//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTIONS_H #define LLVM_INSTRUCTIONS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Attributes.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/InstrTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/IntegersSubset.h" #include "llvm/Support/IntegersSubsetMapping.h" #include namespace llvm { class APInt; class ConstantInt; class ConstantRange; class DataLayout; class LLVMContext; enum AtomicOrdering { NotAtomic = 0, Unordered = 1, Monotonic = 2, // Consume = 3, // Not specified yet. Acquire = 4, Release = 5, AcquireRelease = 6, SequentiallyConsistent = 7 }; enum SynchronizationScope { SingleThread = 0, CrossThread = 1 }; //===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===// /// AllocaInst - an instruction to allocate memory on the stack /// class AllocaInst : public UnaryInstruction { protected: virtual AllocaInst *clone_impl() const; public: explicit AllocaInst(Type *Ty, Value *ArraySize = 0, const Twine &Name = "", Instruction *InsertBefore = 0); AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = 0); AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name = "", Instruction *InsertBefore = 0); AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name, BasicBlock *InsertAtEnd); // Out of line virtual method, so the vtable, etc. has a home. virtual ~AllocaInst(); /// isArrayAllocation - Return true if there is an allocation size parameter /// to the allocation instruction that is not 1. /// bool isArrayAllocation() const; /// getArraySize - Get the number of elements allocated. For a simple /// allocation of a single element, this will return a constant 1 value. /// const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); } /// getType - Overload to return most specific pointer type /// PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getAllocatedType - Return the type that is being allocated by the /// instruction. /// Type *getAllocatedType() const; /// getAlignment - Return the alignment of the memory that is being allocated /// by the instruction. /// unsigned getAlignment() const { return (1u << getSubclassDataFromInstruction()) >> 1; } void setAlignment(unsigned Align); /// isStaticAlloca - Return true if this alloca is in the entry block of the /// function and is a constant size. If so, the code generator will fold it /// into the prolog/epilog code, so it is basically free. bool isStaticAlloca() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; //===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===// /// LoadInst - an instruction for reading from memory. This uses the /// SubclassData field in Value to store whether or not the load is volatile. /// class LoadInst : public UnaryInstruction { void AssertOK(); protected: virtual LoadInst *clone_impl() const; public: LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd); explicit LoadInst(Value *Ptr, const char *NameStr = 0, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const char *NameStr, bool isVolatile, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a load from a volatile memory /// location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// setVolatile - Specify whether this is a volatile load or not. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// getAlignment - Return the alignment of the access that is being performed /// unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; } void setAlignment(unsigned Align); /// Returns the ordering effect of this fence. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); } /// Set the ordering constraint on this load. May not be Release or /// AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | (Ordering << 7)); } SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); } /// Specify whether this load is ordered with respect to all /// concurrently executing threads, or only with respect to signal handlers /// executing in the same thread. void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | (xthread << 6)); } bool isAtomic() const { return getOrdering() != NotAtomic; } void setAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { setOrdering(Ordering); setSynchScope(SynchScope); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return getOrdering() <= Unordered && !isVolatile(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; //===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===// /// StoreInst - an instruction for storing to memory /// class StoreInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void AssertOK(); protected: virtual StoreInst *clone_impl() const; public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a store to a volatile memory /// location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// setVolatile - Specify whether this is a volatile store or not. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getAlignment - Return the alignment of the access that is being performed /// unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; } void setAlignment(unsigned Align); /// Returns the ordering effect of this store. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); } /// Set the ordering constraint on this store. May not be Acquire or /// AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | (Ordering << 7)); } SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); } /// Specify whether this store instruction is ordered with respect to all /// concurrently executing threads, or only with respect to signal handlers /// executing in the same thread. void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | (xthread << 6)); } bool isAtomic() const { return getOrdering() != NotAtomic; } void setAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { setOrdering(Ordering); setSynchScope(SynchScope); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return getOrdering() <= Unordered && !isVolatile(); } Value *getValueOperand() { return getOperand(0); } const Value *getValueOperand() const { return getOperand(0); } Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) //===----------------------------------------------------------------------===// // FenceInst Class //===----------------------------------------------------------------------===// /// FenceInst - an instruction for ordering other memory operations /// class FenceInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope); protected: virtual FenceInst *clone_impl() const; public: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } // Ordering may only be Acquire, Release, AcquireRelease, or // SequentiallyConsistent. FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd); /// Returns the ordering effect of this fence. AtomicOrdering getOrdering() const { return AtomicOrdering(getSubclassDataFromInstruction() >> 1); } /// Set the ordering constraint on this fence. May only be Acquire, Release, /// AcquireRelease, or SequentiallyConsistent. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | (Ordering << 1)); } SynchronizationScope getSynchScope() const { return SynchronizationScope(getSubclassDataFromInstruction() & 1); } /// Specify whether this fence orders other operations with respect to all /// concurrently executing threads, or only with respect to signal handlers /// executing in the same thread. void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | xthread); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Fence; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; //===----------------------------------------------------------------------===// // AtomicCmpXchgInst Class //===----------------------------------------------------------------------===// /// AtomicCmpXchgInst - an instruction that atomically checks whether a /// specified value is in a memory location, and, if it is, stores a new value /// there. Returns the value that was loaded. /// class AtomicCmpXchgInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope); protected: virtual AtomicCmpXchgInst *clone_impl() const; public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore = 0); AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a cmpxchg from a volatile memory /// location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// setVolatile - Specify whether this is a volatile cmpxchg. