///===-- FastISel.cpp - Implementation of the FastISel class --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // // "Fast" instruction selection is designed to emit very poor code quickly. // Also, it is not designed to be able to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations are not supported. It is // also not intended to be able to do much optimization, except in a few cases // where doing optimizations reduces overall compile time. For example, folding // constants into immediate fields is often done, because it's cheap and it // reduces the number of instructions later phases have to examine. // // "Fast" instruction selection is able to fail gracefully and transfer // control to the SelectionDAG selector for operations that it doesn't // support. In many cases, this allows us to avoid duplicating a lot of // the complicated lowering logic that SelectionDAG currently has. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. Also, // at -O0, the LLVM optimizers are not running, and this makes the // compile time of codegen a much higher portion of the overall compile // time. Despite its limitations, "fast" instruction selection is able to // handle enough code on its own to provide noticeable overall speedups // in -O0 compiles. // // Basic operations are supported in a target-independent way, by reading // the same instruction descriptions that the SelectionDAG selector reads, // and identifying simple arithmetic operations that can be directly selected // from simple operators. More complicated operations currently require // target-specific code. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/DebugLoc.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "SelectionDAGBuild.h" using namespace llvm; unsigned FastISel::getRegForValue(Value *V) { MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); // Don't handle non-simple values in FastISel. if (!RealVT.isSimple()) return 0; // Ignore illegal types. We must do this before looking up the value // in ValueMap because Arguments are given virtual registers regardless // of whether FastISel can handle them. MVT::SimpleValueType VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT)) { // Promote MVT::i1 to a legal type though, because it's common and easy. if (VT == MVT::i1) VT = TLI.getTypeToTransformTo(VT).getSimpleVT(); else return 0; } // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominatess-use requirement enforced. if (ValueMap.count(V)) return ValueMap[V]; unsigned Reg = LocalValueMap[V]; if (Reg != 0) return Reg; if (ConstantInt *CI = dyn_cast(V)) { if (CI->getValue().getActiveBits() <= 64) Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); } else if (isa(V)) { Reg = TargetMaterializeAlloca(cast(V)); } else if (isa(V)) { // Translate this as an integer zero so that it can be // local-CSE'd with actual integer zeros. Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType())); } else if (ConstantFP *CF = dyn_cast(V)) { Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); if (!Reg) { const APFloat &Flt = CF->getValueAPF(); MVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); bool isExact; (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero, &isExact); if (isExact) { APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal)); if (IntegerReg != 0) Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); } } } else if (ConstantExpr *CE = dyn_cast(V)) { if (!SelectOperator(CE, CE->getOpcode())) return 0; Reg = LocalValueMap[CE]; } else if (isa(V)) { Reg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg); } // If target-independent code couldn't handle the value, give target-specific // code a try. if (!Reg && isa(V)) Reg = TargetMaterializeConstant(cast(V)); // Don't cache constant materializations in the general ValueMap. // To do so would require tracking what uses they dominate. if (Reg != 0) LocalValueMap[V] = Reg; return Reg; } unsigned FastISel::lookUpRegForValue(Value *V) { // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominatess-use requirement enforced. if (ValueMap.count(V)) return ValueMap[V]; return LocalValueMap[V]; } /// UpdateValueMap - Update the value map to include the new mapping for this /// instruction, or insert an extra copy to get the result in a previous /// determined register. /// NOTE: This is only necessary because we might select a block that uses /// a value before we select the block that defines the value. It might be /// possible to fix this by selecting blocks in reverse postorder. unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) { if (!isa(I)) { LocalValueMap[I] = Reg; return Reg; } unsigned &AssignedReg = ValueMap[I]; if (AssignedReg == 0) AssignedReg = Reg; else if (Reg != AssignedReg) { const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); TII.copyRegToReg(*MBB, MBB->end(), AssignedReg, Reg, RegClass, RegClass); } return AssignedReg; } unsigned FastISel::getRegForGEPIndex(Value *Idx) { unsigned IdxN = getRegForValue(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return 0; // If the index is smaller or larger than intptr_t, truncate or extend it. MVT PtrVT = TLI.getPointerTy(); MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(PtrVT)) IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(), ISD::SIGN_EXTEND, IdxN); else if (IdxVT.bitsGT(PtrVT)) IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(), ISD::TRUNCATE, IdxN); return IdxN; } /// SelectBinaryOp - Select and emit code for a binary operator instruction, /// which has an opcode which directly corresponds to the given ISD opcode. /// bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) { MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. if (!TLI.isTypeLegal(VT)) { // MVT::i1 is special. Allow AND, OR, or XOR because they // don't require additional zeroing, which makes them easy. if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || ISDOpcode == ISD::XOR)) VT = TLI.getTypeToTransformTo(VT); else return false; } unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // Check if the second operand is a constant and handle it appropriately. