//===- llvm/Transforms/TargetTransformInfo.h --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass exposes codegen information to IR-level passes. Every // transformation that uses codegen information is broken into three parts: // 1. The IR-level analysis pass. // 2. The IR-level transformation interface which provides the needed // information. // 3. Codegen-level implementation which uses target-specific hooks. // // This file defines #2, which is the interface that IR-level transformations // use for querying the codegen. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_TARGET_TRANSFORM_INTERFACE #define LLVM_TRANSFORMS_TARGET_TRANSFORM_INTERFACE #include "llvm/AddressingMode.h" #include "llvm/Intrinsics.h" #include "llvm/Pass.h" #include "llvm/Support/DataTypes.h" #include "llvm/Type.h" namespace llvm { class ScalarTargetTransformInfo; class VectorTargetTransformInfo; /// TargetTransformInfo - This pass provides access to the codegen /// interfaces that are needed for IR-level transformations. class TargetTransformInfo : public ImmutablePass { private: const ScalarTargetTransformInfo *STTI; const VectorTargetTransformInfo *VTTI; public: /// Default ctor. /// /// @note This has to exist, because this is a pass, but it should never be /// used. TargetTransformInfo(); TargetTransformInfo(const ScalarTargetTransformInfo* S, const VectorTargetTransformInfo *V) : ImmutablePass(ID), STTI(S), VTTI(V) { initializeTargetTransformInfoPass(*PassRegistry::getPassRegistry()); } TargetTransformInfo(const TargetTransformInfo &T) : ImmutablePass(ID), STTI(T.STTI), VTTI(T.VTTI) { } const ScalarTargetTransformInfo* getScalarTargetTransformInfo() const { return STTI; } const VectorTargetTransformInfo* getVectorTargetTransformInfo() const { return VTTI; } /// Pass identification, replacement for typeid. static char ID; }; // ---------------------------------------------------------------------------// // The classes below are inherited and implemented by target-specific classes // in the codegen. // ---------------------------------------------------------------------------// /// ScalarTargetTransformInfo - This interface is used by IR-level passes /// that need target-dependent information for generic scalar transformations. /// LSR, and LowerInvoke use this interface. class ScalarTargetTransformInfo { public: /// PopcntHwSupport - Hardware support for population count. Compared to the /// SW implementation, HW support is supposed to significantly boost the /// performance when the population is dense, and it may or not may degrade /// performance if the population is sparse. A HW support is considered as /// "Fast" if it can outperform, or is on a par with, SW implementaion when /// the population is sparse; otherwise, it is considered as "Slow". enum PopcntHwSupport { None, Fast, Slow }; virtual ~ScalarTargetTransformInfo() {} /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can add /// a register with the immediate without having to materialize the /// immediate into a register. virtual bool isLegalAddImmediate(int64_t) const { return false; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. virtual bool isLegalICmpImmediate(int64_t) const { return false; } /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. /// TODO: Handle pre/postinc as well. virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { return false; } /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; } /// Is this type legal. virtual bool isTypeLegal(Type *Ty) const { return false; } /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes virtual unsigned getJumpBufAlignment() const { return 0; } /// getJumpBufSize - returns the target's jmp_buf size in bytes. virtual unsigned getJumpBufSize() const { return 0; } /// shouldBuildLookupTables - Return true if switches should be turned into /// lookup tables for the target. virtual bool shouldBuildLookupTables() const { return true; } /// getPopcntHwSupport - Return hardware support for population count. virtual PopcntHwSupport getPopcntHwSupport(unsigned IntTyWidthInBit) const { return None; } }; /// VectorTargetTransformInfo - This interface is used by the vectorizers /// to estimate the profitability of vectorization for different instructions. class VectorTargetTransformInfo { public: virtual ~VectorTargetTransformInfo() {} /// Returns the expected cost of the instruction opcode. The opcode is one of /// the enums like Instruction::Add. The type arguments are the type of the /// operation. /// Most instructions only use the first type and in that case the second /// operand is ignored. /// /// Exceptions: /// * Br instructions do not use any of the types. /// * Select instructions pass the return type as Ty1 and the selector as Ty2. /// * Cast instructions pass the destination as Ty1 and the source as Ty2. /// * Insert/Extract element pass only the vector type as Ty1. /// * ShuffleVector, Load, Store do not use this call. virtual unsigned getInstrCost(unsigned Opcode, Type *Ty1 = 0, Type *Ty2 = 0) const { return 1; } /// Returns the expected cost of arithmetic ops, such as mul, xor, fsub, etc. virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { return 1; } /// Returns the cost of a vector broadcast of a scalar at place zero to a /// vector of type 'Tp'. virtual unsigned getBroadcastCost(Type *Tp) const { return 1; } /// Returns the expected cost of cast instructions, such as bitcast, trunc, /// zext, etc. virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { return 1; } /// Returns the expected cost of control-flow related instrutctions such as /// Phi, Ret, Br. virtual unsigned getCFInstrCost(unsigned Opcode) const { return 1; } /// Returns the expected cost of compare and select instructions. virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy = 0) const { return 1; } /// Returns the expected cost of vector Insert and Extract. /// Use -1 to indicate that there is no information on the index value. virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const { return 1; } /// Returns the cost of Load and Store instructions. virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { return 1; } /// Returns the cost of Intrinsic instructions. virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, ArrayRef Tys) const { return 1; } /// Returns the number of pieces into which the provided type must be /// split during legalization. Zero is returned when the answer is unknown. virtual unsigned getNumberOfParts(Type *Tp) const { return 0; } }; } // End llvm namespace #endif