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Set the ordering constraint on this cmpxchg. void setOrdering(AtomicOrdering Ordering) { assert(Ordering != NotAtomic && "CmpXchg instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & 3) | (Ordering << 2)); } /// Specify whether this cmpxchg is atomic and orders other operations with /// respect to all concurrently executing threads, or only with respect to /// signal handlers executing in the same thread. void setSynchScope(SynchronizationScope SynchScope) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | (SynchScope << 1)); } /// Returns the ordering constraint on this cmpxchg. AtomicOrdering getOrdering() const { return AtomicOrdering(getSubclassDataFromInstruction() >> 2); } /// Returns whether this cmpxchg is atomic between threads or only within a /// single thread. SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getCompareOperand() { return getOperand(1); } const Value *getCompareOperand() const { return getOperand(1); } Value *getNewValOperand() { return getOperand(2); } const Value *getNewValOperand() const { return getOperand(2); } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicCmpXchg; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) //===----------------------------------------------------------------------===// // AtomicRMWInst Class //===----------------------------------------------------------------------===// /// AtomicRMWInst - an instruction that atomically reads a memory location, /// combines it with another value, and then stores the result back. Returns /// the old value. /// class AtomicRMWInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; protected: virtual AtomicRMWInst *clone_impl() const; public: /// This enumeration lists the possible modifications atomicrmw can make. In /// the descriptions, 'p' is the pointer to the instruction's memory location, /// 'old' is the initial value of *p, and 'v' is the other value passed to the /// instruction. These instructions always return 'old'. enum BinOp { /// *p = v Xchg, /// *p = old + v Add, /// *p = old - v Sub, /// *p = old & v And, /// *p = ~old & v Nand, /// *p = old | v Or, /// *p = old ^ v Xor, /// *p = old >signed v ? old : v Max, /// *p = old unsigned v ? old : v UMax, /// *p = old (getSubclassDataFromInstruction() >> 5); } void setOperation(BinOp Operation) { unsigned short SubclassData = getSubclassDataFromInstruction(); setInstructionSubclassData((SubclassData & 31) | (Operation << 5)); } /// isVolatile - Return true if this is a RMW on a volatile memory location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// setVolatile - Specify whether this is a volatile RMW or not. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Set the ordering constraint on this RMW. void setOrdering(AtomicOrdering Ordering) { assert(Ordering != NotAtomic && "atomicrmw instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | (Ordering << 2)); } /// Specify whether this RMW orders other operations with respect to all /// concurrently executing threads, or only with respect to signal handlers /// executing in the same thread. void setSynchScope(SynchronizationScope SynchScope) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | (SynchScope << 1)); } /// Returns the ordering constraint on this RMW. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); } /// Returns whether this RMW is atomic between threads or only within a /// single thread. SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getValOperand() { return getOperand(1); } const Value *getValOperand() const { return getOperand(1); } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicRMW; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void Init(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope); // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) //===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===// // checkGEPType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // inline Type *checkGEPType(Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; } /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { GetElementPtrInst(const GetElementPtrInst &GEPI); void init(Value *Ptr, ArrayRef IdxList, const Twine &NameStr); /// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first ctor can optionally insert before an existing /// instruction, the second appends the new instruction to the specified /// BasicBlock. inline GetElementPtrInst(Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore); inline GetElementPtrInst(Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual GetElementPtrInst *clone_impl() const; public: static GetElementPtrInst *Create(Value *Ptr, ArrayRef IdxList, const Twine &NameStr = "", Instruction *InsertBefore = 0) { unsigned Values = 1 + unsigned(IdxList.size()); return new(Values) GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore); } static GetElementPtrInst *Create(Value *Ptr, ArrayRef IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + unsigned(IdxList.size()); return new(Values) GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd); } /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef IdxList, const Twine &NameStr = "", Instruction *InsertBefore = 0) { GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore); GEP->setIsInBounds(true); return GEP; } static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd); GEP->setIsInBounds(true); return GEP; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // getType - Overload to return most specific pointer type... PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// \brief Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { // Note that this is always the same as the pointer operand's address space // and that is cheaper to compute, so cheat here. return getPointerAddressSpace(); } /// getIndexedType - Returns the type of the element that would be loaded with /// a load instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// static Type *getIndexedType(Type *Ptr, ArrayRef IdxList); static Type *getIndexedType(Type *Ptr, ArrayRef IdxList); static Type *getIndexedType(Type *Ptr, ArrayRef IdxList); inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand. } /// getPointerOperandType - Method to return the pointer operand as a /// PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } /// GetGEPReturnType - Returns the pointer type returned by the GEP /// instruction, which may be a vector of pointers. static Type *getGEPReturnType(Value *Ptr, ArrayRef IdxList) { Type *PtrTy = PointerType::get(checkGEPType( getIndexedType(Ptr->getType(), IdxList)), Ptr->getType()->getPointerAddressSpace()); // Vector GEP if (Ptr->getType()->isVectorTy()) { unsigned NumElem = cast(Ptr->getType())->getNumElements(); return VectorType::get(PtrTy, NumElem); } // Scalar GEP return PtrTy; } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// hasAllZeroIndices - Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const; /// hasAllConstantIndices - Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const; /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction. /// See LangRef.html for the meaning of inbounds on a getelementptr. void setIsInBounds(bool b = true); /// isInBounds - Determine whether the GEP has the inbounds flag. bool isInBounds() const; /// \brief Accumulate the constant address offset of this GEP if possible. /// /// This routine accepts an APInt into which it will accumulate the constant /// offset of this GEP if the GEP is in fact constant. If the GEP is not /// all-constant, it returns false and the value of the offset APInt is /// undefined (it is *not* preserved!). The APInt passed into this routine /// must be at least as wide as the IntPtr type for the address space of /// the base GEP pointer. bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; GetElementPtrInst::GetElementPtrInst(Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertBefore) { init(Ptr, IdxList, NameStr); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertAtEnd) { init(Ptr, IdxList, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) //===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers or pointers. The operands /// must be identical types. /// \brief Represent an integer comparison operator. class ICmpInst: public CmpInst { protected: /// \brief Clone an identical ICmpInst virtual ICmpInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics. ICmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->getScalarType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); } /// \brief Constructor with insert-at-end semantics. ICmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); } /// \brief Constructor with no-insertion semantics ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->getScalarType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); } /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// \brief Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// \brief Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred); /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as unsigned. /// \brief Return the unsigned version of the predicate Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// \brief Return the unsigned version of the predicate. static Predicate getUnsignedPredicate(Predicate pred); /// isEquality - Return true if this predicate is either EQ or NE. This also /// tests for commutativity. static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; } /// isEquality - Return true if this predicate is either EQ or NE. This also /// tests for commutativity. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this ICmpInst is commutative /// \brief Determine if this relation is commutative. bool isCommutative() const { return isEquality(); } /// isRelational - Return true if the predicate is relational (not EQ or NE). /// bool isRelational() const { return !isEquality(); } /// isRelational - Return true if the predicate is relational (not EQ or NE). /// static bool isRelational(Predicate P) { return !isEquality(P); } /// Initialize a set of values that all satisfy the predicate with C. /// \brief Make a ConstantRange for a relation with a constant value. static ConstantRange makeConstantRange(Predicate pred, const APInt &C); /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// \brief Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// \brief Represents a floating point comparison operator. class FCmpInst: public CmpInst { protected: /// \brief Clone an identical FCmpInst virtual FCmpInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics. FCmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); } /// \brief Constructor with insert-at-end semantics. FCmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); } /// \brief Constructor with no-insertion semantics FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); } /// @returns true if the predicate of this instruction is EQ or NE. /// \brief Determine if this is an equality predicate. bool isEquality() const { return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE || getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE; } /// @returns true if the predicate of this instruction is commutative. /// \brief Determine if this is a commutative predicate. bool isCommutative() const { return isEquality() || getPredicate() == FCMP_FALSE || getPredicate() == FCMP_TRUE || getPredicate() == FCMP_ORD || getPredicate() == FCMP_UNO; } /// @returns true if the predicate is relational (not EQ or NE). /// \brief Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// \brief Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// /// CallInst - This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public Instruction { AttributeSet AttributeList; ///< parameter attributes for call CallInst(const CallInst &CI); void init(Value *Func, ArrayRef Args, const Twine &NameStr); void init(Value *Func, const Twine &NameStr); /// Construct a CallInst given a range of arguments. /// \brief Construct a CallInst from a range of arguments inline CallInst(Value *Func, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore); /// Construct a CallInst given a range of arguments. /// \brief Construct a CallInst from a range of arguments inline CallInst(Value *Func, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd); CallInst(Value *F, Value *Actual, const Twine &NameStr, Instruction *InsertBefore); CallInst(Value *F, Value *Actual, const Twine &NameStr, BasicBlock *InsertAtEnd); explicit CallInst(Value *F, const Twine &NameStr, Instruction *InsertBefore); CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual CallInst *clone_impl() const; public: static CallInst *Create(Value *Func, ArrayRef Args, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(unsigned(Args.size() + 1)) CallInst(Func, Args, NameStr, InsertBefore); } static CallInst *Create(Value *Func, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(unsigned(Args.size() + 1)) CallInst(Func, Args, NameStr, InsertAtEnd); } static CallInst *Create(Value *F, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(1) CallInst(F, NameStr, InsertBefore); } static CallInst *Create(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(1) CallInst(F, NameStr, InsertAtEnd); } /// CreateMalloc - Generate the IR for a call to malloc: /// 1. Compute the malloc call's argument as the specified type's size, /// possibly multiplied by the array size if the array size is not /// constant 1. /// 2. Call malloc with that argument. /// 3. Bitcast the result of the malloc call to the specified type. static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = 0, Function* MallocF = 0, const Twine &Name = ""); static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = 0, Function* MallocF = 0, const Twine &Name = ""); /// CreateFree - Generate the IR for a call to the builtin free function. static Instruction* CreateFree(Value* Source, Instruction *InsertBefore); static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd); ~CallInst(); bool isTailCall() const { return getSubclassDataFromInstruction() & 1; } void setTailCall(bool isTC = true) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | unsigned(isTC)); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getNumArgOperands - Return the number of call arguments. /// unsigned getNumArgOperands() const { return getNumOperands() - 1; } /// getArgOperand/setArgOperand - Return/set the i-th call argument. /// Value *getArgOperand(unsigned i) const { return getOperand(i); } void setArgOperand(unsigned i, Value *v) { setOperand(i, v); } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. CallingConv::ID getCallingConv() const { return static_cast(getSubclassDataFromInstruction() >> 1); } void setCallingConv(CallingConv::ID CC) { setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | (static_cast(CC) << 1)); } /// getAttributes - Return the parameter attributes for this call. /// const AttributeSet &getAttributes() const { return AttributeList; } /// setAttributes - Set the parameter attributes for this call. /// void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; } /// addAttribute - adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute attr); /// removeAttribute - removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attribute attr); /// \brief Determine whether this call has the given attribute. bool hasFnAttr(Attribute::AttrKind A) const; /// \brief Determine whether the call or the callee has the given attributes. bool paramHasAttr(unsigned i, Attribute::AttrKind A) const; /// \brief Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); } /// \brief Return true if the call should not be inlined. bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } void setIsNoInline() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoInline)); } /// \brief Return true if the call can return twice bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } void setCanReturnTwice() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::ReturnsTwice)); } /// \brief Determine if the call does not access memory. bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } void setDoesNotAccessMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::ReadNone)); } /// \brief Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); } void setOnlyReadsMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::ReadOnly)); } /// \brief Determine if the call cannot return. bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } void setDoesNotReturn() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoReturn)); } /// \brief Determine if the call cannot unwind. bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } void setDoesNotThrow() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoUnwind)); } /// \brief Determine if the call cannot be duplicated. bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); } void setCannotDuplicate() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoDuplicate)); } /// \brief Determine if the call returns a structure through first /// pointer argument. bool hasStructRetAttr() const { // Be friendly and also check the callee. return paramHasAttr(1, Attribute::StructRet); } /// \brief Determine if any call argument is an aggregate passed by value. bool hasByValArgument() const { for (unsigned I = 0, E = AttributeList.getNumAttrs(); I != E; ++I) if (AttributeList.getAttributesAtIndex(I).hasAttribute(Attribute::ByVal)) return true; return false; } /// getCalledFunction - Return the function called, or null if this is an /// indirect function invocation. /// Function *getCalledFunction() const { return dyn_cast(Op<-1>()); } /// getCalledValue - Get a pointer to the function that is invoked by this /// instruction. const Value *getCalledValue() const { return Op<-1>(); } Value *getCalledValue() { return Op<-1>(); } /// setCalledFunction - Set the function called. void setCalledFunction(Value* Fn) { Op<-1>() = Fn; } /// isInlineAsm - Check if this call is an inline asm statement. bool isInlineAsm() const { return isa(Op<-1>()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; CallInst::CallInst(Value *Func, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (Args.size() + 1), unsigned(Args.size() + 1), InsertAtEnd) { init(Func, Args, NameStr); } CallInst::CallInst(Value *Func, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (Args.size() + 1), unsigned(Args.size() + 1), InsertBefore) { init(Func, Args, NameStr); } // Note: if you get compile errors about private methods then // please update your code to use the high-level operand // interfaces. See line 943 above. DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value) //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// SelectInst - This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction { void init(Value *C, Value *S1, Value *S2) { assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); Op<0>() = C; Op<1>() = S1; Op<2>() = S2; } SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, Instruction *InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); } SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertAtEnd) { init(C, S1, S2); setName(NameStr); } protected: virtual SelectInst *clone_impl() const; public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); } static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); } const Value *getCondition() const { return Op<0>(); } const Value *getTrueValue() const { return Op<1>(); } const Value *getFalseValue() const { return Op<2>(); } Value *getCondition() { return Op<0>(); } Value *getTrueValue() { return Op<1>(); } Value *getFalseValue() { return Op<2>(); } /// areInvalidOperands - Return a string if the specified operands are invalid /// for a select operation, otherwise return null. static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); OtherOps getOpcode() const { return static_cast(Instruction::getOpcode()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) //===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===// /// VAArgInst - This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { protected: virtual VAArgInst *clone_impl() const; public: VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", Instruction *InsertBefore = 0) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); } VAArgInst(Value *List, Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { setName(NameStr); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===// /// ExtractElementInst - This instruction extracts a single (scalar) /// element from a VectorType value /// class ExtractElementInst : public Instruction { ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual ExtractElementInst *clone_impl() const; public: static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); } static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); } /// isValidOperands - Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx); Value *getVectorOperand() { return Op<0>(); } Value *getIndexOperand() { return Op<1>(); } const Value *getVectorOperand() const { return Op<0>(); } const Value *getIndexOperand() const { return Op<1>(); } VectorType *getVectorOperandType() const { return reinterpret_cast(getVectorOperand()->getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) //===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===// /// InsertElementInst - This instruction inserts a single (scalar) /// element into a VectorType value /// class InsertElementInst : public Instruction { InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InsertElementInst *clone_impl() const; public: static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); } /// isValidOperands - Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx); /// getType - Overload to return most specific vector type. /// VectorType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) //===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===// /// ShuffleVectorInst - This instruction constructs a fixed permutation of two /// input vectors. /// class ShuffleVectorInst : public Instruction { protected: virtual ShuffleVectorInst *clone_impl() const; public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr = "", Instruction *InsertBefor = 0); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); /// getType - Overload to return most specific vector type. /// VectorType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Constant *getMask() const { return reinterpret_cast(getOperand(2)); } /// getMaskValue - Return the index from the shuffle mask for the specified /// output result. This is either -1 if the element is undef or a number less /// than 2*numelements. static int getMaskValue(Constant *Mask, unsigned i); int getMaskValue(unsigned i) const { return getMaskValue(getMask(), i); } /// getShuffleMask - Return the full mask for this instruction, where each /// element is the element number and undef's are returned as -1. static void getShuffleMask(Constant *Mask, SmallVectorImpl &Result); void getShuffleMask(SmallVectorImpl &Result) const { return getShuffleMask(getMask(), Result); } SmallVector getShuffleMask() const { SmallVector Mask; getShuffleMask(Mask); return Mask; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) //===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===// /// ExtractValueInst - This instruction extracts a struct member or array /// element value from an aggregate value. /// class ExtractValueInst : public UnaryInstruction { SmallVector Indices; ExtractValueInst(const ExtractValueInst &EVI); void init(ArrayRef Idxs, const Twine &NameStr); /// Constructors - Create a extractvalue instruction with a base aggregate /// value and a list of indices. The first ctor can optionally insert before /// an existing instruction, the second appends the new instruction to the /// specified BasicBlock. inline ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore); inline ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } protected: virtual ExtractValueInst *clone_impl() const; public: static ExtractValueInst *Create(Value *Agg, ArrayRef Idxs, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); } static ExtractValueInst *Create(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); } /// getIndexedType - Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified type. static Type *getIndexedType(Type *Agg, ArrayRef Idxs); typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } ArrayRef getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertBefore) { init(Idxs, NameStr); } ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertAtEnd) { init(Idxs, NameStr); } //===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===// /// InsertValueInst - This instruction inserts a struct field of array element /// value into an aggregate value. /// class InsertValueInst : public Instruction { SmallVector Indices; void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; InsertValueInst(const InsertValueInst &IVI); void init(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr); /// Constructors - Create a insertvalue instruction with a base aggregate /// value, a value to insert, and a list of indices. The first ctor can /// optionally insert before an existing instruction, the second appends /// the new instruction to the specified BasicBlock. inline InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore); inline InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index insertvalue instructions are so common. InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InsertValueInst *clone_impl() const; public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand } ArrayRef getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertBefore) { init(Agg, Val, Idxs, NameStr); } InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertAtEnd) { init(Agg, Val, Idxs, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; /// ReservedSpace - The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; PHINode(const PHINode &PN); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } explicit PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = 0) : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore), ReservedSpace(NumReservedValues) { setName(NameStr); OperandList = allocHungoffUses(ReservedSpace); } PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd), ReservedSpace(NumReservedValues) { setName(NameStr); OperandList = allocHungoffUses(ReservedSpace); } protected: // allocHungoffUses - this is more complicated than the generic // User::allocHungoffUses, because we have to allocate Uses for the incoming // values and pointers to the incoming blocks, all in one allocation. Use *allocHungoffUses(unsigned) const; virtual PHINode *clone_impl() const; public: /// Constructors - NumReservedValues is a hint for the number of incoming /// edges that this phi node will have (use 