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, CI->getZExtValue()); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } // Check if the second operand is a constant float. if (ConstantFP *CF = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, CF); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // Now we have both operands in registers. Emit the instruction. unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op1); if (ResultReg == 0) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectGetElementPtr(User *I) { unsigned N = getRegForValue(I->getOperand(0)); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; const Type *Ty = I->getOperand(0)->getType(); MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT(); for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); // FIXME: This can be optimized by combining the add with a // subsequent one. N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getZExtValue() == 0) continue; uint64_t Offs = TD.getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeAllocSize(Ty); unsigned IdxN = getRegForGEPIndex(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; if (ElementSize != 1) { IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } } // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, N); return true; } bool FastISel::SelectCall(User *I) { Function *F = cast(I)->getCalledFunction(); if (!F) return false; unsigned IID = F->getIntrinsicID(); switch (IID) { default: break; case Intrinsic::dbg_stoppoint: { DbgStopPointInst *SPI = cast(I); if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) { DICompileUnit CU(cast(SPI->getContext())); unsigned Line = SPI->getLine(); unsigned Col = SPI->getColumn(); unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(), Line, Col); setCurDebugLoc(DebugLoc::get(Idx)); } return true; } case Intrinsic::dbg_region_start: { DbgRegionStartInst *RSI = cast(I); if (DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None) && DW && DW->ShouldEmitDwarfDebug()) { unsigned ID = DW->RecordRegionStart(cast(RSI->getContext())); const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); BuildMI(MBB, DL, II).addImm(ID); } return true; } case Intrinsic::dbg_region_end: { DbgRegionEndInst *REI = cast(I); if (DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None) && DW && DW->ShouldEmitDwarfDebug()) { unsigned ID = 0; DISubprogram Subprogram(cast(REI->getContext())); if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) { // This is end of an inlined function. const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); ID = DW->RecordInlinedFnEnd(Subprogram); if (ID) // Returned ID is 0 if this is unbalanced "end of inlined // scope". This could happen if optimizer eats dbg intrinsics // or "beginning of inlined scope" is not recoginized due to // missing location info. In such cases, ignore this region.end. BuildMI(MBB, DL, II).addImm(ID); } else { const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); ID = DW->RecordRegionEnd(cast(REI->getContext())); BuildMI(MBB, DL, II).addImm(ID); } } return true; } case Intrinsic::dbg_func_start: { DbgFuncStartInst *FSI = cast(I); Value *SP = FSI->getSubprogram(); if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None)) return true; // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what // (most?) gdb expects. DebugLoc PrevLoc = DL; DISubprogram Subprogram(cast(SP)); DICompileUnit CompileUnit = Subprogram.getCompileUnit(); if (!Subprogram.describes(MF.getFunction())) { // This is a beginning of an inlined function. // If llvm.dbg.func.start is seen in a new block before any // llvm.dbg.stoppoint intrinsic then the location info is unknown. // FIXME : Why DebugLoc is reset at the beginning of each block ? if (PrevLoc.isUnknown()) return true; // Record the source line. unsigned Line = Subprogram.getLineNumber(); setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID( CompileUnit.getGV(), Line, 0))); if (DW && DW->ShouldEmitDwarfDebug()) { DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc); unsigned LabelID = DW->RecordInlinedFnStart(Subprogram, DICompileUnit(PrevLocTpl.CompileUnit), PrevLocTpl.Line, PrevLocTpl.Col); const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); BuildMI(MBB, DL, II).addImm(LabelID); } } else { // Record the source line. unsigned Line = Subprogram.getLineNumber(); MF.setDefaultDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID( CompileUnit.getGV(), Line, 0))); if (DW && DW->ShouldEmitDwarfDebug()) { // llvm.dbg.func_start also defines beginning of function scope. DW->RecordRegionStart(cast(FSI->getSubprogram())); } } return true; } case Intrinsic::dbg_declare: { DbgDeclareInst *DI = cast(I); Value *Variable = DI->getVariable(); if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) && DW && DW->ShouldEmitDwarfDebug()) { // Determine the address of the declared object. Value *Address = DI->getAddress(); if (BitCastInst *BCI = dyn_cast(Address)) Address = BCI->getOperand(0); AllocaInst *AI = dyn_cast(Address); // Don't handle byval struct arguments or VLAs, for example. if (!AI) break; DenseMap::iterator SI = StaticAllocaMap.find(AI); if (SI == StaticAllocaMap.end()) break; // VLAs. int