//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nick Lewycky and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===------------------------------------------------------------------===// // // Path-sensitive optimizer. In a branch where x == y, replace uses of // x with y. Permits further optimization, such as the elimination of // the unreachable call: // // void test(int *p, int *q) // { // if (p != q) // return; // // if (*p != *q) // foo(); // unreachable // } // //===------------------------------------------------------------------===// // // This optimization works by substituting %q for %p when protected by a // conditional that assures us of that fact. Equivalent variables are // called SynSets; sets of synonyms. We maintain a mapping from Value * // to the SynSet, and the SynSet maintains the best canonical form of the // Value. // // Properties are stored as relationships between two SynSets. // //===------------------------------------------------------------------===// // TODO: // * Handle SelectInst // * Switch to EquivalenceClasses ADT // * Check handling of NAN in floating point types // * Don't descend into false side of branches with ConstantBool condition. #define DEBUG_TYPE "predsimplify" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include using namespace llvm; namespace { Statistic<> NumVarsReplaced("predsimplify", "Number of argument substitutions"); Statistic<> NumResolved("predsimplify", "Number of instruction substitutions"); Statistic<> NumSwitchCases("predsimplify", "Number of switch cases removed"); /// Used for choosing the canonical Value in a synonym set. /// Leaves the better one in V1. Returns whether a swap took place. static void order(Value *&V1, Value *&V2) { if (isa(V2)) { if (!isa(V1)) { std::swap(V1, V2); return; } } else if (isa(V2)) { if (!isa(V1) && !isa(V1)) { std::swap(V1, V2); return; } } if (User *U1 = dyn_cast(V1)) { for (User::const_op_iterator I = U1->op_begin(), E = U1->op_end(); I != E; ++I) { if (*I == V2) { std::swap(V1, V2); return; } } } return; } /// Represents the set of equivalent Value*s and provides insertion /// and fast lookup. Also stores the set of inequality relationships. class PropertySet { struct Property; public: typedef unsigned SynSet; typedef std::map::iterator SynonymIterator; typedef std::map::const_iterator ConstSynonymIterator; typedef std::vector::iterator PropertyIterator; typedef std::vector::const_iterator ConstPropertyIterator; enum Ops { EQ, NE }; Value *canonicalize(Value *V) const { Value *C = lookup(V); return C ? C : V; } Value *lookup(Value *V) const { ConstSynonymIterator SI = SynonymMap.find(V); if (SI == SynonymMap.end()) return NULL; return Synonyms[SI->second]; } Value *lookup(SynSet SS) const { assert(SS < Synonyms.size()); return Synonyms[SS]; } // Find a SynSet for a given Value. // // Given the Value *V sets SS to a valid SynSet. Returns true if it // found it. bool findSynSet(Value *V, SynSet &SS) const { ConstSynonymIterator SI = SynonymMap.find(V); if (SI != SynonymMap.end()) { SS = SI->second; return true; } std::vector::const_iterator I = std::find(Synonyms.begin(), Synonyms.end(), V); if (I != Synonyms.end()) { SS = I-Synonyms.begin(); return true; } return false; } bool empty() const { return Synonyms.empty(); } void addEqual(Value *V1, Value *V2) { order(V1, V2); if (isa(V2)) return; // refuse to set false == true. V1 = canonicalize(V1); V2 = canonicalize(V2); if (V1 == V2) return; // already equivalent. SynSet I1, I2; bool F1 = findSynSet(V1, I1), F2 = findSynSet(V2, I2); DEBUG(std::cerr << "V1: " << *V1 << " I1: " << I1 << " F1: " << F1 << "\n"); DEBUG(std::cerr << "V2: " << *V2 << " I2: " << I2 << " F2: " << F2 << "\n"); if (!F1 && !F2) { SynSet SS = addSynSet(V1); SynonymMap[V1] = SS; SynonymMap[V2] = SS; } else if (!F1 && F2) { SynonymMap[V1] = I2; } else if (F1 && !F2) { SynonymMap[V2] = I1; } else { // This is the case where we have two sets, [%a1, %a2, %a3] and // [%p1, %p2, %p3] and someone says that %a2 == %p3. We need to // combine the two synsets. // Collapse synonyms of V2 into V1. for (SynonymIterator I = SynonymMap.begin(), E = SynonymMap.end(); I != E; ++I) { if (I->second == I2) I->second = I1; else if (I->second > I2) --I->second; } // Move Properties for (PropertyIterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { if (I->S1 == I2) I->S1 = I1; else if (I->S1 > I2) --I->S1; if (I->S2 == I2) I->S2 = I1; else if (I->S2 > I2) --I->S2; } // Remove the synonym Synonyms.erase(Synonyms.begin() + I2); } addImpliedProperties(EQ, V1, V2); } void addNotEqual(Value *V1, Value *V2) { DEBUG(std::cerr << "not equal: " << *V1 << " and " << *V2 << "\n"); bool skip_search = false; V1 = canonicalize(V1); V2 = canonicalize(V2); SynSet S1, S2; if (!findSynSet(V1, S1)) { skip_search = true; S1 = addSynSet(V1); } if (!findSynSet(V2, S2)) { skip_search = true; S2 = addSynSet(V2); } if (!skip_search) { // Does the property already exist? for (PropertyIterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { if (I->Opcode != NE) continue; if ((I->S1 == S1 && I->S2 == S2) || (I->S1 == S2 && I->S2 == S1)) { return; // Found. } } } // Add the property. Properties.push_back(Property(NE, S1, S2)); addImpliedProperties(NE, V1, V2); } PropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) { assert(Opcode != EQ && "Can't findProperty on EQ." "Use the lookup method instead."); SynSet S1, S2; if (!findSynSet(V1, S1)) return Properties.end(); if (!findSynSet(V2, S2)) return Properties.end(); // Does the property already exist? for (PropertyIterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { if (I->Opcode != Opcode) continue; if ((I->S1 == S1 && I->S2 == S2) || (I->S1 == S2 && I->S2 == S1)) { return I; // Found. } } return Properties.end(); } ConstPropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) const { assert(Opcode != EQ && "Can't findProperty on EQ." "Use the lookup method instead."); SynSet S1, S2; if (!findSynSet(V1, S1)) return Properties.end(); if (!findSynSet(V2, S2)) return Properties.end(); // Does the property already exist? for (ConstPropertyIterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { if (I->Opcode != Opcode) continue; if ((I->S1 == S1 && I->S2 == S2) || (I->S1 == S2 && I->S2 == S1)) { return I; // Found. } } return Properties.end(); } private: // Represents Head OP [Tail1, Tail2, ...] // For example: %x != %a, %x != %b. struct Property { Property(Ops opcode, SynSet s1, SynSet s2) : Opcode(opcode), S1(s1), S2(s2) { assert(opcode != EQ && "Equality belongs in the synonym set," "not a property."); } bool operator<(const Property &rhs) const { if (Opcode != rhs.Opcode) return Opcode < rhs.Opcode; if (S1 != rhs.S1) return S1 < rhs.S1; return S2 < rhs.S2; } Ops Opcode; SynSet S1, S2; }; SynSet addSynSet(Value *V) { Synonyms.push_back(V); return Synonyms.size()-1; } void add(Ops Opcode, Value *V1, Value *V2, bool invert) { switch (Opcode) { case EQ: if (invert) addNotEqual(V1, V2); else addEqual(V1, V2); break; case NE: if (invert) addEqual(V1, V2); else addNotEqual(V1, V2); break; default: assert(0 && "Unknown property opcode."); } } // Finds the properties implied by a synonym and adds them too. // Example: ("seteq %a, %b", true, EQ) --> (%a, %b, EQ) // ("seteq %a, %b", false, EQ) --> (%a, %b, NE) void addImpliedProperties(Ops Opcode, Value *V1, Value *V2) { order(V1, V2); if (BinaryOperator *BO = dyn_cast(V2)) { switch (BO->getOpcode()) { case Instruction::SetEQ: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), false); if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::SetNE: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), false); break; case