//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the bison parser for LLVM assembly languages files. // //===----------------------------------------------------------------------===// %{ #include "ParserInternals.h" #include "llvm/CallingConv.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/AutoUpgrade.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" #include #include #include #include // The following is a gross hack. In order to rid the libAsmParser library of // exceptions, we have to have a way of getting the yyparse function to go into // an error situation. So, whenever we want an error to occur, the GenerateError // function (see bottom of file) sets TriggerError. Then, at the end of each // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR // (a goto) to put YACC in error state. Furthermore, several calls to // GenerateError are made from inside productions and they must simulate the // previous exception behavior by exiting the production immediately. We have // replaced these with the GEN_ERROR macro which calls GeneratError and then // immediately invokes YYERROR. This would be so much cleaner if it was a // recursive descent parser. static bool TriggerError = false; #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } } #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; } int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit int yylex(); // declaration" of xxx warnings. int yyparse(); using namespace llvm; static Module *ParserResult; // DEBUG_UPREFS - Define this symbol if you want to enable debugging output // relating to upreferences in the input stream. // //#define DEBUG_UPREFS 1 #ifdef DEBUG_UPREFS #define UR_OUT(X) cerr << X #else #define UR_OUT(X) #endif #define YYERROR_VERBOSE 1 static GlobalVariable *CurGV; // This contains info used when building the body of a function. It is // destroyed when the function is completed. // typedef std::vector ValueList; // Numbered defs static void ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0); static struct PerModuleInfo { Module *CurrentModule; ValueList Values; // Module level numbered definitions ValueList LateResolveValues; std::vector Types; std::map LateResolveTypes; /// PlaceHolderInfo - When temporary placeholder objects are created, remember /// how they were referenced and on which line of the input they came from so /// that we can resolve them later and print error messages as appropriate. std::map > PlaceHolderInfo; // GlobalRefs - This maintains a mapping between 's and forward // references to global values. Global values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. This is used for forward references of GlobalValues. // typedef std::map, GlobalValue*> GlobalRefsType; GlobalRefsType GlobalRefs; void ModuleDone() { // If we could not resolve some functions at function compilation time // (calls to functions before they are defined), resolve them now... Types // are resolved when the constant pool has been completely parsed. // ResolveDefinitions(LateResolveValues); if (TriggerError) return; // Check to make sure that all global value forward references have been // resolved! // if (!GlobalRefs.empty()) { std::string UndefinedReferences = "Unresolved global references exist:\n"; for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); I != E; ++I) { UndefinedReferences += " " + I->first.first->getDescription() + " " + I->first.second.getName() + "\n"; } GenerateError(UndefinedReferences); return; } // Look for intrinsic functions and CallInst that need to be upgraded for (Module::iterator FI = CurrentModule->begin(), FE = CurrentModule->end(); FI != FE; ) UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove Values.clear(); // Clear out function local definitions Types.clear(); CurrentModule = 0; } // GetForwardRefForGlobal - Check to see if there is a forward reference // for this global. If so, remove it from the GlobalRefs map and return it. // If not, just return null. GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { // Check to see if there is a forward reference to this global variable... // if there is, eliminate it and patch the reference to use the new def'n. GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); GlobalValue *Ret = 0; if (I != GlobalRefs.end()) { Ret = I->second; GlobalRefs.erase(I); } return Ret; } bool TypeIsUnresolved(PATypeHolder* PATy) { // If it isn't abstract, its resolved const Type* Ty = PATy->get(); if (!Ty->isAbstract()) return false; // Traverse the type looking for abstract types. If it isn't abstract then // we don't need to traverse that leg of the type. std::vector WorkList, SeenList; WorkList.push_back(Ty); while (!WorkList.empty()) { const Type* Ty = WorkList.back(); SeenList.push_back(Ty); WorkList.pop_back(); if (const OpaqueType* OpTy = dyn_cast(Ty)) { // Check to see if this is an unresolved type std::map::iterator I = LateResolveTypes.begin(); std::map::iterator E = LateResolveTypes.end(); for ( ; I != E; ++I) { if (I->second.get() == OpTy) return true; } } else if (const SequentialType* SeqTy = dyn_cast(Ty)) { const Type* TheTy = SeqTy->getElementType(); if (TheTy->isAbstract() && TheTy != Ty) { std::vector::iterator I = SeenList.begin(), E = SeenList.end(); for ( ; I != E; ++I) if (*I == TheTy) break; if (I == E) WorkList.push_back(TheTy); } } else if (const StructType* StrTy = dyn_cast(Ty)) { for (unsigned i = 0; i < StrTy->getNumElements(); ++i) { const Type* TheTy = StrTy->getElementType(i); if (TheTy->isAbstract() && TheTy != Ty) { std::vector::iterator I = SeenList.begin(), E = SeenList.end(); for ( ; I != E; ++I) if (*I == TheTy) break; if (I == E) WorkList.push_back(TheTy); } } } } return false; } } CurModule; static struct PerFunctionInfo { Function *CurrentFunction; // Pointer to current function being created ValueList Values; // Keep track of #'d definitions unsigned NextValNum; ValueList LateResolveValues; bool isDeclare; // Is this function a forward declararation? GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration. GlobalValue::VisibilityTypes Visibility; /// BBForwardRefs - When we see forward references to basic blocks, keep /// track of them here. std::map BBForwardRefs; inline PerFunctionInfo() { CurrentFunction = 0; isDeclare = false; Linkage = GlobalValue::ExternalLinkage; Visibility = GlobalValue::DefaultVisibility; } inline void FunctionStart(Function *M) { CurrentFunction = M; NextValNum = 0; } void FunctionDone() { // Any forward referenced blocks left? if (!BBForwardRefs.empty()) { GenerateError("Undefined reference to label " + BBForwardRefs.begin()->second->getName()); return; } // Resolve all forward references now. ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); Values.clear(); // Clear out function local definitions BBForwardRefs.clear(); CurrentFunction = 0; isDeclare = false; Linkage = GlobalValue::ExternalLinkage; Visibility = GlobalValue::DefaultVisibility; } } CurFun; // Info for the current function... static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } //===----------------------------------------------------------------------===// // Code to handle definitions of all the types //===----------------------------------------------------------------------===// static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) { // Things that have names or are void typed don't get slot numbers if (V->hasName() || (V->getType() == Type::VoidTy)) return; // In the case of function values, we have to allow for the forward reference // of basic blocks, which are included in the numbering. Consequently, we keep // track of the next insertion location with NextValNum. When a BB gets // inserted, it could change the size of the CurFun.Values vector. if (&ValueTab == &CurFun.Values) { if (ValueTab.size() <= CurFun.NextValNum) ValueTab.resize(CurFun.NextValNum+1); ValueTab[CurFun.NextValNum++] = V; return; } // For all other lists, its okay to just tack it on the back of the vector. ValueTab.push_back(V); } static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { switch (D.Type) { case ValID::LocalID: // Is it a numbered definition? // Module constants occupy the lowest numbered slots... if (D.Num < CurModule.Types.size()) return CurModule.Types[D.Num]; break; case ValID::LocalName: // Is it a named definition? if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) { D.destroy(); // Free old strdup'd memory... return N; } break; default: GenerateError("Internal parser error: Invalid symbol type reference"); return 0; } // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // if (DoNotImprovise) return 0; // Do we just want a null to