//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// // // This file defines the very important Value class. This is subclassed by a // bunch of other important classes, like Def, Method, Module, Type, etc... // // This file also defines the Use<> template for users of value. // // This file also defines the isa(), cast(), and dyn_cast() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H #include #include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" class User; class Type; class ConstPoolVal; class MethodArgument; class Instruction; class BasicBlock; class GlobalValue; class Method; class GlobalVariable; class Module; class SymbolTable; template class ValueHolder; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// class Value : public Annotable, // Values are annotable public AbstractTypeUser { // Values use potentially abstract types public: enum ValueTy { TypeVal, // This is an instance of Type ConstantVal, // This is an instance of ConstPoolVal MethodArgumentVal, // This is an instance of MethodArgument InstructionVal, // This is an instance of Instruction BasicBlockVal, // This is an instance of BasicBlock MethodVal, // This is an instance of Method GlobalVariableVal, // This is an instance of GlobalVariable ModuleVal, // This is an instance of Module }; private: vector Uses; string Name; PATypeHandle Ty; ValueTy VTy; Value(const Value &); // Do not implement protected: inline void setType(const Type *ty) { Ty = ty; } public: Value(const Type *Ty, ValueTy vty, const string &name = ""); virtual ~Value(); // Support for debugging void dump() const; // All values can potentially be typed inline const Type *getType() const { return Ty; } // All values can potentially be named... inline bool hasName() const { return Name != ""; } inline const string &getName() const { return Name; } virtual void setName(const string &name, SymbolTable * = 0) { Name = name; } // Methods for determining the subtype of this Value. The getValueType() // method returns the type of the value directly. The cast*() methods are // equivalent to using dynamic_cast<>... if the cast is successful, this is // returned, otherwise you get a null pointer. // // The family of functions Val->castAsserting() is used in the same // way as the Val->cast() instructions, but they assert the expected // type instead of checking it at runtime. // inline ValueTy getValueType() const { return VTy; } // replaceAllUsesWith - Go through the uses list for this definition and make // each use point to "D" instead of "this". After this completes, 'this's // use list should be empty. // void replaceAllUsesWith(Value *D); // refineAbstractType - This function is implemented because we use // potentially abstract types, and these types may be resolved to more // concrete types after we are constructed. // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); //---------------------------------------------------------------------- // Methods for handling the vector of uses of this Value. // typedef vector::iterator use_iterator; typedef vector::const_iterator use_const_iterator; inline unsigned use_size() const { return Uses.size(); } inline bool use_empty() const { return Uses.empty(); } inline use_iterator use_begin() { return Uses.begin(); } inline use_const_iterator use_begin() const { return Uses.begin(); } inline use_iterator use_end() { return Uses.end(); } inline use_const_iterator use_end() const { return Uses.end(); } inline User *use_back() { return Uses.back(); } inline const User *use_back() const { return Uses.back(); } inline void use_push_back(User *I) { Uses.push_back(I); } User *use_remove(use_iterator &I); inline void addUse(User *I) { Uses.push_back(I); } void killUse(User *I); }; //===----------------------------------------------------------------------===// // UseTy Class //===----------------------------------------------------------------------===// // UseTy and it's friendly typedefs (Use) are here to make keeping the "use" // list of a definition node up-to-date really easy. // template class UseTy { ValueSubclass *Val; User *U; public: inline UseTy(ValueSubclass *v, User *user) { Val = v; U = user; if (Val) Val->addUse(U); } inline ~UseTy() { if (Val) Val->killUse(U); } inline operator ValueSubclass *() const { return Val; } inline UseTy(const UseTy &user) { Val = 0; U = user.U; operator=(user.Val); } inline ValueSubclass *operator=(ValueSubclass *V) { if (Val) Val->killUse(U); Val = V; if (V) V->addUse(U); return V; } inline ValueSubclass *operator->() { return Val; } inline const ValueSubclass *operator->() const { return Val; } inline ValueSubclass *get() { return Val; } inline const ValueSubclass *get() const { return Val; } inline UseTy &operator=(const UseTy &user) { if (Val) Val->killUse(U); Val = user.Val; Val->addUse(U); return *this; } }; typedef UseTy Use; // Provide Use as a common UseTy type // real_type - Provide a macro to get the real type of a value that might be // a use. This provides a typedef 'Type' that is the argument type for all // non UseTy types, and is the contained pointer type of the use if it is a // UseTy. // template class real_type { typedef X Type; }; template class real_type > { typedef X *Type; }; //===----------------------------------------------------------------------===// // Type Checking Templates //===----------------------------------------------------------------------===// // isa - Return true if the parameter to the template is an instance of the // template type argument. Used like this: // // if (isa(myVal)) { ... } // template inline bool isa(Y Val) { assert(Val && "isa(NULL) invoked!"); return X::classof(Val); } // cast - Return the argument parameter cast to the specified type. This // casting operator asserts that the type is correct, so it does not return null // on failure. But it will correctly return NULL when the input is NULL. // Used Like this: // // cast< Instruction>(myVal)->getParent() // cast(myVal)->getParent() // template inline X *cast(Y Val) { assert(isa(Val) && "cast() argument of uncompatible type!"); return (X*)(real_type::Type)Val; } // cast_or_null - Functionally identical to cast, except that a null value is // accepted. // template inline X *cast_or_null(Y Val) { assert((Val == 0 || isa(Val)) && "cast_or_null() argument of uncompatible type!"); return (X*)(real_type::Type)Val; } // dyn_cast - Return the argument parameter cast to the specified type. This // casting operator returns null if the argument is of the wrong type, so it can // be used to test for a type as well as cast if successful. This should be // used in the context of an if statement like this: // // if (const Instruction *I = dyn_cast(myVal)) { ... } // template inline X *dyn_cast(Y Val) { return isa(Val) ? cast(Val) : 0; } // dyn_cast_or_null - Functionally identical to dyn_cast, except that a null // value is accepted. // template inline X *dyn_cast_or_null(Y Val) { assert((Val == 0 || isa(Val)) && "cast_or_null() argument of uncompatible type!"); return (Val && isa(Val)) ? cast(Val) : 0; } // isa - Provide some specializations of isa so that we have to include the // subtype header files to test to see if the value is a subclass... // template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::TypeVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::TypeVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::ConstantVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::ConstantVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::MethodArgumentVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::MethodArgumentVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::InstructionVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::InstructionVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::BasicBlockVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::BasicBlockVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::MethodVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::MethodVal; } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::GlobalVariableVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::GlobalVariableVal; } template <> inline bool isa(const Value *Val) { return isa(Val) || isa(Val); } template <> inline bool isa(Value *Val) { return isa(Val) || isa(Val); } template <> inline bool isa(const Value *Val) { return Val->getValueType() == Value::ModuleVal; } template <> inline bool isa(Value *Val) { return Val->getValueType() == Value::ModuleVal; } #endif