditional // branch is the only case for which we might need to continue // searching. BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); if (SuccBB == BB || SuccBB == EndBB) return; BB = SuccBB; continue; } } // Create an entry in the cleanup handler map for this block. Initially // we create an entry that says this isn't a cleanup block. If we find // cleanup code, the caller will replace this entry. CleanupHandlerMap[BB] = nullptr; TerminatorInst *Terminator = BB->getTerminator(); // Landing pad blocks have extra instructions we need to accept. LandingPadMap *LPadMap = nullptr; if (BB->isLandingPad()) { LandingPadInst *LPad = BB->getLandingPadInst(); LPadMap = &LPadMaps[LPad]; if (!LPadMap->isInitialized()) LPadMap->mapLandingPad(LPad); } // Look for the bare resume pattern: // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 // resume { i8*, i32 } %lpad.val2 if (auto *Resume = dyn_cast(Terminator)) { InsertValueInst *Insert1 = nullptr; InsertValueInst *Insert2 = nullptr; Value *ResumeVal = Resume->getOperand(0); // If the resume value isn't a phi or landingpad value, it should be a // series of insertions. Identify them so we can avoid them when scanning // for cleanups. if (!isa(ResumeVal) && !isa(ResumeVal)) { Insert2 = dyn_cast(ResumeVal); if (!Insert2) return createCleanupHandler(Actions, CleanupHandlerMap, BB); Insert1 = dyn_cast(Insert2->getAggregateOperand()); if (!Insert1) return createCleanupHandler(Actions, CleanupHandlerMap, BB); } for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) continue; if (!Inst->hasOneUse() || (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { return createCleanupHandler(Actions, CleanupHandlerMap, BB); } } return; } BranchInst *Branch = dyn_cast(Terminator); if (Branch && Branch->isConditional()) { // Look for the selector dispatch. // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) // %matches = icmp eq i32 %sel, %2 // br i1 %matches, label %catch14, label %eh.resume CmpInst *Compare = dyn_cast(Branch->getCondition()); if (!Compare || !Compare->isEquality()) return createCleanupHandler(Actions, CleanupHandlerMap, BB); for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Compare || Inst == Branch) continue; if (match(Inst, m_Intrinsic())) continue; return createCleanupHandler(Actions, CleanupHandlerMap, BB); } // The selector dispatch block should always terminate our search. assert(BB == EndBB); return; } if (isAsynchronousEHPersonality(Personality)) { // If this is a landingpad block, split the block at the first non-landing // pad instruction. Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); if (LPadMap) { while (MaybeCall != BB->getTerminator() && LPadMap->isLandingPadSpecificInst(MaybeCall)) MaybeCall = MaybeCall->getNextNode(); } // Look for outlined finally calls on x64, since those happen to match the // prototype provided by the runtime. if (TheTriple.getArch() == Triple::x86_64) { if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { Function *Fin = FinallyCall.getCalledFunction(); assert(Fin && "outlined finally call should be direct"); auto *Action = new CleanupHandler(BB); Action->setHandlerBlockOrFunc(Fin); Actions.insertCleanupHandler(Action); CleanupHandlerMap[BB] = Action; DEBUG(dbgs() << " Found frontend-outlined finally call to " << Fin->getName() << " in block " << Action->getStartBlock()->getName() << "\n"); // Split the block if there were more interesting instructions and // look for finally calls in the normal successor block. BasicBlock *SuccBB = BB; if (FinallyCall.getInstruction() != BB->getTerminator() && FinallyCall.getInstruction()->getNextNode() != BB->getTerminator()) { SuccBB = SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT); } else { if (FinallyCall.isInvoke()) { SuccBB = cast(FinallyCall.getInstruction()) ->getNormalDest(); } else { SuccBB = BB->getUniqueSuccessor(); assert(SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"); } } BB = SuccBB; if (BB == EndBB) return; continue; } } } // Anything else is either a catch block or interesting cleanup code. for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; // Unconditional branches fall through to this loop. if (Inst == Branch) continue; // If this is a catch block, there is no cleanup code to be found. if (match(Inst, m_Intrinsic())) return; // If this a nested landing pad, it may contain an endcatch call. if (match(Inst, m_Intrinsic())) return; // Anything else