Instruction::SetLT: case Instruction::SetGT: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::SetLE: case Instruction::SetGE: if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::And: if (V1 == ConstantBool::True) { add(Opcode, ConstantBool::True, BO->getOperand(0), false); add(Opcode, ConstantBool::True, BO->getOperand(1), false); } break; case Instruction::Or: if (V1 == ConstantBool::False) { add(Opcode, ConstantBool::False, BO->getOperand(0), false); add(Opcode, ConstantBool::False, BO->getOperand(1), false); } break; case Instruction::Xor: if (V1 == ConstantBool::True) { if (BO->getOperand(0) == ConstantBool::True) add(Opcode, ConstantBool::False, BO->getOperand(1), false); if (BO->getOperand(1) == ConstantBool::True) add(Opcode, ConstantBool::False, BO->getOperand(0), false); } if (V1 == ConstantBool::False) { if (BO->getOperand(0) == ConstantBool::True) add(Opcode, ConstantBool::True, BO->getOperand(1), false); if (BO->getOperand(1) == ConstantBool::True) add(Opcode, ConstantBool::True, BO->getOperand(0), false); } break; default: break; } } } std::map SynonymMap; std::vector Synonyms; public: void debug(std::ostream &os) const { os << Synonyms.size() << " synsets:\n"; for (unsigned I = 0, E = Synonyms.size(); I != E; ++I) { os << I << ". " << *Synonyms[I] << "\n"; } for (ConstSynonymIterator I = SynonymMap.begin(),E = SynonymMap.end(); I != E; ++I) { os << *I->first << "-> #" << I->second << "\n"; } os << Properties.size() << " properties:\n"; for (unsigned I = 0, E = Properties.size(); I != E; ++I) { os << I << ". (" << Properties[I].Opcode << "," << Properties[I].S1 << "," << Properties[I].S2 << ")\n"; } } std::vector Properties; }; /// PredicateSimplifier - This class is a simplifier that replaces /// one equivalent variable with another. It also tracks what /// can't be equal and will solve setcc instructions when possible. class PredicateSimplifier : public FunctionPass { public: bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const; private: // Try to replace the Use of the instruction with something simpler. Value *resolve(SetCondInst *SCI, const PropertySet &); Value *resolve(BinaryOperator *BO, const PropertySet &); Value *resolve(Value *V, const PropertySet &); // Used by terminator instructions to proceed from the current basic // block to the next. Verifies that "current" dominates "next", // then calls visitBasicBlock. void proceedToSuccessor(PropertySet &CurrentPS, PropertySet &NextPS, DominatorTree::Node *Current, DominatorTree::Node *Next); void proceedToSuccessor(PropertySet &CurrentPS, DominatorTree::Node *Current, DominatorTree::Node *Next); // Visits each instruction in the basic block. void visitBasicBlock(DominatorTree::Node *DTNode, PropertySet &KnownProperties); // For each instruction, add the properties to KnownProperties. void visit(Instruction *I, DominatorTree::Node *, PropertySet &); void visit(TerminatorInst *TI, DominatorTree::Node *, PropertySet &); void visit(BranchInst *BI, DominatorTree::Node *, PropertySet &); void visit(SwitchInst *SI, DominatorTree::Node *, PropertySet); void visit(LoadInst *LI, DominatorTree::Node *, PropertySet &); void visit(StoreInst *SI, DominatorTree::Node *, PropertySet &); void visit(BinaryOperator *BO, DominatorTree::Node *, PropertySet &); DominatorTree *DT; bool modified; }; RegisterPass X("predsimplify", "Predicate Simplifier"); } FunctionPass *llvm::createPredicateSimplifierPass() { return new PredicateSimplifier(); } bool PredicateSimplifier::runOnFunction(Function &F) { DT = &getAnalysis(); modified = false; PropertySet KnownProperties; visitBasicBlock(DT->getRootNode(), KnownProperties); return modified; } void PredicateSimplifier::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } // resolve catches cases addProperty won't because it wasn't used as a // condition in