be returned? if (inFunctionScope()) { if (D.Type == ValID::LocalName) { GenerateError("Reference to an undefined type: '" + D.getName() + "'"); return 0; } else { GenerateError("Reference to an undefined type: #" + utostr(D.Num)); return 0; } } std::map::iterator I =CurModule.LateResolveTypes.find(D); if (I != CurModule.LateResolveTypes.end()) return I->second; Type *Typ = OpaqueType::get(); CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); return Typ; } // getExistingVal - Look up the value specified by the provided type and // the provided ValID. If the value exists and has already been defined, return // it. Otherwise return null. // static Value *getExistingVal(const Type *Ty, const ValID &D) { if (isa(Ty)) { GenerateError("Functions are not values and " "must be referenced as pointers"); return 0; } switch (D.Type) { case ValID::LocalID: { // Is it a numbered definition? // Check that the number is within bounds. if (D.Num >= CurFun.Values.size()) return 0; Value *Result = CurFun.Values[D.Num]; if (Ty != Result->getType()) { GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" + Result->getType()->getDescription() + "' does not match " "expected type, '" + Ty->getDescription() + "'"); return 0; } return Result; } case ValID::GlobalID: { // Is it a numbered definition? if (D.Num >= CurModule.Values.size()) return 0; Value *Result = CurModule.Values[D.Num]; if (Ty != Result->getType()) { GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" + Result->getType()->getDescription() + "' does not match " "expected type, '" + Ty->getDescription() + "'"); return 0; } return Result; } case ValID::LocalName: { // Is it a named definition? if (!inFunctionScope()) return 0; ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable(); Value *N = SymTab.lookup(D.getName()); if (N == 0) return 0; if (N->getType() != Ty) return 0; D.destroy(); // Free old strdup'd memory... return N; } case ValID::GlobalName: { // Is it a named definition? ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable(); Value *N = SymTab.lookup(D.getName()); if (N == 0) return 0; if (N->getType() != Ty) return 0; D.destroy(); // Free old strdup'd memory... return N; } // Check to make sure that "Ty" is an integral type, and that our // value will fit into the specified type... case ValID::ConstSIntVal: // Is it a constant pool reference?? if (!isa(Ty) || !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { GenerateError("Signed integral constant '" + itostr(D.ConstPool64) + "' is invalid for type '" + Ty->getDescription() + "'"); return 0; } return ConstantInt::get(Ty, D.ConstPool64, true); case ValID::ConstUIntVal: // Is it an unsigned const pool reference? if (isa(Ty) && ConstantInt::isValueValidForType(Ty, D.UConstPool64)) return ConstantInt::get(Ty, D.UConstPool64); if (!isa(Ty) || !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { GenerateError("Integral constant '" + utostr(D.UConstPool64) + "' is invalid or out of range for type '" + Ty->getDescription() + "'"); return 0; } // This is really a signed reference. Transmogrify. return ConstantInt::get(Ty, D.ConstPool64, true); case ValID::ConstFPVal: // Is it a floating point const pool reference? if (!Ty->isFloatingPoint() || !ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) { GenerateError("FP constant invalid for type"); return 0; } // Lexer has no type info, so builds all float and double FP constants // as double. Fix this here. Long double does not need this. if (&D.ConstPoolFP->getSemantics() == &APFloat::IEEEdouble && Ty==Type::FloatTy) D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty, *D.ConstPoolFP); case ValID::ConstNullVal: // Is it a null value? if (!isa(Ty)) { GenerateError("Cannot create a a non pointer null"); return 0; } return ConstantPointerNull::get(cast(Ty)); case ValID::ConstUndefVal: // Is it an undef value? return UndefValue::get(Ty); case ValID::ConstZeroVal: // Is it a zero value? return Constant::getNullValue(Ty); case ValID::ConstantVal: // Fully resolved constant? if (D.ConstantValue->getType() != Ty) { GenerateError("Constant expression type different from required type"); return 0; } return D.ConstantValue; case ValID::InlineAsmVal: { // Inline asm expression const PointerType *PTy = dyn_cast(Ty); const FunctionType *FTy = PTy ? dyn_cast(PTy->getElementType()) : 0; if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) { GenerateError("Invalid type for asm constraint string"); return 0; } InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, D.IAD->HasSideEffects); D.destroy(); // Free InlineAsmDescriptor. return IA; } default: assert(0 && "Unhandled case!"); return 0; } // End of switch assert(0 && "Unhandled case!"); return 0; } // getVal - This function is identical to getExistingVal, except that if a // value is not already defined, it "improvises" by creating a placeholder var // that looks and acts just like the requested variable. When the value is // defined later, all uses of the placeholder variable are replaced with the // real thing. // static Value *getVal(const Type *Ty, const ValID &ID) { if (Ty == Type::LabelTy) { GenerateError("Cannot use a basic block here"); return 0; } // See if the value has already been defined. Value *V = getExistingVal(Ty, ID); if (V) return V; if (TriggerError) return 0; if (!Ty->isFirstClassType() && !isa(Ty)) { GenerateError("Invalid use of a composite type"); return 0; } // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // switch (ID.Type) { case ValID::GlobalName: case ValID::GlobalID: { const PointerType *PTy = dyn_cast(Ty); if (!PTy) { GenerateError("Invalid type for reference to global" ); return 0; } const Type* ElTy = PTy->getElementType(); if (const FunctionType *FTy = dyn_cast(ElTy)) V = new Function(FTy, GlobalValue::ExternalLinkage); else V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage, 0, "", (Module*)0, false, PTy->getAddressSpace()); break; } default: V = new Argument(Ty); } // Remember where this forward reference came from. FIXME, shouldn't we try // to recycle these things?? CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID, LLLgetLineNo()))); if (inFunctionScope()) InsertValue(V, CurFun.LateResolveValues); else InsertValue(V, CurModule.LateResolveValues); return V; } /// defineBBVal - This is a definition of a new basic block with the specified /// identifier which must be the same as CurFun.NextValNum, if its numeric. static BasicBlock *defineBBVal(const ValID &ID) { assert(inFunctionScope() && "Can't get basic block at global scope!"); BasicBlock *BB = 0; // First, see if this was forward referenced std::map::iterator BBI = CurFun.BBForwardRefs.find(ID); if (BBI != CurFun.BBForwardRefs.end()) { BB = BBI->second; // The forward declaration could have been inserted anywhere in the // function: insert it into the correct place now. CurFun.CurrentFunction->getBasicBlockList().remove(BB); CurFun.CurrentFunction->getBasicBlockList().push_back(BB); // We're about to erase the entry, save the key so we can clean it up. ValID Tmp = BBI->first; // Erase the forward ref from the map as its no longer "forward" CurFun.BBForwardRefs.erase(ID); // The key has been removed from the map but so we don't want to leave // strdup'd memory around so destroy it too. Tmp.destroy(); // If its a numbered definition, bump the number and set the BB value. if (ID.Type == ValID::LocalID) { assert(ID.Num == CurFun.NextValNum && "Invalid new block number"); InsertValue(BB); } ID.destroy(); return BB; } // We haven't seen this BB before and its first mention is a definition. // Just create it and return it. std::string Name (ID.Type == ValID::LocalName ? ID.getName() : ""); BB = new BasicBlock(Name, CurFun.CurrentFunction); if (ID.Type == ValID::LocalID) { assert(ID.Num == CurFun.NextValNum && "Invalid new block number"); InsertValue(BB); } ID.destroy(); // Free strdup'd memory return BB; } /// getBBVal - get an existing BB value or create a forward reference for it. /// static BasicBlock *getBBVal(const ValID &ID) { assert(inFunctionScope() && "Can't get basic block at global scope!"); BasicBlock *BB = 0; std::map::iterator BBI = CurFun.BBForwardRefs.find(ID); if (BBI != CurFun.BBForwardRefs.end()) { BB = BBI->second; } if (ID.Type == ValID::LocalName) { std::string Name = ID.getName(); Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name); if (N) { if (N->getType()->getTypeID() == Type::LabelTyID) BB = cast(N); else GenerateError("Reference to label '" + Name + "' is actually of type '"+ N->getType()->getDescription() + "'"); } } else if (ID.Type == ValID::LocalID) { if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) { if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID) BB = cast(CurFun.Values[ID.Num]); else GenerateError("Reference to label '%" + utostr(ID.Num) + "' is actually of type '"+ CurFun.Values[ID.Num]->getType()->getDescription() + "'"); } } else { GenerateError("Illegal label reference " + ID.getName()); return 0; } // If its already been defined, return it now. if (BB) { ID.destroy(); // Free strdup'd memory. return BB; } // Otherwise, this block has not been seen before, create it. std::string Name; if (ID.Type == ValID::LocalName) Name = ID.getName(); BB = new BasicBlock(Name, CurFun.CurrentFunction); // Insert it in the forward refs map. CurFun.BBForwardRefs[ID] = BB; return BB; } //===----------------------------------------------------------------------===// // Code to handle forward references in instructions //===----------------------------------------------------------------------===// // // This code handles the late binding needed with statements that reference // values not defined yet... for example, a forward branch, or the PHI node for // a loop body. // // This keeps a table (CurFun.LateResolveValues) of all such forward references // and back patchs after we are done. // // ResolveDefinitions - If we could not resolve some defs at parsing // time (forward branches, phi functions for loops, etc...) resolve the // defs now... // static void ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) { // Loop over LateResolveDefs fixing up stuff that couldn't be resolved while (!LateResolvers.empty()) { Value *V = LateResolvers.back(); LateResolvers.pop_back(); std::map >::iterator PHI = CurModule.PlaceHolderInfo.find(V); assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!"); ValID &DID = PHI->second.first; Value *TheRealValue = getExistingVal(V->getType(), DID); if (TriggerError) return; if (TheRealValue) { V->replaceAllUsesWith(TheRealValue); delete V; CurModule.PlaceHolderInfo.erase(PHI); } else if (FutureLateResolvers) { // Functions have their unresolved items forwarded to the module late // resolver table InsertValue(V, *FutureLateResolvers); } else { if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) { GenerateError("Reference to an invalid definition: '" +DID.getName()+ "' of type '" + V->getType()->getDescription() + "'", PHI->second.second); return; } else { GenerateError("Reference to an invalid definition: #" + itostr(DID.Num) + " of type '" + V->getType()->getDescription() + "'", PHI->second.second); return; } } } LateResolvers.clear(); } // ResolveTypeTo - A brand new type was just declared. This means that (if // name is not null) things referencing Name can be resolved. Otherwise, things // refering to the number can be resolved. Do this now. // static void ResolveTypeTo(std::string *Name, const Type *ToTy) { ValID D; if (Name) D = ValID::createLocalName(*Name); else D = ValID::createLocalID(CurModule.Types.size()); std::map::iterator I = CurModule.LateResolveTypes.find(D); if (I != CurModule.LateResolveTypes.end()) { ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); CurModule.LateResolveTypes.erase(I); } } // setValueName - Set the specified value to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is free'd by this function. // static void setValueName(Value *V, std::string *NameStr) { if (!NameStr) return; std::string Name(*NameStr); // Copy string delete NameStr; // Free old string if (V->getType() == Type::VoidTy) { GenerateError("Can't assign name '" + Name+"' to value with void type"); return; } assert(inFunctionScope() && "Must be in function scope!"); ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable(); if (ST.lookup(Name)) { GenerateError("Redefinition of value '" + Name + "' of type '" + V->getType()->getDescription() + "'"); return; } // Set the name. V->setName(Name); } /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, /// this is a declaration, otherwise it is a definition. static GlobalVariable * ParseGlobalVariable(std::string *NameStr, GlobalValue::LinkageTypes Linkage, GlobalValue::VisibilityTypes Visibility, bool isConstantGlobal, const Type *Ty, Constant *Initializer, bool IsThreadLocal, unsigned AddressSpace = 0) { if (isa(Ty)) { GenerateError("Cannot declare global vars of function type"); return 0; } const PointerType *PTy = PointerType::get(Ty, AddressSpace); std::string Name; if (NameStr) { Name = *NameStr; // Copy string delete NameStr; // Free old string } // See if this global value was forward referenced. If so, recycle the // object. ValID ID; if (!Name.empty()) { ID = ValID::createGlobalName(Name); } else { ID = ValID::createGlobalID(CurModule.Values.size()); } if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { // Move the global to the end of the list, from whereever it was // previously inserted. GlobalVariable *GV = cast(FWGV); CurModule.CurrentModule->getGlobalList().remove(GV); CurModule.CurrentModule->getGlobalList().push_back(GV); GV->setInitializer(Initializer); GV->setLinkage(Linkage); GV->setVisibility(Visibility); GV->setConstant(isConstantGlobal); GV->setThreadLocal(IsThreadLocal); InsertValue(GV, CurModule.Values); return GV; } // If this global has a name if (!Name.empty()) { // if the global we're parsing has an initializer (is a definition) and // has external linkage. if (Initializer && Linkage != GlobalValue::InternalLinkage) // If there is already a global with external linkage with this name if (CurModule.CurrentModule->getGlobalVariable(Name, false)) { // If we allow this GVar to get created, it will be renamed in the // symbol table because it conflicts with an existing GVar. We can't // allow redefinition of GVars whose linking indicates that their name // must stay the same. Issue the error. GenerateError("Redefinition of global variable named '" + Name + "' of type '" + Ty->getDescription() + "'"); return 0; } } // Otherwise there is no existing GV to use, create one now. GlobalVariable *GV = new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, CurModule.CurrentModule, IsThreadLocal, AddressSpace); GV->setVisibility(Visibility); InsertValue(GV, CurModule.Values); return GV; } // setTypeName - Set the specified type to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is freed by this function. // // This function returns true if the type has already been defined, but is // allowed to be redefined in the specified context. If the name is a new name // for the type plane, it is inserted and false is returned. static bool setTypeName(const Type *T, std::string *NameStr) { assert(!inFunctionScope() && "Can't give types function-local names!"); if (NameStr == 0) return false; std::string Name(*NameStr); // Copy string delete NameStr; // Free old string // We don't allow assigning names to void type if (T == Type::VoidTy) { GenerateError("Can't assign name '" + Name + "' to the void type"); return false; } // Set the type name, checking for conflicts as we do so. bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T); if (AlreadyExists) { // Inserting a name that is already defined??? const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); assert(Existing && "Conflict but no matching type?!"); // There is only one case where this is allowed: when we are refining an // opaque type. In this case, Existing will be an opaque type. if (const OpaqueType *OpTy = dyn_cast(Existing)) { // We ARE replacing an opaque type! const_cast(OpTy)->refineAbstractTypeTo(T); return true; } // Otherwise, this is an attempt to redefine a type. That's okay if // the redefinition is identical to the original. This will be so if // Existing and T point to the same Type object. In this one case we // allow the equivalent redefinition. if (Existing == T) return true; // Yes, it's equal. // Any other kind of (non-equivalent) redefinition is an error. GenerateError("Redefinition of type named '" + Name + "' of type '" + T->getDescription() + "'"); } return false; } //===----------------------------------------------------------------------===// // Code for handling upreferences in type names... // // TypeContains - Returns true if Ty directly contains E in it. // static bool TypeContains(const Type *Ty, const Type *E) { return std::find(Ty->subtype_begin(), Ty->subtype_end(), E) != Ty->subtype_end(); } namespace { struct UpRefRecord { // NestingLevel - The number of nesting levels that need to be popped before // this type is resolved. unsigned NestingLevel; // LastContainedTy - This is the type at the current binding level for the // type. Every time we reduce the nesting level, this gets updated. const Type *LastContainedTy; // UpRefTy - This is the actual opaque type that the upreference is // represented with. OpaqueType *UpRefTy; UpRefRecord(unsigned NL, OpaqueType *URTy) : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} }; } // UpRefs - A list of the outstanding upreferences that need to be resolved. static std::vector UpRefs; /// HandleUpRefs - Every time we finish a new layer of types, this function is /// called. It loops through the UpRefs vector, which is a list of the /// currently active types. For each type, if the up reference is contained in /// the newly completed type, we decrement the level count. When the level /// count reaches zero, the upreferenced type is the type that is passed in: /// thus we can complete the cycle. /// static PATypeHolder HandleUpRefs(const Type *ty) { // If Ty isn't abstract, or if there are no up-references in it, then there is // nothing to resolve here. if (!ty->isAbstract() || UpRefs.empty()) return ty; PATypeHolder Ty(ty); UR_OUT("Type '" << Ty->getDescription() << "' newly formed. Resolving upreferences.