makes this interesting cleanup code. return createCleanupHandler(Actions, CleanupHandlerMap, BB); } // Only unconditional branches in empty blocks should get this far. assert(Branch && Branch->isUnconditional()); if (BB == EndBB) return; BB = Branch->getSuccessor(0); } } // This is a public function, declared in WinEHFuncInfo.h and is also // referenced by WinEHNumbering in FunctionLoweringInfo.cpp. void llvm::parseEHActions( const IntrinsicInst *II, SmallVectorImpl> &Actions) { assert(II->getIntrinsicID() == Intrinsic::eh_actions && "attempted to parse non eh.actions intrinsic"); for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { uint64_t ActionKind = cast(II->getArgOperand(I))->getZExtValue(); if (ActionKind == /*catch=*/1) { auto *Selector = cast(II->getArgOperand(I + 1)); ConstantInt *EHObjIndex = cast(II->getArgOperand(I + 2)); int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); Constant *Handler = cast(II->getArgOperand(I + 3)); I += 4; auto CH = make_unique(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr); CH->setHandlerBlockOrFunc(Handler); CH->setExceptionVarIndex(EHObjIndexVal); Actions.push_back(std::move(CH)); } else if (ActionKind == 0) { Constant *Handler = cast(II->getArgOperand(I + 1)); I += 2; auto CH = make_unique(/*BB=*/nullptr); CH->setHandlerBlockOrFunc(Handler); Actions.push_back(std::move(CH)); } else { llvm_unreachable("Expected either a catch or cleanup handler!"); } } std::reverse(Actions.begin(), Actions.end()); } namespace { struct WinEHNumbering { WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), CurrentBaseState(-1), NextState(0) {} WinEHFuncInfo &FuncInfo; int CurrentBaseState; int NextState; SmallVector, 4> HandlerStack; SmallPtrSet VisitedHandlers; int currentEHNumber() const { return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState(); } void createUnwindMapEntry(int ToState, ActionHandler *AH); void createTryBlockMapEntry(int TryLow, int TryHigh, ArrayRef Handlers); void processCallSite(MutableArrayRef> Actions, ImmutableCallSite CS); void popUnmatchedActions(int FirstMismatch); void calculateStateNumbers(const Function &F); void findActionRootLPads(const Function &F); }; } void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { WinEHUnwindMapEntry UME; UME.ToState = ToState; if (auto *CH = dyn_cast_or_null(AH)) UME.Cleanup = cast(CH->getHandlerBlockOrFunc()); else UME.Cleanup = nullptr; FuncInfo.UnwindMap.push_back(UME); } void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, ArrayRef Handlers) { // See if we already have an entry for this set of handlers. // This is using iterators rather than a range-based for loop because // if we find the entry we're looking for we'll need the iterator to erase it. int NumHandlers = Handlers.size(); auto I = FuncInfo.TryBlockMap.begin(); auto E = FuncInfo.TryBlockMap.end(); for ( ; I != E; ++I) { auto &Entry = *I; if (Entry.HandlerArray.size() != (size_t)NumHandlers) continue; int N; for (N = 0; N < NumHandlers; ++N) { if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc()) break; // breaks out of inner loop } // If all the handlers match, this is what we were looking for. if (N == NumHandlers) { break; } } // If we found an existing entry for this set of handlers, extend the range // but move the entry to the end of the map vector. The order of entries // in the map is critical to the way that the runtime finds handlers. // FIXME: Depending on what has happened with block ordering, this may // incorrectly combine entries that should remain separate. if (I != E) { // Copy the existing entry. WinEHTryBlockMapEntry Entry = *I; Entry.TryLow = std::min(TryLow, Entry.TryLow); Entry.TryHigh = std::max(TryHigh, Entry.TryHigh); assert(Entry.TryLow <= Entry.TryHigh); // Erase the old entry and add this one to the back. FuncInfo.TryBlockMap.erase(I); FuncInfo.TryBlockMap.push_back(Entry); return; } // If we didn't find an entry, create a new one. WinEHTryBlockMapEntry TBME; TBME.TryLow = TryLow; TBME.TryHigh = TryHigh; assert(TBME.TryLow <= TBME.TryHigh); for (CatchHandler *CH : Handlers) { WinEHHandlerType HT; if (CH->getSelector()->isNullValue()) { HT.Adjectives = 0x40; HT.TypeDescriptor = nullptr; } else { auto *GV = cast(CH->getSelector()->stripPointerCasts()); // Selectors are always pointers to GlobalVariables with 'struct' type. // The struct has two fields, adjectives and a type descriptor. auto *CS = cast(GV->getInitializer()); HT.Adjectives = cast(CS->getAggregateElement(0U))->getZExtValue(); HT.TypeDescriptor = cast(CS->getAggregateElement(1)->stripPointerCasts()); } HT.Handler = cast(CH->getHandlerBlockOrFunc()); HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); TBME.HandlerArray.push_back(HT); } FuncInfo.TryBlockMap.push_back(TBME); } static void print_name(const Value *V) { #ifndef NDEBUG if (!V) { DEBUG(dbgs() << "null"); return; } if (const auto *F = dyn_cast(V)) DEBUG(dbgs() << F->getName()); else DEBUG(V->dump()); #endif } void WinEHNumbering::processCallSite( MutableArrayRef> Actions, ImmutableCallSite CS) { DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber() << ") for: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); DEBUG(dbgs() << "HandlerStack: \n"); for (int I = 0, E = HandlerStack.size(); I < E; ++I) { DEBUG(dbgs() << " "); print_name(HandlerStack[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << '\n'); } DEBUG(dbgs() << "Actions: \n"); for (int I = 0, E = Actions.size(); I < E; ++I) { DEBUG(dbgs() << " "); print_name(Actions[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << '\n'); } int FirstMismatch = 0; for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; ++FirstMismatch) { if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != Actions[FirstMismatch]->getHandlerBlockOrFunc()) break; } // Remove unmatched actions from the stack and process their EH states. popUnmatchedActions(FirstMismatch); DEBUG(dbgs() << "Pushing actions for CallSite: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); bool LastActionWasCatch = false; const LandingPadInst *LastRootLPad = nullptr; for (size_t I = FirstMismatch; I != Actions.size(); ++I) { // We can reuse eh states when pushing two catches for the same invoke. bool CurrActionIsCatch = isa(Actions[I].get()); auto *Handler = cast(Actions[I]->getHandlerBlockOrFunc()); // Various conditions can lead to a handler being popped from the // stack and re-pushed later. That shouldn't create a new state. // FIXME: Can code optimization lead to re-used handlers? if (FuncInfo.HandlerEnclosedState.count(Handler)) { // If we already assigned the state enclosed by this handler re-use it. Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]); continue; } const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler]; if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) { DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n"); Actions[I]->setEHState(currentEHNumber()); } else { DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", "); print_name(Actions[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << ") with EH state " << NextState << "\n"); createUnwindMapEntry(currentEHNumber(), Actions[I].get()); DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n"); Actions[I]->setEHState(NextState); NextState++; } HandlerStack.push_back(std::move(Actions[I])); LastActionWasCatch = CurrActionIsCatch; LastRootLPad = RootLPad; } // This is used to defer numbering states for a handler until after the // last time it appears in an invoke action list. if (CS.isInvoke()) { for (int I = 0, E = HandlerStack.size(); I < E; ++I) { auto *Handler = cast(HandlerStack[I]->getHandlerBlockOrFunc()); if (FuncInfo.LastInvoke[Handler] != cast(CS.getInstruction())) continue; FuncInfo.LastInvokeVisited[Handler] = true; DEBUG(dbgs() << "Last invoke of "); print_name(Handler); DEBUG(dbgs() << " has been visited.\n"); } } DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); } void WinEHNumbering::popUnmatchedActions(int FirstMismatch) { // Don't recurse while we are looping over the handler stack. Instead, defer // the numbering of the catch handlers until we are done popping. SmallVector PoppedCatches; for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { std::unique_ptr Handler = HandlerStack.pop_back_val(); if (isa(Handler.get())) PoppedCatches.push_back(cast(Handler.release())); } int TryHigh = NextState - 1; int LastTryLowIdx = 0; for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { CatchHandler *CH = PoppedCatches[I]; DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n"); if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { int TryLow = CH->getEHState(); auto Handlers = makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh); for (size_t J = 0; J < Handlers.size(); ++J) { DEBUG(dbgs() << ", "); print_name(Handlers[J]->getHandlerBlockOrFunc()); } DEBUG(dbgs() << ")\n"); createTryBlockMapEntry(TryLow, TryHigh, Handlers); LastTryLowIdx = I + 1; } } for (CatchHandler *CH : PoppedCatches) { if (auto *F = dyn_cast(CH->getHandlerBlockOrFunc())) { if (FuncInfo.LastInvokeVisited[F]) { DEBUG(dbgs() << "Assigning base state " << NextState << " to "); print_name(F); DEBUG(dbgs() << '\n'); FuncInfo.HandlerBaseState[F] = NextState; DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", null)\n"); createUnwindMapEntry(currentEHNumber(), nullptr); ++NextState; calculateStateNumbers(*F); } else { DEBUG(dbgs() << "Deferring handling of "); print_name(F); DEBUG(dbgs() << " until last invoke visited.