FI = SI->second; // Determine the debug globalvariable. GlobalValue *GV = cast(Variable); // Build the DECLARE instruction. const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE); MachineInstr *DeclareMI = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV); DIVariable DV(cast(GV)); if (!DV.isNull()) { // This is a local variable DW->RecordVariableScope(DV, DeclareMI); } } return true; } case Intrinsic::eh_exception: { MVT VT = TLI.getValueType(I->getType()); switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) { default: break; case TargetLowering::Expand: { assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!"); unsigned Reg = TLI.getExceptionAddressRegister(); const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned ResultReg = createResultReg(RC); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg, RC, RC); assert(InsertedCopy && "Can't copy address registers!"); InsertedCopy = InsertedCopy; UpdateValueMap(I, ResultReg); return true; } } break; } case Intrinsic::eh_selector_i32: case Intrinsic::eh_selector_i64: { MVT VT = TLI.getValueType(I->getType()); switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) { default: break; case TargetLowering::Expand: { MVT VT = (IID == Intrinsic::eh_selector_i32 ? MVT::i32 : MVT::i64); if (MMI) { if (MBB->isLandingPad()) AddCatchInfo(*cast(I), MMI, MBB); else { #ifndef NDEBUG CatchInfoLost.insert(cast(I)); #endif // FIXME: Mark exception selector register as live in. Hack for PR1508. unsigned Reg = TLI.getExceptionSelectorRegister(); if (Reg) MBB->addLiveIn(Reg); } unsigned Reg = TLI.getExceptionSelectorRegister(); const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned ResultReg = createResultReg(RC); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg, RC, RC); assert(InsertedCopy && "Can't copy address registers!"); InsertedCopy = InsertedCopy; UpdateValueMap(I, ResultReg); } else { unsigned ResultReg = getRegForValue(Constant::getNullValue(I->getType())); UpdateValueMap(I, ResultReg); } return true; } } break; } } return false; } bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) { MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the destination type is legal. Or as a special case, // it may be i1 if we're doing a truncate because that's // easy and somewhat common. if (!TLI.isTypeLegal(DstVT)) if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the source operand is legal. Or as a special case, // it may be i1 if we're doing zero-extension because that's // easy and somewhat common. if (!TLI.isTypeLegal(SrcVT)) if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND) // Unhandled type. Halt "fast" selection and bail. return false; unsigned InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; // If the operand is i1, arrange for the high bits in the register to be zero. if (SrcVT == MVT::i1) { SrcVT = TLI.getTypeToTransformTo(SrcVT); InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg); if (!InputReg) return false; } // If the result is i1, truncate to the target's type for i1 first. if (DstVT == MVT::i1) DstVT = TLI.getTypeToTransformTo(DstVT); unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opcode, InputReg); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectBitCast(User *I) { // If the bitcast doesn't change the type, just use the operand value. if (I->getType() == I->getOperand(0)->getType()) { unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators. MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple() || !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) // Unhandled type. Halt "fast" selection and bail. return false; unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // First, try to perform the bitcast by inserting a reg-reg copy. unsigned ResultReg = 0; if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); ResultReg = createResultReg(DstClass); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Op0, DstClass, SrcClass); if (!InsertedCopy) ResultReg = 0; } // If the reg-reg copy failed, select a BIT_CONVERT opcode. if (!ResultReg) ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), ISD::BIT_CONVERT, Op0); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectInstruction(Instruction *I) { return SelectOperator(I, I->getOpcode()); } /// FastEmitBranch - Emit an unconditional branch to the given block, /// unless it is the immediate (fall-through) successor, and update /// the CFG. void FastISel::FastEmitBranch(MachineBasicBlock *MSucc) { MachineFunction::iterator NextMBB = next(MachineFunction::iterator(MBB)); if (MBB->isLayoutSuccessor(MSucc)) { // The unconditional fall-through case, which needs no instructions. } else { // The unconditional branch case. TII.InsertBranch(*MBB, MSucc, NULL, SmallVector()); } MBB->addSuccessor(MSucc); } bool FastISel::SelectOperator(User *I, unsigned Opcode) { switch (Opcode) { case Instruction::Add: return SelectBinaryOp(I, ISD::ADD); case Instruction::FAdd: return SelectBinaryOp(I, ISD::FADD); case Instruction::Sub: return SelectBinaryOp(I, ISD::SUB); case Instruction::FSub: return SelectBinaryOp(I, ISD::FSUB); case Instruction::Mul: return SelectBinaryOp(I, ISD::MUL); case Instruction::FMul: return SelectBinaryOp(I, ISD::FMUL); case Instruction::SDiv: return SelectBinaryOp(I, ISD::SDIV); case Instruction::UDiv: return SelectBinaryOp(I, ISD::UDIV); case Instruction::FDiv: return SelectBinaryOp(I, ISD::FDIV); case Instruction::SRem: return SelectBinaryOp(I, ISD::SREM); case Instruction::URem: return SelectBinaryOp(I, ISD::UREM); case Instruction::FRem: return SelectBinaryOp(I, ISD::FREM); case Instruction::Shl: return SelectBinaryOp(I, ISD::SHL); case