the branch, and that visit won't, because the instruction // was defined outside of the range that the properties apply to. Value *PredicateSimplifier::resolve(SetCondInst *SCI, const PropertySet &KP) { // Attempt to resolve the SetCondInst to a boolean. Value *SCI0 = SCI->getOperand(0), *SCI1 = SCI->getOperand(1); PropertySet::ConstPropertyIterator NE = KP.findProperty(PropertySet::NE, SCI0, SCI1); if (NE != KP.Properties.end()) { switch (SCI->getOpcode()) { case Instruction::SetEQ: return ConstantBool::False; case Instruction::SetNE: return ConstantBool::True; case Instruction::SetLE: case Instruction::SetGE: case Instruction::SetLT: case Instruction::SetGT: break; default: assert(0 && "Unknown opcode in SetCondInst."); break; } } SCI0 = KP.canonicalize(SCI0); SCI1 = KP.canonicalize(SCI1); ConstantIntegral *CI1 = dyn_cast(SCI0), *CI2 = dyn_cast(SCI1); if (!CI1 || !CI2) return SCI; switch(SCI->getOpcode()) { case Instruction::SetLE: case Instruction::SetGE: case Instruction::SetEQ: if (CI1->getRawValue() == CI2->getRawValue()) return ConstantBool::True; else return ConstantBool::False; case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetNE: if (CI1->getRawValue() == CI2->getRawValue()) return ConstantBool::False; else return ConstantBool::True; default: assert(0 && "Unknown opcode in SetContInst."); break; } } Value *PredicateSimplifier::resolve(BinaryOperator *BO, const PropertySet &KP) { if (SetCondInst *SCI = dyn_cast(BO)) return resolve(SCI, KP); DEBUG(std::cerr << "BO->getOperand(1) = " << *BO->getOperand(1) << "\n"); Value *lhs = resolve(BO->getOperand(0), KP), *rhs = resolve(BO->getOperand(1), KP); ConstantIntegral *CI1 = dyn_cast(lhs); ConstantIntegral *CI2 = dyn_cast(rhs); DEBUG(std::cerr << "resolveBO: lhs = " << *lhs << ", rhs = " << *rhs << "\n"); if (CI1) DEBUG(std::cerr << "CI1 = " << *CI1); if (CI2) DEBUG(std::cerr << "CI2 = " << *CI2); if (!CI1 || !CI2) return BO; Value *V = ConstantExpr::get(BO->getOpcode(), CI1, CI2); if (V) return V; return BO; } Value *PredicateSimplifier::resolve(Value *V, const PropertySet &KP) { if (isa(V) || isa(V) || KP.empty()) return V; V = KP.canonicalize(V); if (BinaryOperator *BO = dyn_cast(V)) return resolve(BO, KP); return V; } void PredicateSimplifier::visitBasicBlock(DominatorTree::Node *DTNode, PropertySet &KnownProperties) { BasicBlock *BB = DTNode->getBlock(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { visit(I, DTNode, KnownProperties); } } void PredicateSimplifier::visit(Instruction *I, DominatorTree::Node *DTNode, PropertySet &KnownProperties) { DEBUG(std::cerr << "Considering instruction " << *I << "\n"); DEBUG(KnownProperties.debug(std::cerr)); // Substitute values known to be equal. for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) { Value *Oper = I->getOperand(i); Value *V = resolve(Oper, KnownProperties); assert(V && "resolve not supposed to return NULL."); if (V != Oper) { modified = true; ++NumVarsReplaced; DEBUG(std::cerr << "resolving " << *I); I->setOperand(i, V); DEBUG(std::cerr << "into " << *I); } } Value *V = resolve(I, KnownProperties); assert(V && "resolve not supposed to return NULL."); if (V != I) { modified = true; ++NumResolved; I->replaceAllUsesWith(V); I->eraseFromParent(); } if (TerminatorInst *TI = dyn_cast(I)) visit(TI, DTNode, KnownProperties); else if (LoadInst *LI = dyn_cast(I)) visit(LI, DTNode, KnownProperties); else if (StoreInst *SI = dyn_cast(I)) visit(SI, DTNode, KnownProperties); else if (BinaryOperator *BO = dyn_cast(I)) visit(BO, DTNode, KnownProperties); } void PredicateSimplifier::proceedToSuccessor(PropertySet &CurrentPS, PropertySet &NextPS, DominatorTree::Node *Current, DominatorTree::Node *Next) { if (Next->getBlock()->getSinglePredecessor() == Current->getBlock()) proceedToSuccessor(NextPS, Current, Next); else proceedToSuccessor(CurrentPS, Current, Next); } void