\n" << UpRefs.size() << " upreferences active!\n"); // If we find any resolvable upreferences (i.e., those whose NestingLevel goes // to zero), we resolve them all together before we resolve them to Ty. At // the end of the loop, if there is anything to resolve to Ty, it will be in // this variable. OpaqueType *TypeToResolve = 0; for (unsigned i = 0; i != UpRefs.size(); ++i) { UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " << UpRefs[i].second->getDescription() << ") = " << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { // Decrement level of upreference unsigned Level = --UpRefs[i].NestingLevel; UpRefs[i].LastContainedTy = Ty; UR_OUT(" Uplevel Ref Level = " << Level << "\n"); if (Level == 0) { // Upreference should be resolved! if (!TypeToResolve) { TypeToResolve = UpRefs[i].UpRefTy; } else { UR_OUT(" * Resolving upreference for " << UpRefs[i].second->getDescription() << "\n"; std::string OldName = UpRefs[i].UpRefTy->getDescription()); UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); UR_OUT(" * Type '" << OldName << "' refined upreference to: " << (const void*)Ty << ", " << Ty->getDescription() << "\n"); } UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... --i; // Do not skip the next element... } } } if (TypeToResolve) { UR_OUT(" * Resolving upreference for " << UpRefs[i].second->getDescription() << "\n"; std::string OldName = TypeToResolve->getDescription()); TypeToResolve->refineAbstractTypeTo(Ty); } return Ty; } //===----------------------------------------------------------------------===// // RunVMAsmParser - Define an interface to this parser //===----------------------------------------------------------------------===// // static Module* RunParser(Module * M); Module *llvm::RunVMAsmParser(llvm::MemoryBuffer *MB) { InitLLLexer(MB); Module *M = RunParser(new Module(LLLgetFilename())); FreeLexer(); return M; } %} %union { llvm::Module *ModuleVal; llvm::Function *FunctionVal; llvm::BasicBlock *BasicBlockVal; llvm::TerminatorInst *TermInstVal; llvm::Instruction *InstVal; llvm::Constant *ConstVal; const llvm::Type *PrimType; std::list *TypeList; llvm::PATypeHolder *TypeVal; llvm::Value *ValueVal; std::vector *ValueList; llvm::ArgListType *ArgList; llvm::TypeWithAttrs TypeWithAttrs; llvm::TypeWithAttrsList *TypeWithAttrsList; llvm::ParamList *ParamList; // Represent the RHS of PHI node std::list > *PHIList; std::vector > *JumpTable; std::vector *ConstVector; llvm::GlobalValue::LinkageTypes Linkage; llvm::GlobalValue::VisibilityTypes Visibility; llvm::ParameterAttributes ParamAttrs; llvm::APInt *APIntVal; int64_t SInt64Val; uint64_t UInt64Val; int SIntVal; unsigned UIntVal; llvm::APFloat *FPVal; bool BoolVal; std::string *StrVal; // This memory must be deleted llvm::ValID ValIDVal; llvm::Instruction::BinaryOps BinaryOpVal; llvm::Instruction::TermOps TermOpVal; llvm::Instruction::MemoryOps MemOpVal; llvm::Instruction::CastOps CastOpVal; llvm::Instruction::OtherOps OtherOpVal; llvm::ICmpInst::Predicate IPredicate; llvm::FCmpInst::Predicate FPredicate; } %type Module %type Function FunctionProto FunctionHeader BasicBlockList %type BasicBlock InstructionList %type BBTerminatorInst %type Inst InstVal MemoryInst %type ConstVal ConstExpr AliaseeRef %type ConstVector %type ArgList ArgListH %type PHIList %type ParamList // For call param lists & GEP indices %type IndexList // For GEP indices %type TypeListI %type ArgTypeList ArgTypeListI %type ArgType %type JumpTable %type GlobalType // GLOBAL or CONSTANT? %type ThreadLocal // 'thread_local' or not %type OptVolatile // 'volatile' or not %type OptTailCall // TAIL CALL or plain CALL. %type OptSideEffect // 'sideeffect' or not. %type GVInternalLinkage GVExternalLinkage %type FunctionDefineLinkage FunctionDeclareLinkage %type AliasLinkage %type GVVisibilityStyle // ValueRef - Unresolved reference to a definition or BB %type ValueRef ConstValueRef SymbolicValueRef %type ResolvedVal // pair %type ReturnedVal // Tokens and types for handling constant integer values // // ESINT64VAL - A negative number within long long range %token ESINT64VAL // EUINT64VAL - A positive number within uns. long long range %token EUINT64VAL // ESAPINTVAL - A negative number with arbitrary precision %token ESAPINTVAL // EUAPINTVAL - A positive number with arbitrary precision %token EUAPINTVAL %token LOCALVAL_ID GLOBALVAL_ID // %123 @123 %token FPVAL // Float or Double constant // Built in types... %type Types ResultTypes %type IntType FPType PrimType // Classifications %token VOID INTTYPE %token FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL %token TYPE %token LOCALVAR GLOBALVAR LABELSTR %token STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT %type LocalName OptLocalName OptLocalAssign %type GlobalName OptGlobalAssign GlobalAssign %type OptSection SectionString OptGC %type OptAlign OptCAlign OptAddrSpace %token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK %token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL %token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING %token DLLIMPORT DLLEXPORT EXTERN_WEAK %token OPAQUE EXTERNAL TARGET TRIPLE ALIGN ADDRSPACE %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT %token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK %token DATALAYOUT %type OptCallingConv %type OptParamAttrs ParamAttr %type OptFuncAttrs FuncAttr // Basic Block Terminating Operators %token RET BR SWITCH INVOKE UNWIND UNREACHABLE // Binary Operators %type ArithmeticOps LogicalOps // Binops Subcatagories %token ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR %token SHL LSHR ASHR %token ICMP FCMP %type IPredicates %type FPredicates %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE // Memory Instructions %token MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR // Cast Operators %type CastOps %token TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST %token UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT // Other Operators %token PHI_TOK SELECT VAARG %token EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR %token GETRESULT // Function Attributes %token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST %token READNONE READONLY GC // Visibility Styles %token DEFAULT HIDDEN PROTECTED %start Module %% // Operations that are notably excluded from this list include: // RET, BR, & SWITCH because they end basic blocks and are treated specially. // ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM; LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR; CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST | UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT; IPredicates : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; } | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; } | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; } | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; } | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; } ; FPredicates : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; } | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; } | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; } | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; } | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; } | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; } | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; } | TRUETOK { $$ = FCmpInst::FCMP_TRUE; } | FALSETOK { $$ = FCmpInst::FCMP_FALSE; } ; // These are some types that allow classification if we only want a particular // thing... for example, only a signed, unsigned, or integral type. IntType : INTTYPE; FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80; LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ; OptLocalName : LocalName | /*empty*/ { $$ = 0; }; OptAddrSpace : ADDRSPACE '(' EUINT64VAL ')' { $$=$3; } | /*empty*/ { $$=0; }; /// OptLocalAssign - Value producing statements have an optional assignment /// component. OptLocalAssign : LocalName '=' { $$ = $1; CHECK_FOR_ERROR } | /*empty*/ { $$ = 0; CHECK_FOR_ERROR }; GlobalName : GLOBALVAR | ATSTRINGCONSTANT ; OptGlobalAssign : GlobalAssign | /*empty*/ { $$ = 0; CHECK_FOR_ERROR }; GlobalAssign : GlobalName '=' { $$ = $1; CHECK_FOR_ERROR }; GVInternalLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } | WEAK { $$ = GlobalValue::WeakLinkage; } | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | APPENDING { $$ = GlobalValue::AppendingLinkage; } | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } ; GVExternalLinkage : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } | EXTERNAL { $$ = GlobalValue::ExternalLinkage; } ; GVVisibilityStyle : /*empty*/ { $$ = GlobalValue::DefaultVisibility; } | DEFAULT { $$ = GlobalValue::DefaultVisibility; } | HIDDEN { $$ = GlobalValue::HiddenVisibility; } | PROTECTED { $$ = GlobalValue::ProtectedVisibility; } ; FunctionDeclareLinkage : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } ; FunctionDefineLinkage : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } | INTERNAL { $$ = GlobalValue::InternalLinkage; } | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | WEAK { $$ = GlobalValue::WeakLinkage; } | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } ; AliasLinkage : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } | WEAK { $$ = GlobalValue::WeakLinkage; } | INTERNAL { $$ = GlobalValue::InternalLinkage; } ; OptCallingConv : /*empty*/ { $$ = CallingConv::C; } | CCC_TOK { $$ = CallingConv::C; } | FASTCC_TOK { $$ = CallingConv::Fast; } | COLDCC_TOK { $$ = CallingConv::Cold; } | X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } | X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } | CC_TOK EUINT64VAL { if ((unsigned)$2 != $2) GEN_ERROR("Calling conv too large"); $$ = $2; CHECK_FOR_ERROR }; ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; } | ZEXT { $$ = ParamAttr::ZExt; } | SIGNEXT { $$ = ParamAttr::SExt; } | SEXT { $$ = ParamAttr::SExt; } | INREG { $$ = ParamAttr::InReg; } | SRET { $$ = ParamAttr::StructRet; } | NOALIAS { $$ = ParamAttr::NoAlias; } | BYVAL { $$ = ParamAttr::ByVal; } | NEST { $$ = ParamAttr::Nest; } | ALIGN EUINT64VAL { $$ = $2 << 16; } ; OptParamAttrs : /* empty */ { $$ = ParamAttr::None; } | OptParamAttrs ParamAttr { $$ = $1 | $2; } ; FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; } | NOUNWIND { $$ = ParamAttr::NoUnwind; } | ZEROEXT { $$ = ParamAttr::ZExt; } | SIGNEXT { $$ = ParamAttr::SExt; } | READNONE { $$ = ParamAttr::ReadNone; } | READONLY { $$ = ParamAttr::ReadOnly; } ; OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; } | OptFuncAttrs FuncAttr { $$ = $1 | $2; } ; OptGC : /* empty */ { $$ = 0; } | GC STRINGCONSTANT { $$ = $2; } ; // OptAlign/OptCAlign - An optional alignment, and an optional alignment with // a comma before it. OptAlign : /*empty*/ { $$ = 0; } | ALIGN EUINT64VAL { $$ = $2; if ($$ != 0 && !isPowerOf2_32($$)) GEN_ERROR("Alignment must be a power of two"); CHECK_FOR_ERROR }; OptCAlign : /*empty*/ { $$ = 0; } | ',' ALIGN EUINT64VAL { $$ = $3; if ($$ != 0 && !isPowerOf2_32($$)) GEN_ERROR("Alignment must be a power of two"); CHECK_FOR_ERROR }; SectionString : SECTION STRINGCONSTANT { for (unsigned i = 0, e = $2->length(); i != e; ++i) if ((*$2)[i] == '"' || (*$2)[i] == '\\') GEN_ERROR("Invalid character in section name"); $$ = $2; CHECK_FOR_ERROR }; OptSection : /*empty*/ { $$ = 0; } | SectionString { $$ = $1; }; // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV // is set to be the global we are processing. // GlobalVarAttributes : /* empty */ {} | ',' GlobalVarAttribute GlobalVarAttributes {}; GlobalVarAttribute : SectionString { CurGV->setSection(*$1); delete $1; CHECK_FOR_ERROR } | ALIGN EUINT64VAL { if ($2 != 0 && !isPowerOf2_32($2)) GEN_ERROR("Alignment must be a power of two"); CurGV->setAlignment($2); CHECK_FOR_ERROR }; //===----------------------------------------------------------------------===// // Types includes all predefined types... except void, because it can only be // used in specific contexts (function returning void for example). // Derived types are added later... // PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ; Types : OPAQUE { $$ = new PATypeHolder(OpaqueType::get()); CHECK_FOR_ERROR } | PrimType { $$ = new PATypeHolder($1); CHECK_FOR_ERROR } | Types OptAddrSpace '*' { // Pointer type? if (*$1 == Type::LabelTy) GEN_ERROR("Cannot form a pointer to a basic block"); $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1, $2))); delete $1; CHECK_FOR_ERROR } | SymbolicValueRef { // Named types are also simple types... const Type* tmp = getTypeVal($1); CHECK_FOR_ERROR $$ = new PATypeHolder(tmp); } | '\\' EUINT64VAL { // Type UpReference if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range"); OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... $$ = new PATypeHolder(OT); UR_OUT("New Upreference!\n"); CHECK_FOR_ERROR } | Types '(' ArgTypeListI ')' OptFuncAttrs { // Allow but ignore attributes on function types; this permits auto-upgrade. // FIXME: remove in LLVM 3.0. const Type* RetTy = *$1; if (!(RetTy->isFirstClassType() || RetTy == Type::VoidTy || isa(RetTy))) GEN_ERROR("LLVM Functions cannot return aggregates"); std::vector Params; TypeWithAttrsList::iterator I = $3->begin(), E = $3->end(); for (; I != E; ++I ) { const Type *Ty = I->Ty->get(); Params.push_back(Ty); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); for (unsigned i = 0; i != Params.size(); ++i) if (!(Params[i]->isFirstClassType() || isa(Params[i]))) GEN_ERROR("Function arguments must be value types!"); CHECK_FOR_ERROR FunctionType *FT = FunctionType::get(RetTy, Params, isVarArg); delete $3; // Delete the argument list delete $1; // Delete the return type handle $$ = new PATypeHolder(HandleUpRefs(FT)); CHECK_FOR_ERROR } | VOID '(' ArgTypeListI ')' OptFuncAttrs { // Allow but ignore attributes on function types; this permits auto-upgrade. // FIXME: remove in LLVM 3.0. std::vector Params; TypeWithAttrsList::iterator I = $3->begin(), E = $3->end(); for ( ; I != E; ++I ) { const Type* Ty = I->Ty->get(); Params.push_back(Ty); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); for (unsigned i = 0; i != Params.size(); ++i) if (!(Params[i]->isFirstClassType() || isa(Params[i]))) GEN_ERROR("Function arguments must be value types!"); CHECK_FOR_ERROR FunctionType *FT = FunctionType::get($1, Params, isVarArg); delete $3; // Delete the argument list $$ = new PATypeHolder(HandleUpRefs(FT)); CHECK_FOR_ERROR } | '[' EUINT64VAL 'x' Types ']' { // Sized array type? $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); delete $4; CHECK_FOR_ERROR } | '<' EUINT64VAL 'x' Types '>' { // Vector type? const llvm::Type* ElemTy = $4->get(); if ((unsigned)$2 != $2) GEN_ERROR("Unsigned result not equal to signed result"); if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger()) GEN_ERROR("Element type of a VectorType must be primitive"); $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2))); delete $4; CHECK_FOR_ERROR } | '{' TypeListI '}' { // Structure type? std::vector Elements; for (std::list::iterator I = $2->begin(), E = $2->end(); I != E; ++I) Elements.push_back(*I); $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); delete $2; CHECK_FOR_ERROR } | '{' '}' { // Empty structure type? $$ = new PATypeHolder(StructType::get(std::vector())); CHECK_FOR_ERROR } | '<' '{' TypeListI '}' '>' { std::vector Elements; for (std::list::iterator I = $3->begin(), E = $3->end(); I != E; ++I) Elements.push_back(*I); $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true))); delete $3; CHECK_FOR_ERROR } | '<' '{' '}' '>' { // Empty structure type? $$ = new PATypeHolder(StructType::get(std::vector(), true)); CHECK_FOR_ERROR } ; ArgType : Types OptParamAttrs { // Allow but ignore attributes on function types; this permits auto-upgrade. // FIXME: remove in LLVM 3.0. $$.Ty = $1; $$.Attrs = ParamAttr::None; } ; ResultTypes : Types { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); if (!