0 if you really have no idea). static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); } static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); } ~PHINode(); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. typedef BasicBlock **block_iterator; typedef BasicBlock * const *const_block_iterator; block_iterator block_begin() { Use::UserRef *ref = reinterpret_cast(op_begin() + ReservedSpace); return reinterpret_cast(ref + 1); } const_block_iterator block_begin() const { const Use::UserRef *ref = reinterpret_cast(op_begin() + ReservedSpace); return reinterpret_cast(ref + 1); } block_iterator block_end() { return block_begin() + getNumOperands(); } const_block_iterator block_end() const { return block_begin() + getNumOperands(); } /// getNumIncomingValues - Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands(); } /// getIncomingValue - Return incoming value number x /// Value *getIncomingValue(unsigned i) const { return getOperand(i); } void setIncomingValue(unsigned i, Value *V) { setOperand(i, V); } static unsigned getOperandNumForIncomingValue(unsigned i) { return i; } static unsigned getIncomingValueNumForOperand(unsigned i) { return i; } /// getIncomingBlock - Return incoming basic block number @p i. /// BasicBlock *getIncomingBlock(unsigned i) const { return block_begin()[i]; } /// getIncomingBlock - Return incoming basic block corresponding /// to an operand of the PHI. /// BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); } /// getIncomingBlock - Return incoming basic block corresponding /// to value use iterator. /// template BasicBlock *getIncomingBlock(value_use_iterator I) const { return getIncomingBlock(I.getUse()); } void setIncomingBlock(unsigned i, BasicBlock *BB) { block_begin()[i] = BB; } /// addIncoming - Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { assert(V && "PHI node got a null value!"); assert(BB && "PHI node got a null basic block!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); if (NumOperands == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. ++NumOperands; setIncomingValue(NumOperands - 1, V); setIncomingBlock(NumOperands - 1, BB); } /// removeIncomingValue - Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); } /// getBasicBlockIndex - Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (block_begin()[i] == BB) return i; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); } /// hasConstantValue - If the specified PHI node always merges together the /// same value, return the value, otherwise return null. Value *hasConstantValue() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void growOperands(); }; template <> struct OperandTraits : public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) //===----------------------------------------------------------------------===// // LandingPadInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// LandingPadInst - The landingpad instruction holds all of the information /// necessary to generate correct exception handling. The landingpad instruction /// cannot be moved from the top of a landing pad block, which itself is /// accessible only from the 'unwind' edge of an invoke. This uses the /// SubclassData field in Value to store whether or not the landingpad is a /// cleanup. /// class LandingPadInst : public Instruction { /// ReservedSpace - The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; LandingPadInst(const LandingPadInst &LP); public: enum ClauseType { Catch, Filter }; private: void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; // Allocate space for exactly zero operands. void *operator new(size_t s) { return User::operator new(s, 0); } void growOperands(unsigned Size); void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr); explicit LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, Instruction *InsertBefore); explicit LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual LandingPadInst *clone_impl() const; public: /// Constructors - NumReservedClauses is a hint for the number of incoming /// clauses that this landingpad will have (use 0 if you really have no idea). static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr = "", Instruction *InsertBefore = 0); static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock *InsertAtEnd); ~LandingPadInst(); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getPersonalityFn - Get the personality function associated with this /// landing pad. Value *getPersonalityFn() const { return getOperand(0); } /// isCleanup - Return 'true' if this landingpad instruction is a /// cleanup. I.e., it should be run when unwinding even if its landing pad /// doesn't catch the exception. bool isCleanup() const { return getSubclassDataFromInstruction() & 1; } /// setCleanup - Indicate that this landingpad instruction is a cleanup. void setCleanup(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// addClause - Add a catch or filter clause to the landing pad. void addClause(Value *ClauseVal); /// getClause - Get the value of the clause at index Idx. Use isCatch/isFilter /// to determine what type of clause this is. Value *getClause(unsigned Idx) const { return OperandList[Idx + 1]; } /// isCatch - Return 'true' if the clause and index Idx is a catch clause. bool isCatch(unsigned Idx) const { return !isa(OperandList[Idx + 1]->getType()); } /// isFilter - Return 'true' if the clause and index Idx is a filter clause. bool isFilter(unsigned Idx) const { return isa(OperandList[Idx + 1]->getType()); } /// getNumClauses - Get the number of clauses for this landing pad. unsigned getNumClauses() const { return getNumOperands() - 1; } /// reserveClauses - Grow the size of the operand list to accommodate the new /// number of clauses. void reserveClauses(unsigned Size) { growOperands(Size); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::LandingPad; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) //===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// ReturnInst - Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public TerminatorInst { ReturnInst(const ReturnInst &RI); private: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(LLVMContext &C, Value *retVal = 0, Instruction *InsertBefore = 0); ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); protected: virtual ReturnInst *clone_impl() const; public: static ReturnInst* Create(LLVMContext &C, Value *retVal = 0, Instruction *InsertBefore = 0) { return new(!!retVal) ReturnInst(C, retVal, InsertBefore); } static ReturnInst* Create(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) { return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); } static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { return new(0) ReturnInst(C, InsertAtEnd); } virtual ~ReturnInst(); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor. Returns null if there is no return value. Value *getReturnValue() const { return getNumOperands() != 0 ? getOperand(0) : 0; } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) //===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// BranchInst - Conditional or Unconditional Branch instruction. /// class BranchInst : public TerminatorInst { /// Ops list - Branches are strange. The operands are ordered: /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. These are mostly /// accessed relative from op_end(). BranchInst(const BranchInst &BI); void AssertOK(); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd); protected: virtual BranchInst *clone_impl() const; public: static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) { return new(1) BranchInst(IfTrue, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { return new(1) BranchInst(IfTrue, InsertAtEnd); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; } Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return Op<-3>(); } void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); Op<-3>() = V; } unsigned getNumSuccessors() const { return 1+isConditional(); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast_or_null((&Op<-1>() - i)->get()); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); *(&Op<-1>() - idx) = (Value*)NewSucc; } /// \brief Swap the successors of this branch instruction. /// /// Swaps the successors of the branch instruction. This also swaps any /// branch weight metadata associated with the instruction so that it /// continues to map correctly to each operand. void swapSuccessors(); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) //===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// SwitchInst - Multiway switch /// class SwitchInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; unsigned ReservedSpace; // Operands format: // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match // Store case values separately from operands list. We needn't User-Use // concept here, since it is just a case value, it will always constant, // and case value couldn't reused with another instructions/values. // Additionally: // It allows us to use custom type for case values that is not inherited // from Value. Since case value is a complex type that implements // the subset of integers, we needn't extract sub-constants within // slow getAggregateElement method. // For case values we will use std::list to by two reasons: // 1. It allows to add/remove cases without whole collection reallocation. // 2. In most of cases we needn't random access. // Currently case values are also stored in Operands List, but it will moved // out in future commits. typedef std::list Subsets; typedef Subsets::iterator SubsetsIt; typedef Subsets::const_iterator SubsetsConstIt; Subsets TheSubsets; SwitchInst(const SwitchInst &SI); void init(Value *Value, BasicBlock *Default, unsigned NumReserved); void growOperands(); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor can also autoinsert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore); /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor also autoinserts at the end of the specified BasicBlock. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd); protected: virtual SwitchInst *clone_impl() const; public: // FIXME: Currently there are a lot of unclean template parameters, // we need to make refactoring in future. // All these parameters are used to implement both iterator and const_iterator // without code duplication. // SwitchInstTy may be "const SwitchInst" or "SwitchInst" // ConstantIntTy may be "const ConstantInt" or "ConstantInt" // SubsetsItTy may be SubsetsConstIt or SubsetsIt // BasicBlockTy may be "const BasicBlock" or "BasicBlock" template class CaseIteratorT; typedef CaseIteratorT ConstCaseIt; class CaseIt; // -2 static const unsigned DefaultPseudoIndex = static_cast(~0L-1); static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = 0) { return new SwitchInst(Value, Default, NumCases, InsertBefore); } static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) { return new SwitchInst(Value, Default, NumCases, InsertAtEnd); } ~SwitchInst(); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for Switch stmt Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); } BasicBlock *getDefaultDest() const { return cast(getOperand(1)); } void setDefaultDest(BasicBlock *DefaultCase) { setOperand(1, reinterpret_cast(DefaultCase)); } /// getNumCases - return the number of 'cases' in this switch instruction, /// except the default case unsigned getNumCases() const { return getNumOperands()/2 - 1; } /// Returns a read/write iterator that points to the first /// case in SwitchInst. CaseIt case_begin() { return CaseIt(this, 0, TheSubsets.begin()); } /// Returns a read-only iterator that points to the first /// case in the SwitchInst. ConstCaseIt case_begin() const { return ConstCaseIt(this, 0, TheSubsets.begin()); } /// Returns a read/write iterator that points one past the last /// in the SwitchInst. CaseIt case_end() { return CaseIt(this, getNumCases(), TheSubsets.end()); } /// Returns a read-only iterator that points one past the last /// in the SwitchInst. ConstCaseIt case_end() const { return ConstCaseIt(this, getNumCases(), TheSubsets.end()); } /// Returns an iterator that points to the default case. /// Note: this iterator allows to resolve successor only. Attempt /// to resolve case value causes an assertion. /// Also note, that increment and decrement also causes an assertion and /// makes iterator invalid. CaseIt case_default() { return CaseIt(this, DefaultPseudoIndex, TheSubsets.end()); } ConstCaseIt case_default() const { return ConstCaseIt(this, DefaultPseudoIndex, TheSubsets.end()); } /// findCaseValue - Search all of the case values for the specified constant. /// If it is explicitly handled, return the case iterator of it, otherwise /// return default case iterator to indicate /// that it is handled by the default handler. CaseIt findCaseValue(const ConstantInt *C) { for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C))) return i; return case_default(); } ConstCaseIt findCaseValue(const ConstantInt *C) const { for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i) if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C))) return i; return case_default(); } /// findCaseDest - Finds the unique case value for a given successor. Returns /// null if the successor is not found, not unique, or is the default case. ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return NULL; ConstantInt *CI = NULL; for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) { if (i.getCaseSuccessor() == BB) { if (CI) return NULL; // Multiple cases lead to BB. else CI = i.getCaseValue(); } } return CI; } /// addCase - Add an entry to the switch instruction... /// @deprecated /// Note: /// This action invalidates case_end(). Old case_end() iterator will /// point to the added case. void addCase(ConstantInt *OnVal, BasicBlock *Dest); /// addCase - Add an entry to the switch instruction. /// Note: /// This action invalidates case_end(). Old case_end() iterator will /// point to the added case. void addCase(IntegersSubset& OnVal, BasicBlock *Dest); /// removeCase - This method removes the specified case and its successor /// from the switch instruction. Note that this operation may reorder the /// remaining cases at index idx and above. /// Note: /// This action invalidates iterators for all cases following the one removed, /// including the case_end() iterator. void removeCase(CaseIt& i); unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx*2+1, (Value*)NewSucc); } uint16_t hash() const { uint32_t NumberOfCases = (uint32_t)getNumCases(); uint16_t Hash = (0xFFFF & NumberOfCases) ^ (NumberOfCases >> 16); for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i) { uint32_t NumItems = (uint32_t)i.getCaseValueEx().getNumItems(); Hash = (Hash << 1) ^ (0xFFFF & NumItems) ^ (NumItems >> 16); } return Hash; } // Case iterators definition. template class CaseIteratorT { protected: SwitchInstTy *SI; unsigned long Index; SubsetsItTy SubsetIt; /// Initializes case iterator for given SwitchInst and for given /// case number. friend class SwitchInst; CaseIteratorT(SwitchInstTy *SI, unsigned SuccessorIndex, SubsetsItTy CaseValueIt) { this->SI = SI; Index = SuccessorIndex; this->SubsetIt = CaseValueIt; } public: typedef typename SubsetsItTy::reference IntegersSubsetRef; typedef CaseIteratorT Self; CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) { this->SI = SI; Index = CaseNum; SubsetIt = SI->TheSubsets.begin(); std::advance(SubsetIt, CaseNum); } /// Initializes case iterator for given SwitchInst and for given /// TerminatorInst's successor index. static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) { assert(SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"); return SuccessorIndex != 0 ? Self(SI, SuccessorIndex - 1) : Self(SI, DefaultPseudoIndex); } /// Resolves case value for current case. /// @deprecated ConstantIntTy *getCaseValue() { assert(Index < SI->getNumCases() && "Index out the number of cases."); IntegersSubsetRef CaseRanges = *SubsetIt; // FIXME: Currently we work with ConstantInt based cases. // So return CaseValue as ConstantInt. return CaseRanges.getSingleNumber(0).toConstantInt(); } /// Resolves case value for current case. IntegersSubsetRef getCaseValueEx() { assert(Index < SI->getNumCases() && "Index out the number of cases."); return *SubsetIt; } /// Resolves successor for current case. BasicBlockTy *getCaseSuccessor() { assert((Index < SI->getNumCases() || Index == DefaultPseudoIndex) && "Index out the number of cases."); return SI->getSuccessor(getSuccessorIndex()); } /// Returns number of current case. unsigned getCaseIndex() const { return Index; } /// Returns TerminatorInst's successor index for current case successor. unsigned getSuccessorIndex() const { assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) && "Index out the number of cases."); return Index != DefaultPseudoIndex ? Index + 1 : 0; } Self operator++() { // Check index correctness after increment. // Note: Index == getNumCases() means end(). assert(Index+1 <= SI->getNumCases() && "Index out the number of cases."); ++Index; if (Index == 0) SubsetIt = SI->TheSubsets.begin(); else ++SubsetIt; return *this; } Self operator++(int) { Self tmp = *this; ++(*this); return tmp; } Self operator--() { // Check index correctness after decrement. // Note: Index == getNumCases() means end(). // Also allow "-1" iterator here. That will became valid after ++. unsigned NumCases = SI->getNumCases(); assert((Index == 0 || Index-1 <= NumCases) && "Index out the number of cases."); --Index; if (Index == NumCases) { SubsetIt = SI->TheSubsets.end(); return *this; } if (Index != -1UL) --SubsetIt; return *this; } Self operator--(int) { Self tmp = *this; --(*this); return tmp; } bool operator==(const Self& RHS) const { assert(RHS.SI == SI && "Incompatible operators."); return RHS.Index == Index; } bool operator!