PredicateSimplifier::proceedToSuccessor(PropertySet &KP, DominatorTree::Node *Current, DominatorTree::Node *Next) { if (Current->properlyDominates(Next)) visitBasicBlock(Next, KP); } void PredicateSimplifier::visit(TerminatorInst *TI, DominatorTree::Node *Node, PropertySet &KP){ if (BranchInst *BI = dyn_cast(TI)) { visit(BI, Node, KP); return; } if (SwitchInst *SI = dyn_cast(TI)) { visit(SI, Node, KP); return; } for (unsigned i = 0, E = TI->getNumSuccessors(); i != E; ++i) { BasicBlock *BB = TI->getSuccessor(i); PropertySet KPcopy(KP); proceedToSuccessor(KPcopy, Node, DT->getNode(TI->getSuccessor(i))); } } void PredicateSimplifier::visit(BranchInst *BI, DominatorTree::Node *Node, PropertySet &KP){ if (BI->isUnconditional()) { proceedToSuccessor(KP, Node, DT->getNode(BI->getSuccessor(0))); return; } Value *Condition = BI->getCondition(); PropertySet TrueProperties(KP), FalseProperties(KP); DEBUG(std::cerr << "true set:\n"); TrueProperties.addEqual(ConstantBool::True, Condition); DEBUG(std::cerr << "false set:\n"); FalseProperties.addEqual(ConstantBool::False, Condition); BasicBlock *TrueDest = BI->getSuccessor(0), *FalseDest = BI->getSuccessor(1); PropertySet KPcopy(KP); proceedToSuccessor(KP, TrueProperties, Node, DT->getNode(TrueDest)); proceedToSuccessor(KPcopy, FalseProperties, Node, DT->getNode(FalseDest)); } void PredicateSimplifier::visit(SwitchInst *SI, DominatorTree::Node *DTNode, PropertySet KP) { Value *Condition = SI->getCondition(); // If there's an NEProperty covering this SwitchInst, we may be able to // eliminate one of the cases. PropertySet::SynSet S; if (KP.findSynSet(Condition, S)) { for (PropertySet::ConstPropertyIterator I = KP.Properties.begin(), E = KP.Properties.end(); I != E; ++I) { if (I->Opcode != PropertySet::NE) continue; if (I->S1 != S && I->S2 != S) continue; // Is one side a number? ConstantInt *CI = dyn_cast(KP.lookup(I->S1)); if (!CI) CI = dyn_cast(KP.lookup(I->S2)); if (CI) { unsigned i = SI->findCaseValue(CI); if (i != 0) { SI->getSuccessor(i)->removePredecessor(SI->getParent()); SI->removeCase(i); modified = true; ++NumSwitchCases; } } } } // Set the EQProperty in each of the cases BBs, // and the NEProperties in the default BB. PropertySet DefaultProperties(KP); DominatorTree::Node *Node = DT->getNode(SI->getParent()), *DefaultNode = DT->getNode(SI->getSuccessor(0)); if (!Node->dominates(DefaultNode)) DefaultNode = NULL; for (unsigned I = 1, E = SI->getNumCases(); I < E; ++I) { ConstantInt *CI = SI->getCaseValue(I); BasicBlock *SuccBB = SI->getSuccessor(I); PropertySet copy(KP); if (SuccBB->getSinglePredecessor()) { PropertySet NewProperties(KP); NewProperties.addEqual(Condition, CI); proceedToSuccessor(copy, NewProperties, DTNode, DT->getNode(SuccBB)); } else proceedToSuccessor(copy, DTNode, DT->getNode(SuccBB)); if (DefaultNode) DefaultProperties.addNotEqual(Condition, CI); } if (DefaultNode) proceedToSuccessor(DefaultProperties, DTNode, DefaultNode); } void PredicateSimplifier::visit(LoadInst *LI, DominatorTree::Node *, PropertySet &KP) { Value *Ptr = LI->getPointerOperand(); KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr); } void PredicateSimplifier::visit(StoreInst *SI, DominatorTree::Node *, PropertySet &KP) { Value *Ptr = SI->getPointerOperand(); KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr); } void PredicateSimplifier::visit(BinaryOperator *BO, DominatorTree::Node *, PropertySet &KP) { Instruction::BinaryOps ops = BO->getOpcode(); if (ops != Instruction::Div && ops != Instruction::Rem) return; Value *Divisor = BO->getOperand(1); const Type *Ty = cast(Divisor->getType()); KP.addNotEqual(Constant::getNullValue(Ty), Divisor); // Some other things we could do: // In f=x*y, if x != 1 && y != 1 then f != x && f != y. // In f=x+y, if x != 0 then f != y and if y != 0 then f != x. }