//===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface -----*- C++ -*--=// // // The AbstractTypeUser class is an interface to be implemented by classes who // could possible use an abstract type. Abstract types are denoted by the // isAbstract flag set to true in the Type class. These are classes that // contain an Opaque type in their structure somehow. // // Classes must implement this interface so that they may be notified when an // abstract type is resolved. Abstract types may be resolved into more concrete // types through: linking, parsing, and bytecode reading. When this happens, // all of the users of the type must be updated to reference the new, more // concrete type. They are notified through the AbstractTypeUser interface. // // In addition to this, AbstractTypeUsers must keep the use list of the // potentially abstract type that they reference up-to-date. To do this in a // nice, transparent way, the PATypeHandle class is used to hold "Potentially // Abstract Types", and keep the use list of the abstract types up-to-date. // //===----------------------------------------------------------------------===// #ifndef LLVM_ABSTRACT_TYPE_USER_H #define LLVM_ABSTRACT_TYPE_USER_H #include class Type; class DerivedType; class AbstractTypeUser { protected: virtual ~AbstractTypeUser() {} // Derive from me public: // refineAbstractType - The callback method invoked when an abstract type // has been found to be more concrete. A class must override this method to // update its internal state to reference NewType instead of OldType. Soon // after this method is invoked, OldType shall be deleted, so referencing it // is quite unwise. // // Another case that is important to consider is when a type is refined, but // stays in the same place in memory. In this case OldTy will equal NewTy. // This callback just notifies ATU's that the underlying structure of the type // has changed... but any previously used properties are still valid. // // Note that it is possible to refine a type with parameters OldTy==NewTy, and // OldTy is no longer abstract. In this case, abstract type users should // release their hold on a type, because it went from being abstract to // concrete. // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) = 0; // for debugging... virtual void dump() const = 0; }; // PATypeHandle - Handle to a Type subclass. This class is parameterized so // that users can have handles to FunctionType's that are still specialized, for // example. This class is a simple class used to keep the use list of abstract // types up-to-date. // template class PATypeHandle { const TypeSubClass *Ty; AbstractTypeUser * const User; // These functions are defined at the bottom of Type.h. See the comment there // for justification. inline void addUser(); inline void removeUser(); public: // ctor - Add use to type if abstract. Note that Ty must not be null inline PATypeHandle(const TypeSubClass *ty, AbstractTypeUser *user) : Ty(ty), User(user) { addUser(); } // ctor - Add use to type if abstract. inline PATypeHandle(const PATypeHandle &T) : Ty(T.Ty), User(T.User) { addUser(); } // dtor - Remove reference to type... inline ~PATypeHandle() { removeUser(); } // Automatic casting operator so that the handle may be used naturally inline operator const TypeSubClass *() const { return Ty; } inline const TypeSubClass *get() const { return Ty; } // operator= - Allow assignment to handle inline const TypeSubClass *operator=(const TypeSubClass *ty) { if (Ty != ty) { // Ensure we don't accidentally drop last ref to Ty removeUser(); Ty = ty; addUser(); } return Ty; } // operator= - Allow assignment to handle inline const TypeSubClass *operator=(const PATypeHandle &T) { return operator=(T.Ty); } inline bool operator==(const TypeSubClass *ty) { return Ty == ty; } // operator-> - Allow user to dereference handle naturally... inline const TypeSubClass *operator->() const { return Ty; } // removeUserFromConcrete - This function should be called when the User is // notified that our type is refined... and the type is being refined to // itself, which is now a concrete type. When a type becomes concrete like // this, we MUST remove ourself from the AbstractTypeUser list, even though // the type is apparently concrete. // inline void removeUserFromConcrete(); }; // PATypeHolder - Holder class for a potentially abstract type. This functions // as both a handle (as above) and an AbstractTypeUser. It uses the callback to // keep its pointer member updated to the current version of the type. // struct PATypeHolder : public AbstractTypeUser, public PATypeHandle { inline PATypeHolder(const Type *ty) : PATypeHandle(ty, this) {} inline PATypeHolder(const PATypeHolder &T) : AbstractTypeUser(T), PATypeHandle(T, this) {} // refineAbstractType - All we do is update our PATypeHandle member to point // to the new type. // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { assert(get() == (const Type*)OldTy && "Can't refine to unknown value!"); // Check to see if the type just became concrete. If so, we have to // removeUser to get off its AbstractTypeUser list removeUserFromConcrete(); if ((const Type*)OldTy != NewTy) PATypeHandle::operator=(NewTy); } // operator= - Allow assignment to handle inline const Type *operator=(const Type *ty) { return PATypeHandle::operator=(ty); } // operator= - Allow assignment to handle inline const Type *operator=(const PATypeHandle &T) { return PATypeHandle::operator=(T); } inline const Type *operator=(const PATypeHolder &H) { return PATypeHandle::operator=(H); } void dump() const; }; #endif