(*$1)->isFirstClassType() && (*$1)->getTypeID() != Type::StructTyID) GEN_ERROR("LLVM functions cannot return aggregate types"); $$ = $1; } | VOID { $$ = new PATypeHolder(Type::VoidTy); } ; ArgTypeList : ArgType { $$ = new TypeWithAttrsList(); $$->push_back($1); CHECK_FOR_ERROR } | ArgTypeList ',' ArgType { ($$=$1)->push_back($3); CHECK_FOR_ERROR } ; ArgTypeListI : ArgTypeList | ArgTypeList ',' DOTDOTDOT { $$=$1; TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None; TWA.Ty = new PATypeHolder(Type::VoidTy); $$->push_back(TWA); CHECK_FOR_ERROR } | DOTDOTDOT { $$ = new TypeWithAttrsList; TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None; TWA.Ty = new PATypeHolder(Type::VoidTy); $$->push_back(TWA); CHECK_FOR_ERROR } | /*empty*/ { $$ = new TypeWithAttrsList(); CHECK_FOR_ERROR }; // TypeList - Used for struct declarations and as a basis for function type // declaration type lists // TypeListI : Types { $$ = new std::list(); $$->push_back(*$1); delete $1; CHECK_FOR_ERROR } | TypeListI ',' Types { ($$=$1)->push_back(*$3); delete $3; CHECK_FOR_ERROR }; // ConstVal - The various declarations that go into the constant pool. This // production is used ONLY to represent constants that show up AFTER a 'const', // 'constant' or 'global' token at global scope. Constants that can be inlined // into other expressions (such as integers and constexprs) are handled by the // ResolvedVal, ValueRef and ConstValueRef productions. // ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) GEN_ERROR("Cannot make array constant with type: '" + (*$1)->getDescription() + "'"); const Type *ETy = ATy->getElementType(); int NumElements = ATy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) GEN_ERROR("Type mismatch: constant sized array initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + ""); // Verify all elements are correct type! for (unsigned i = 0; i < $3->size(); i++) { if (ETy != (*$3)[i]->getType()) GEN_ERROR("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ (*$3)[i]->getType()->getDescription() + "'."); } $$ = ConstantArray::get(ATy, *$3); delete $1; delete $3; CHECK_FOR_ERROR } | Types '[' ']' { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) GEN_ERROR("Cannot make array constant with type: '" + (*$1)->getDescription() + "'"); int NumElements = ATy->getNumElements(); if (NumElements != -1 && NumElements != 0) GEN_ERROR("Type mismatch: constant sized array initialized with 0" " arguments, but has size of " + itostr(NumElements) +""); $$ = ConstantArray::get(ATy, std::vector()); delete $1; CHECK_FOR_ERROR } | Types 'c' STRINGCONSTANT { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) GEN_ERROR("Cannot make array constant with type: '" + (*$1)->getDescription() + "'"); int NumElements = ATy->getNumElements(); const Type *ETy = ATy->getElementType(); if (NumElements != -1 && NumElements != int($3->length())) GEN_ERROR("Can't build string constant of size " + itostr((int)($3->length())) + " when array has size " + itostr(NumElements) + ""); std::vector Vals; if (ETy == Type::Int8Ty) { for (unsigned i = 0; i < $3->length(); ++i) Vals.push_back(ConstantInt::get(ETy, (*$3)[i])); } else { delete $3; GEN_ERROR("Cannot build string arrays of non byte sized elements"); } delete $3; $$ = ConstantArray::get(ATy, Vals); delete $1; CHECK_FOR_ERROR } | Types '<' ConstVector '>' { // Nonempty unsized arr if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const VectorType *PTy = dyn_cast($1->get()); if (PTy == 0) GEN_ERROR("Cannot make packed constant with type: '" + (*$1)->getDescription() + "'"); const Type *ETy = PTy->getElementType(); int NumElements = PTy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) GEN_ERROR("Type mismatch: constant sized packed initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + ""); // Verify all elements are correct type! for (unsigned i = 0; i < $3->size(); i++) { if (ETy != (*$3)[i]->getType()) GEN_ERROR("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ (*$3)[i]->getType()->getDescription() + "'."); } $$ = ConstantVector::get(PTy, *$3); delete $1; delete $3; CHECK_FOR_ERROR } | Types '{' ConstVector '}' { const StructType *STy = dyn_cast($1->get()); if (STy == 0) GEN_ERROR("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'"); if ($3->size() != STy->getNumContainedTypes()) GEN_ERROR("Illegal number of initializers for structure type"); // Check to ensure that constants are compatible with the type initializer! for (unsigned i = 0, e = $3->size(); i != e; ++i) if ((*$3)[i]->getType() != STy->getElementType(i)) GEN_ERROR("Expected type '" + STy->getElementType(i)->getDescription() + "' for element #" + utostr(i) + " of structure initializer"); // Check to ensure that Type is not packed if (STy->isPacked()) GEN_ERROR("Unpacked Initializer to vector type '" + STy->getDescription() + "'"); $$ = ConstantStruct::get(STy, *$3); delete $1; delete $3; CHECK_FOR_ERROR } | Types '{' '}' { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const StructType *STy = dyn_cast($1->get()); if (STy == 0) GEN_ERROR("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'"); if (STy->getNumContainedTypes() != 0) GEN_ERROR("Illegal number of initializers for structure type"); // Check to ensure that Type is not packed if (STy->isPacked()) GEN_ERROR("Unpacked Initializer to vector type '" + STy->getDescription() + "'"); $$ = ConstantStruct::get(STy, std::vector()); delete $1; CHECK_FOR_ERROR } | Types '<' '{' ConstVector '}' '>' { const StructType *STy = dyn_cast($1->get()); if (STy == 0) GEN_ERROR("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'"); if ($4->size() != STy->getNumContainedTypes()) GEN_ERROR("Illegal number of initializers for structure type"); // Check to ensure that constants are compatible with the type initializer! for (unsigned i = 0, e = $4->size(); i != e; ++i) if ((*$4)[i]->getType() != STy->getElementType(i)) GEN_ERROR("Expected type '" + STy->getElementType(i)->getDescription() + "' for element #" + utostr(i) + " of structure initializer"); // Check to ensure that Type is packed if (!STy->isPacked()) GEN_ERROR("Vector initializer to non-vector type '" + STy->getDescription() + "'"); $$ = ConstantStruct::get(STy, *$4); delete $1; delete $4; CHECK_FOR_ERROR } | Types '<' '{' '}' '>' { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const StructType *STy = dyn_cast($1->get()); if (STy == 0) GEN_ERROR("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'"); if (STy->getNumContainedTypes() != 0) GEN_ERROR("Illegal number of initializers for structure type"); // Check to ensure that Type is packed if (!STy->isPacked()) GEN_ERROR("Vector initializer to non-vector type '" + STy->getDescription() + "'"); $$ = ConstantStruct::get(STy, std::vector()); delete $1; CHECK_FOR_ERROR } | Types NULL_TOK { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const PointerType *PTy = dyn_cast($1->get()); if (PTy == 0) GEN_ERROR("Cannot make null pointer constant with type: '" + (*$1)->getDescription() + "'"); $$ = ConstantPointerNull::get(PTy); delete $1; CHECK_FOR_ERROR } | Types UNDEF { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); $$ = UndefValue::get($1->get()); delete $1; CHECK_FOR_ERROR } | Types SymbolicValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const PointerType *Ty = dyn_cast($1->get()); if (Ty == 0) GEN_ERROR("Global const reference must be a pointer type " + (*$1)->getDescription()); // ConstExprs can exist in the body of a function, thus creating // GlobalValues whenever they refer to a variable. Because we are in // the context of a function, getExistingVal will search the functions // symbol table instead of the module symbol table for the global symbol, // which throws things all off. To get around this, we just tell // getExistingVal that we are at global scope here. // Function *SavedCurFn = CurFun.CurrentFunction; CurFun.CurrentFunction = 0; Value *V = getExistingVal(Ty, $2); CHECK_FOR_ERROR CurFun.CurrentFunction = SavedCurFn; // If this is an initializer for a constant pointer, which is referencing a // (currently) undefined variable, create a stub now that shall be replaced // in the future with the right type of variable. // if (V == 0) { assert(isa(Ty) && "Globals may only be used as pointers!"); const PointerType *PT = cast(Ty); // First check to see if the forward references value is already created! PerModuleInfo::GlobalRefsType::iterator I = CurModule.GlobalRefs.find(std::make_pair(PT, $2)); if (I != CurModule.GlobalRefs.end()) { V = I->second; // Placeholder already exists, use it... $2.destroy(); } else { std::string Name; if ($2.Type == ValID::GlobalName) Name = $2.getName(); else if ($2.Type != ValID::GlobalID) GEN_ERROR("Invalid reference to global"); // Create the forward referenced global. GlobalValue *GV; if (const FunctionType *FTy = dyn_cast(PT->getElementType())) { GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name, CurModule.CurrentModule); } else { GV = new