\n"); } } delete CH; } } void WinEHNumbering::calculateStateNumbers(const Function &F) { auto I = VisitedHandlers.insert(&F); if (!I.second) return; // We've already visited this handler, don't renumber it. int OldBaseState = CurrentBaseState; if (FuncInfo.HandlerBaseState.count(&F)) { CurrentBaseState = FuncInfo.HandlerBaseState[&F]; } size_t SavedHandlerStackSize = HandlerStack.size(); DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); SmallVector, 4> ActionList; for (const BasicBlock &BB : F) { for (const Instruction &I : BB) { const auto *CI = dyn_cast(&I); if (!CI || CI->doesNotThrow()) continue; processCallSite(None, CI); } const auto *II = dyn_cast(BB.getTerminator()); if (!II) continue; const LandingPadInst *LPI = II->getLandingPadInst(); auto *ActionsCall = dyn_cast(LPI->getNextNode()); if (!ActionsCall) continue; parseEHActions(ActionsCall, ActionList); if (ActionList.empty()) continue; processCallSite(ActionList, II); ActionList.clear(); FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); DEBUG(dbgs() << "Assigning state " << currentEHNumber() << " to landing pad at " << LPI->getParent()->getName() << '\n'); } // Pop any actions that were pushed on the stack for this function. popUnmatchedActions(SavedHandlerStackSize); DEBUG(dbgs() << "Assigning max state " << NextState - 1 << " to " << F.getName() << '\n'); FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; CurrentBaseState = OldBaseState; } // This function follows the same basic traversal as calculateStateNumbers // but it is necessary to identify the root landing pad associated // with each action before we start assigning state numbers. void WinEHNumbering::findActionRootLPads(const Function &F) { auto I = VisitedHandlers.insert(&F); if (!I.second) return; // We've already visited this handler, don't revisit it. SmallVector, 4> ActionList; for (const BasicBlock &BB : F) { const auto *II = dyn_cast(BB.getTerminator()); if (!II) continue; const LandingPadInst *LPI = II->getLandingPadInst(); auto *ActionsCall = dyn_cast(LPI->getNextNode()); if (!ActionsCall) continue; assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); parseEHActions(ActionsCall, ActionList); if (ActionList.empty()) continue; for (int I = 0, E = ActionList.size(); I < E; ++I) { if (auto *Handler = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) { FuncInfo.LastInvoke[Handler] = II; // Don't replace the root landing pad if we previously saw this // handler in a different function. if (FuncInfo.RootLPad.count(Handler) && FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F) continue; DEBUG(dbgs() << "Setting root lpad for "); print_name(Handler); DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n'); FuncInfo.RootLPad[Handler] = LPI; } } // Walk the actions again and look for nested handlers. This has to // happen after all of the actions have been processed in the current // function. for (int I = 0, E = ActionList.size(); I < E; ++I) if (auto *Handler = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) findActionRootLPads(*Handler); ActionList.clear(); } } void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn, WinEHFuncInfo &FuncInfo) { // Return if it's already been done. if (!FuncInfo.LandingPadStateMap.empty()) return; WinEHNumbering Num(FuncInfo); Num.findActionRootLPads(*ParentFn); // The VisitedHandlers list is used by both findActionRootLPads and // calculateStateNumbers, but both functions need to visit all handlers. Num.VisitedHandlers.clear(); Num.calculateStateNumbers(*ParentFn); // Pop everything on the handler stack. // It may be necessary to call this more than once because a handler can // be pushed on the stack as a result of clearing the stack. while (!Num.HandlerStack.empty()) Num.processCallSite(None, ImmutableCallSite()); }