Instruction::LShr: return SelectBinaryOp(I, ISD::SRL); case Instruction::AShr: return SelectBinaryOp(I, ISD::SRA); case Instruction::And: return SelectBinaryOp(I, ISD::AND); case Instruction::Or: return SelectBinaryOp(I, ISD::OR); case Instruction::Xor: return SelectBinaryOp(I, ISD::XOR); case Instruction::GetElementPtr: return SelectGetElementPtr(I); case Instruction::Br: { BranchInst *BI = cast(I); if (BI->isUnconditional()) { BasicBlock *LLVMSucc = BI->getSuccessor(0); MachineBasicBlock *MSucc = MBBMap[LLVMSucc]; FastEmitBranch(MSucc); return true; } // Conditional branches are not handed yet. // Halt "fast" selection and bail. return false; } case Instruction::Unreachable: // Nothing to emit. return true; case Instruction::PHI: // PHI nodes are already emitted. return true; case Instruction::Alloca: // FunctionLowering has the static-sized case covered. if (StaticAllocaMap.count(cast(I))) return true; // Dynamic-sized alloca is not handled yet. return false; case Instruction::Call: return SelectCall(I); case Instruction::BitCast: return SelectBitCast(I); case Instruction::FPToSI: return SelectCast(I, ISD::FP_TO_SINT); case Instruction::ZExt: return SelectCast(I, ISD::ZERO_EXTEND); case Instruction::SExt: return SelectCast(I, ISD::SIGN_EXTEND); case Instruction::Trunc: return SelectCast(I, ISD::TRUNCATE); case Instruction::SIToFP: return SelectCast(I, ISD::SINT_TO_FP); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (DstVT.bitsGT(SrcVT)) return SelectCast(I, ISD::ZERO_EXTEND); if (DstVT.bitsLT(SrcVT)) return SelectCast(I, ISD::TRUNCATE); unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } default: // Unhandled instruction. Halt "fast" selection and bail. return false; } } FastISel::FastISel(MachineFunction &mf, MachineModuleInfo *mmi, DwarfWriter *dw, DenseMap &vm, DenseMap &bm, DenseMap &am #ifndef NDEBUG , SmallSet &cil #endif ) : MBB(0), ValueMap(vm), MBBMap(bm), StaticAllocaMap(am), #ifndef NDEBUG CatchInfoLost(cil), #endif MF(mf), MMI(mmi), DW(dw), MRI(MF.getRegInfo()), MFI(*MF.getFrameInfo()), MCP(*MF.getConstantPool()), TM(MF.getTarget()), TD(*TM.getTargetData()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()) { } FastISel::~FastISel() {} unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType) { return 0; } unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, unsigned /*Op1*/, uint64_t /*Imm*/) { return 0; } /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode, unsigned Op0, uint64_t Imm, MVT::SimpleValueType ImmType) { // First check if immediate type is legal. If not, we can't use the ri form. unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm); if (ResultReg != 0) return ResultReg; unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); if (MaterialReg == 0) return 0; return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); } /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with a floating-point immediate operand using /// FastEmit_rf. If that fails, it materializes the immediate into a register /// and try FastEmit_rr instead. unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode, unsigned Op0, ConstantFP *FPImm, MVT::SimpleValueType ImmType) { // First check if immediate type is legal. If not, we can't use the rf form. unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm); if (ResultReg != 0) return ResultReg; // Materialize the constant in a register. unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); if (MaterialReg == 0) { // If the target doesn't have a way to directly enter a floating-point // value into a register, use an alternate approach. // TODO: The current approach only supports floating-point constants // that can be constructed by conversion from integer values. This should // be replaced by code that creates a load from a constant-pool entry, // which will require some target-specific work. const APFloat &Flt = FPImm->getValueAPF(); MVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); bool isExact; (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero, &isExact); if (!isExact) return 0; APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), ISD::Constant, IntVal.getZExtValue()); if (IntegerReg == 0) return 0; MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); if (MaterialReg == 0) return 0; } return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); } unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { return MRI.createVirtualRegister(RC); } unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, DL, II, ResultReg); return ResultReg; } unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0); else { BuildMI(MBB, DL, II).addReg(Op0); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1); else { BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm); else { BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm); else { BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm); else { BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addImm(Imm); else { BuildMI(MBB, DL, II).addImm(Imm); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT, unsigned Op0, uint32_t Idx) { const TargetRegisterClass* RC = MRI.getRegClass(Op0); unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG); if (II.getNumDefs() >= 1) BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx); else { BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, II.ImplicitDefs[0], RC, RC); if (!InsertedCopy) ResultReg = 0; } return ResultReg; } /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op /// with all but the least significant bit set to zero. unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) { return FastEmit_ri(VT, VT, ISD::AND, Op, 1); }