GlobalVariable(PT->getElementType(), false, GlobalValue::ExternalWeakLinkage, 0, Name, CurModule.CurrentModule); } // Keep track of the fact that we have a forward ref to recycle it CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); V = GV; } } $$ = cast(V); delete $1; // Free the type handle CHECK_FOR_ERROR } | Types ConstExpr { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); if ($1->get() != $2->getType()) GEN_ERROR("Mismatched types for constant expression: " + (*$1)->getDescription() + " and " + $2->getType()->getDescription()); $$ = $2; delete $1; CHECK_FOR_ERROR } | Types ZEROINITIALIZER { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); const Type *Ty = $1->get(); if (isa(Ty) || Ty == Type::LabelTy || isa(Ty)) GEN_ERROR("Cannot create a null initialized value of this type"); $$ = Constant::getNullValue(Ty); delete $1; CHECK_FOR_ERROR } | IntType ESINT64VAL { // integral constants if (!ConstantInt::isValueValidForType($1, $2)) GEN_ERROR("Constant value doesn't fit in type"); $$ = ConstantInt::get($1, $2, true); CHECK_FOR_ERROR } | IntType ESAPINTVAL { // arbitrary precision integer constants uint32_t BitWidth = cast($1)->getBitWidth(); if ($2->getBitWidth() > BitWidth) { GEN_ERROR("Constant value does not fit in type"); } $2->sextOrTrunc(BitWidth); $$ = ConstantInt::get(*$2); delete $2; CHECK_FOR_ERROR } | IntType EUINT64VAL { // integral constants if (!ConstantInt::isValueValidForType($1, $2)) GEN_ERROR("Constant value doesn't fit in type"); $$ = ConstantInt::get($1, $2, false); CHECK_FOR_ERROR } | IntType EUAPINTVAL { // arbitrary precision integer constants uint32_t BitWidth = cast($1)->getBitWidth(); if ($2->getBitWidth() > BitWidth) { GEN_ERROR("Constant value does not fit in type"); } $2->zextOrTrunc(BitWidth); $$ = ConstantInt::get(*$2); delete $2; CHECK_FOR_ERROR } | INTTYPE TRUETOK { // Boolean constants assert(cast($1)->getBitWidth() == 1 && "Not Bool?"); $$ = ConstantInt::getTrue(); CHECK_FOR_ERROR } | INTTYPE FALSETOK { // Boolean constants assert(cast($1)->getBitWidth() == 1 && "Not Bool?"); $$ = ConstantInt::getFalse(); CHECK_FOR_ERROR } | FPType FPVAL { // Floating point constants if (!ConstantFP::isValueValidForType($1, *$2)) GEN_ERROR("Floating point constant invalid for type"); // Lexer has no type info, so builds all float and double FP constants // as double. Fix this here. Long double is done right. if (&$2->getSemantics()==&APFloat::IEEEdouble && $1==Type::FloatTy) $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); $$ = ConstantFP::get($1, *$2); delete $2; CHECK_FOR_ERROR }; ConstExpr: CastOps '(' ConstVal TO Types ')' { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription()); Constant *Val = $3; const Type *DestTy = $5->get(); if (!CastInst::castIsValid($1, $3, DestTy)) GEN_ERROR("invalid cast opcode for cast from '" + Val->getType()->getDescription() + "' to '" + DestTy->getDescription() + "'"); $$ = ConstantExpr::getCast($1, $3, DestTy); delete $5; } | GETELEMENTPTR '(' ConstVal IndexList ')' { if (!isa($3->getType())) GEN_ERROR("GetElementPtr requires a pointer operand"); const Type *IdxTy = GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end(), true); if (!IdxTy) GEN_ERROR("Index list invalid for constant getelementptr"); SmallVector IdxVec; for (unsigned i = 0, e = $4->size(); i != e; ++i) if (Constant *C = dyn_cast((*$4)[i])) IdxVec.push_back(C); else GEN_ERROR("Indices to constant getelementptr must be constants"); delete $4; $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size()); CHECK_FOR_ERROR } | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { if ($3->getType() != Type::Int1Ty) GEN_ERROR("Select condition must be of boolean type"); if ($5->getType() != $7->getType()) GEN_ERROR("Select operand types must match"); $$ = ConstantExpr::getSelect($3, $5, $7); CHECK_FOR_ERROR } | ArithmeticOps '(' ConstVal ',' ConstVal ')' { if ($3->getType() != $5->getType()) GEN_ERROR("Binary operator types must match"); CHECK_FOR_ERROR; $$ = ConstantExpr::get($1, $3, $5); } | LogicalOps '(' ConstVal ',' ConstVal ')' { if ($3->getType() != $5->getType()) GEN_ERROR("Logical operator types must match"); if (!$3->getType()->isInteger()) { if (Instruction::isShift($1) || !isa($3->getType()) || !cast($3->getType())->getElementType()->isInteger()) GEN_ERROR("Logical operator requires integral operands"); } $$ = ConstantExpr::get($1, $3, $5); CHECK_FOR_ERROR } | ICMP IPredicates '(' ConstVal ',' ConstVal ')' { if ($4->getType() != $6->getType()) GEN_ERROR("icmp operand types must match"); $$ = ConstantExpr::getICmp($2, $4, $6); } | FCMP FPredicates '(' ConstVal ',' ConstVal ')' { if ($4->getType() != $6->getType()) GEN_ERROR("fcmp operand types must match"); $$ = ConstantExpr::getFCmp($2, $4, $6); } | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { if (!ExtractElementInst::isValidOperands($3, $5)) GEN_ERROR("Invalid extractelement operands"); $$ = ConstantExpr::getExtractElement($3, $5); CHECK_FOR_ERROR } | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { if (!InsertElementInst::isValidOperands($3, $5, $7)) GEN_ERROR("Invalid insertelement operands"); $$ = ConstantExpr::getInsertElement($3, $5, $7); CHECK_FOR_ERROR } | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { if (!ShuffleVectorInst::isValidOperands($3, $5, $7)) GEN_ERROR("Invalid shufflevector operands"); $$ = ConstantExpr::getShuffleVector($3, $5, $7); CHECK_FOR_ERROR }; // ConstVector - A list of comma separated constants. ConstVector : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); CHECK_FOR_ERROR } | ConstVal { $$ = new std::vector(); $$->push_back($1); CHECK_FOR_ERROR }; // GlobalType - Match either GLOBAL or CONSTANT for global declarations... GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; // ThreadLocal ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; }; // AliaseeRef - Match either GlobalValue or bitcast to GlobalValue. AliaseeRef : ResultTypes SymbolicValueRef { const Type* VTy = $1->get(); Value *V = getVal(VTy, $2); CHECK_FOR_ERROR GlobalValue* Aliasee = dyn_cast(V); if (!Aliasee) GEN_ERROR("Aliases can be created only to global values"); $$ = Aliasee; CHECK_FOR_ERROR delete $1; } | BITCAST '(' AliaseeRef TO Types ')' { Constant *Val = $3; const Type *DestTy = $5->get(); if (!CastInst::castIsValid($1, $3, DestTy)) GEN_ERROR("invalid cast opcode for cast from '" + Val->getType()->getDescription() + "' to '" + DestTy->getDescription() + "'"); $$ = ConstantExpr::getCast($1, $3, DestTy); CHECK_FOR_ERROR delete $5; }; //===----------------------------------------------------------------------===// // Rules to match Modules //===----------------------------------------------------------------------===// // Module rule: Capture the result of parsing the whole file into a result // variable... // Module : DefinitionList { $$ = ParserResult = CurModule.CurrentModule; CurModule.ModuleDone(); CHECK_FOR_ERROR; } | /*empty*/ { $$ = ParserResult = CurModule.CurrentModule; CurModule.ModuleDone(); CHECK_FOR_ERROR; } ; DefinitionList : Definition | DefinitionList Definition ; Definition : DEFINE { CurFun.isDeclare = false; } Function { CurFun.FunctionDone(); CHECK_FOR_ERROR } | DECLARE { CurFun.isDeclare = true; } FunctionProto { CHECK_FOR_ERROR } | MODULE ASM_TOK AsmBlock { CHECK_FOR_ERROR } | OptLocalAssign TYPE Types { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); // Eagerly resolve types. This is not an optimization, this is a // requirement that is due to the fact that we could have this: // // %list = type { %list * } // %list = type { %list * } ; repeated type decl // // If types are not resolved eagerly, then the two types will not be // determined to be the same type! // ResolveTypeTo($1, *$3); if (!setTypeName(*$3, $1) && !$1) { CHECK_FOR_ERROR // If this is a named type that is not a redefinition, add it to the slot // table. CurModule.Types.push_back(*$3); } delete $3; CHECK_FOR_ERROR } | OptLocalAssign TYPE VOID { ResolveTypeTo($1, $3); if (!setTypeName($3, $1) && !