=(const Self& RHS) const { assert(RHS.SI == SI && "Incompatible operators."); return RHS.Index != Index; } }; class CaseIt : public CaseIteratorT { typedef CaseIteratorT ParentTy; protected: friend class SwitchInst; CaseIt(SwitchInst *SI, unsigned CaseNum, SubsetsIt SubsetIt) : ParentTy(SI, CaseNum, SubsetIt) {} void updateCaseValueOperand(IntegersSubset& V) { SI->setOperand(2 + Index*2, reinterpret_cast((Constant*)V)); } public: CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {} CaseIt(const ParentTy& Src) : ParentTy(Src) {} /// Sets the new value for current case. /// @deprecated. void setValue(ConstantInt *V) { assert(Index < SI->getNumCases() && "Index out the number of cases."); IntegersSubsetToBB Mapping; // FIXME: Currently we work with ConstantInt based cases. // So inititalize IntItem container directly from ConstantInt. Mapping.add(IntItem::fromConstantInt(V)); *SubsetIt = Mapping.getCase(); updateCaseValueOperand(*SubsetIt); } /// Sets the new value for current case. void setValueEx(IntegersSubset& V) { assert(Index < SI->getNumCases() && "Index out the number of cases."); *SubsetIt = V; updateCaseValueOperand(*SubsetIt); } /// Sets the new successor for current case. void setSuccessor(BasicBlock *S) { SI->setSuccessor(getSuccessorIndex(), S); } }; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) //===----------------------------------------------------------------------===// // IndirectBrInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// IndirectBrInst - Indirect Branch Instruction. /// class IndirectBrInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; unsigned ReservedSpace; // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match IndirectBrInst(const IndirectBrInst &IBI); void init(Value *Address, unsigned NumDests); void growOperands(); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an /// Address to jump to. The number of expected destinations can be specified /// here to make memory allocation more efficient. This constructor can also /// autoinsert before another instruction. IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an /// Address to jump to. The number of expected destinations can be specified /// here to make memory allocation more efficient. This constructor also /// autoinserts at the end of the specified BasicBlock. IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); protected: virtual IndirectBrInst *clone_impl() const; public: static IndirectBrInst *Create(Value *Address, unsigned NumDests, Instruction *InsertBefore = 0) { return new IndirectBrInst(Address, NumDests, InsertBefore); } static IndirectBrInst *Create(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd) { return new IndirectBrInst(Address, NumDests, InsertAtEnd); } ~IndirectBrInst(); /// Provide fast operand accessors. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for IndirectBrInst instruction. Value *getAddress() { return getOperand(0); } const Value *getAddress() const { return getOperand(0); } void setAddress(Value *V) { setOperand(0, V); } /// getNumDestinations - return the number of possible destinations in this /// indirectbr instruction. unsigned getNumDestinations() const { return getNumOperands()-1; } /// getDestination - Return the specified destination. BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } /// addDestination - Add a destination. /// void addDestination(BasicBlock *Dest); /// removeDestination - This method removes the specified successor from the /// indirectbr instruction. void removeDestination(unsigned i); unsigned getNumSuccessors() const { return getNumOperands()-1; } BasicBlock *getSuccessor(unsigned i) const { return cast(getOperand(i+1)); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { setOperand(i+1, (Value*)NewSucc); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::IndirectBr; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : public HungoffOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value) //===----------------------------------------------------------------------===// // InvokeInst Class //===----------------------------------------------------------------------===// /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the /// calling convention of the call. /// class InvokeInst : public TerminatorInst { AttributeSet AttributeList; InvokeInst(const InvokeInst &BI); void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr); /// Construct an InvokeInst given a range of arguments. /// /// \brief Construct an InvokeInst from a range of arguments inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore); /// Construct an InvokeInst given a range of arguments. /// /// \brief Construct an InvokeInst from a range of arguments inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InvokeInst *clone_impl() const; public: static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr = "", Instruction *InsertBefore = 0) { unsigned Values = unsigned(Args.size()) + 3; return new(Values) InvokeInst(Func, IfNormal, IfException, Args, Values, NameStr, InsertBefore); } static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = unsigned(Args.size()) + 3; return new(Values) InvokeInst(Func, IfNormal, IfException, Args, Values, NameStr, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getNumArgOperands - Return the number of invoke arguments. /// unsigned getNumArgOperands() const { return getNumOperands() - 3; } /// getArgOperand/setArgOperand - Return/set the i-th invoke argument. /// Value *getArgOperand(unsigned i) const { return getOperand(i); } void setArgOperand(unsigned i, Value *v) { setOperand(i, v); } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. CallingConv::ID getCallingConv() const { return static_cast(getSubclassDataFromInstruction()); } void setCallingConv(CallingConv::ID CC) { setInstructionSubclassData(static_cast(CC)); } /// getAttributes - Return the parameter attributes for this invoke. /// const AttributeSet &getAttributes() const { return AttributeList; } /// setAttributes - Set the parameter attributes for this invoke. /// void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; } /// addAttribute - adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute attr); /// removeAttribute - removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attribute attr); /// \brief Determine whether this call has the NoAlias attribute. bool hasFnAttr(Attribute::AttrKind A) const; /// \brief Determine whether the call or the callee has the given attributes. bool paramHasAttr(unsigned i, Attribute::AttrKind A) const; /// \brief Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); } /// \brief Return true if the call should not be inlined. bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } void setIsNoInline() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoInline)); } /// \brief Determine if the call does not access memory. bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } void setDoesNotAccessMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::ReadNone)); } /// \brief Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); } void setOnlyReadsMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::ReadOnly)); } /// \brief Determine if the call cannot return. bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } void setDoesNotReturn() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoReturn)); } /// \brief Determine if the call cannot unwind. bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } void setDoesNotThrow() { addAttribute(AttributeSet::FunctionIndex, Attribute::get(getContext(), Attribute::NoUnwind)); } /// \brief Determine if the call returns a structure through first /// pointer argument. bool hasStructRetAttr() const { // Be friendly and also check the callee. return paramHasAttr(1, Attribute::StructRet); } /// \brief Determine if any call argument is an aggregate passed by value. bool hasByValArgument() const { for (unsigned I = 0, E = AttributeList.getNumAttrs(); I != E; ++I) if (AttributeList.getAttributesAtIndex(I).hasAttribute(Attribute::ByVal)) return true; return false; } /// getCalledFunction - Return the function called, or null if this is an /// indirect function invocation. /// Function *getCalledFunction() const { return dyn_cast(Op<-3>()); } /// getCalledValue - Get a pointer to the function that is invoked by this /// instruction const Value *getCalledValue() const { return Op<-3>(); } Value *getCalledValue() { return Op<-3>(); } /// setCalledFunction - Set the function called. void setCalledFunction(Value* Fn) { Op<-3>() = Fn; } // get*Dest - Return the destination basic blocks... BasicBlock *getNormalDest() const { return cast(Op<-2>()); } BasicBlock *getUnwindDest() const { return cast(Op<-1>()); } void setNormalDest(BasicBlock *B) { Op<-2>() = reinterpret_cast(B); } void setUnwindDest(BasicBlock *B) { Op<-1>() = reinterpret_cast(B); } /// getLandingPadInst - Get the landingpad instruction from the landing pad /// block (the unwind destination). LandingPadInst *getLandingPadInst() const; BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < 2 && "Successor # out of range for invoke!"); *(&Op<-2>() + idx) = reinterpret_cast(NewSucc); } unsigned getNumSuccessors() const { return 2; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : TerminatorInst(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - Values, Values, InsertBefore) { init(Func, IfNormal, IfException, Args, NameStr); } InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : TerminatorInst(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - Values, Values, InsertAtEnd) { init(Func, IfNormal, IfException, Args, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value) //===----------------------------------------------------------------------===// // ResumeInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// ResumeInst - Resume the propagation of an exception. /// class ResumeInst : public TerminatorInst { ResumeInst(const ResumeInst &RI); explicit ResumeInst(Value *Exn, Instruction *InsertBefore=0); ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); protected: virtual ResumeInst *clone_impl() const; public: static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = 0) { return new(1) ResumeInst(Exn, InsertBefore); } static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { return new(1) ResumeInst(Exn, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor. Value *getValue() const { return Op<0>(); } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Resume; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value) //===----------------------------------------------------------------------===// // UnreachableInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// UnreachableInst - This function has undefined behavior. In particular, the /// presence of this instruction indicates some higher level knowledge that the /// end of the block cannot be reached. /// class UnreachableInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; protected: virtual UnreachableInst *clone_impl() const; public: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0); explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // TruncInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a truncation of integer types. class TruncInst : public CastInst { protected: /// \brief Clone an identical TruncInst virtual TruncInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics TruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The (smaller) type to truncate to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics TruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The (smaller) type to truncate to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ZExtInst Class //===----------------------------------------------------------------------===// /// \brief This class represents zero extension of integer types. class ZExtInst : public CastInst { protected: /// \brief Clone an identical ZExtInst virtual ZExtInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics ZExtInst( Value *S, ///< The value to be zero extended Type *Ty, ///< The type to zero extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end semantics. ZExtInst( Value *S, ///< The value to be zero extended Type *Ty, ///< The type to zero extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SExtInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a sign extension of integer types. class SExtInst : public CastInst { protected: /// \brief Clone an identical SExtInst virtual SExtInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics SExtInst( Value *S, ///< The value to be sign extended Type *Ty, ///< The type to sign extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics SExtInst( Value *S, ///< The value to be sign extended Type *Ty, ///< The type to sign extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPTruncInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a truncation of floating point types. class FPTruncInst : public CastInst { protected: /// \brief Clone an identical FPTruncInst virtual FPTruncInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The type to truncate to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The type to truncate to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPExtInst Class //===----------------------------------------------------------------------===// /// \brief This class represents an extension of floating point types. class FPExtInst : public CastInst { protected: /// \brief Clone an identical FPExtInst virtual FPExtInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics FPExtInst( Value *S, ///< The value to be extended Type *Ty, ///< The type to extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics FPExtInst( Value *S, ///< The value to be extended Type *Ty, ///< The type to extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // UIToFPInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast unsigned integer to floating point. class UIToFPInst : public CastInst { protected: /// \brief Clone an identical UIToFPInst virtual UIToFPInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics UIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics UIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SIToFPInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast from signed integer to floating point. class SIToFPInst : public CastInst { protected: /// \brief Clone an identical SIToFPInst virtual SIToFPInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics SIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics SIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToUIInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast from floating point to unsigned integer class FPToUIInst : public CastInst { protected: /// \brief Clone an identical FPToUIInst virtual FPToUIInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics FPToUIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics FPToUIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< Where to insert the new instruction ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToSIInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast from floating point to signed integer. class FPToSIInst : public CastInst { protected: /// \brief Clone an identical FPToSIInst virtual FPToSIInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics FPToSIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics FPToSIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // IntToPtrInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast from an integer to a pointer. class IntToPtrInst : public CastInst { public: /// \brief Constructor with insert-before-instruction semantics IntToPtrInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics IntToPtrInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Clone an identical IntToPtrInst virtual IntToPtrInst *clone_impl() const; /// \brief Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { return getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // PtrToIntInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a cast from a pointer to an integer class PtrToIntInst : public CastInst { protected: /// \brief Clone an identical PtrToIntInst virtual PtrToIntInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics PtrToIntInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics PtrToIntInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// \brief Gets the pointer operand. Value *getPointerOperand() { return getOperand(0); } /// \brief Gets the pointer operand. const Value *getPointerOperand() const { return getOperand(0); } /// \brief Gets the operand index of the pointer operand. static unsigned getPointerOperandIndex() { return 0U; } /// \brief Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // BitCastInst Class //===----------------------------------------------------------------------===// /// \brief This class represents a no-op cast from one type to another. class BitCastInst : public CastInst { protected: /// \brief Clone an identical BitCastInst virtual BitCastInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics BitCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// \brief Constructor with insert-at-end-of-block semantics BitCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; } // End llvm namespace #endif