$1) { CHECK_FOR_ERROR // If this is a named type that is not a redefinition, add it to the slot // table. CurModule.Types.push_back($3); } CHECK_FOR_ERROR } | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal OptAddrSpace { /* "Externally Visible" Linkage */ if ($5 == 0) GEN_ERROR("Global value initializer is not a constant"); CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage, $2, $4, $5->getType(), $5, $3, $6); CHECK_FOR_ERROR } GlobalVarAttributes { CurGV = 0; } | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType ConstVal OptAddrSpace { if ($6 == 0) GEN_ERROR("Global value initializer is not a constant"); CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4, $7); CHECK_FOR_ERROR } GlobalVarAttributes { CurGV = 0; } | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType Types OptAddrSpace { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription()); CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4, $7); CHECK_FOR_ERROR delete $6; } GlobalVarAttributes { CurGV = 0; CHECK_FOR_ERROR } | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef { std::string Name; if ($1) { Name = *$1; delete $1; } if (Name.empty()) GEN_ERROR("Alias name cannot be empty"); Constant* Aliasee = $5; if (Aliasee == 0) GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name); GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee, CurModule.CurrentModule); GA->setVisibility($2); InsertValue(GA, CurModule.Values); // If there was a forward reference of this alias, resolve it now. ValID ID; if (!Name.empty()) ID = ValID::createGlobalName(Name); else ID = ValID::createGlobalID(CurModule.Values.size()-1); if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(GA->getType(), ID)) { // Replace uses of the fwdref with the actual alias. FWGV->replaceAllUsesWith(GA); if (GlobalVariable *GV = dyn_cast(FWGV)) GV->eraseFromParent(); else cast(FWGV)->eraseFromParent(); } ID.destroy(); CHECK_FOR_ERROR } | TARGET TargetDefinition { CHECK_FOR_ERROR } | DEPLIBS '=' LibrariesDefinition { CHECK_FOR_ERROR } ; AsmBlock : STRINGCONSTANT { const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); if (AsmSoFar.empty()) CurModule.CurrentModule->setModuleInlineAsm(*$1); else CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1); delete $1; CHECK_FOR_ERROR }; TargetDefinition : TRIPLE '=' STRINGCONSTANT { CurModule.CurrentModule->setTargetTriple(*$3); delete $3; } | DATALAYOUT '=' STRINGCONSTANT { CurModule.CurrentModule->setDataLayout(*$3); delete $3; }; LibrariesDefinition : '[' LibList ']'; LibList : LibList ',' STRINGCONSTANT { CurModule.CurrentModule->addLibrary(*$3); delete $3; CHECK_FOR_ERROR } | STRINGCONSTANT { CurModule.CurrentModule->addLibrary(*$1); delete $1; CHECK_FOR_ERROR } | /* empty: end of list */ { CHECK_FOR_ERROR } ; //===----------------------------------------------------------------------===// // Rules to match Function Headers //===----------------------------------------------------------------------===// ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); if (*$3 == Type::VoidTy) GEN_ERROR("void typed arguments are invalid"); ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5; $$ = $1; $1->push_back(E); CHECK_FOR_ERROR } | Types OptParamAttrs OptLocalName { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); if (*$1 == Type::VoidTy) GEN_ERROR("void typed arguments are invalid"); ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3; $$ = new ArgListType; $$->push_back(E); CHECK_FOR_ERROR }; ArgList : ArgListH { $$ = $1; CHECK_FOR_ERROR } | ArgListH ',' DOTDOTDOT { $$ = $1; struct ArgListEntry E; E.Ty = new PATypeHolder(Type::VoidTy); E.Name = 0; E.Attrs = ParamAttr::None; $$->push_back(E); CHECK_FOR_ERROR } | DOTDOTDOT { $$ = new ArgListType; struct ArgListEntry E; E.Ty = new PATypeHolder(Type::VoidTy); E.Name = 0; E.Attrs = ParamAttr::None; $$->push_back(E); CHECK_FOR_ERROR } | /* empty */ { $$ = 0; CHECK_FOR_ERROR }; FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')' OptFuncAttrs OptSection OptAlign OptGC { std::string FunctionName(*$3); delete $3; // Free strdup'd memory! // Check the function result for abstractness if this is a define. We should // have no abstract types at this point if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2)) GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription()); std::vector ParamTypeList; ParamAttrsVector Attrs; if ($7 != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7; Attrs.push_back(PAWI); } if ($5) { // If there are arguments... unsigned index = 1; for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) { const Type* Ty = I->Ty->get(); if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty)) GEN_ERROR("Reference to abstract argument: " + Ty->getDescription()); ParamTypeList.push_back(Ty); if (Ty != Type::VoidTy) if (I->Attrs != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs; Attrs.push_back(PAWI); } } } bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; if (isVarArg) ParamTypeList.pop_back(); const ParamAttrsList *PAL = 0; if (!Attrs.empty()) PAL = ParamAttrsList::get(Attrs); FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg); const PointerType *PFT = PointerType::getUnqual(FT); delete $2; ValID ID; if (!FunctionName.empty()) { ID = ValID::createGlobalName((char*)FunctionName.c_str()); } else { ID = ValID::createGlobalID(CurModule.Values.size()); } Function *Fn = 0; // See if this function was forward referenced. If so, recycle the object. if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { // Move the function to the end of the list, from whereever it was // previously inserted. Fn = cast(FWRef); assert(!Fn->getParamAttrs() && "Forward reference has parameter attributes!"); CurModule.CurrentModule->getFunctionList().remove(Fn); CurModule.CurrentModule->getFunctionList().push_back(Fn); } else if (!FunctionName.empty() && // Merge with an earlier prototype? (Fn = CurModule.CurrentModule->getFunction(FunctionName))) { if (Fn->getFunctionType() != FT ) { // The existing function doesn't have the same type. This is an overload // error. GEN_ERROR("Overload of function '" + FunctionName + "' not permitted."); } else if (Fn->getParamAttrs() != PAL) { // The existing function doesn't have the same parameter attributes. // This is an overload error. GEN_ERROR("Overload of function '" + FunctionName + "' not permitted."); } else if (!CurFun.isDeclare && !Fn->isDeclaration()) { // Neither the existing or the current function is a declaration and they // have the same name and same type. Clearly this is a redefinition. GEN_ERROR("Redefinition of function '" + FunctionName + "'"); } else if (Fn->isDeclaration()) { // Make sure to strip off any argument names so we can't get conflicts. for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); AI != AE; ++AI) AI->setName(""); } } else { // Not already defined? Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName, CurModule.CurrentModule); InsertValue(Fn, CurModule.Values); } CurFun.FunctionStart(Fn); if (CurFun.isDeclare) { // If we have declaration, always overwrite linkage. This will allow us to // correctly handle cases, when pointer to function is passed as argument to // another function. Fn->setLinkage(CurFun.Linkage); Fn->setVisibility(CurFun.Visibility); } Fn->setCallingConv($1); Fn->setParamAttrs(PAL); Fn->setAlignment($9); if ($8) { Fn->setSection(*$8); delete $8; } if ($10) { Fn->setCollector($10->c_str()); delete $10; } // Add all of the arguments we parsed to the function... if ($5) { // Is null if empty... if (isVarArg) { // Nuke the last entry assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 && "Not a varargs marker!"); delete $5->back().Ty; $5->pop_back(); // Delete the last entry } Function::arg_iterator ArgIt = Fn->arg_begin(); Function::arg_iterator ArgEnd = Fn->arg_end(); unsigned Idx = 1; for (ArgListType::iterator I = $5->begin(); I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) { delete I->Ty; // Delete the typeholder... setValueName(ArgIt, I->Name); // Insert arg into symtab... CHECK_FOR_ERROR InsertValue(ArgIt); Idx++; } delete $5; // We're now done with the argument list } CHECK_FOR_ERROR }; BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN { $$ = CurFun.CurrentFunction; // Make sure that we keep track of the linkage type even if there was a // previous "declare". $$->setLinkage($1); $$->setVisibility($2); }; END : ENDTOK | '}'; // Allow end of '}' to end a function Function : BasicBlockList END { $$ = $1; CHECK_FOR_ERROR }; FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH { CurFun.CurrentFunction->setLinkage($1); CurFun.CurrentFunction->setVisibility($2); $$ = CurFun.CurrentFunction; CurFun.FunctionDone(); CHECK_FOR_ERROR }; //===----------------------------------------------------------------------===// // Rules to match Basic Blocks //===----------------------------------------------------------------------===// OptSideEffect : /* empty */ { $$ = false; CHECK_FOR_ERROR } | SIDEEFFECT { $$ = true; CHECK_FOR_ERROR }; ConstValueRef : ESINT64VAL { // A reference to a direct constant $$ = ValID::create($1); CHECK_FOR_ERROR } | EUINT64VAL { $$ = ValID::create($1); CHECK_FOR_ERROR } | FPVAL { // Perhaps it's an FP constant? $$ = ValID::create($1); CHECK_FOR_ERROR } | TRUETOK { $$ = ValID::create(ConstantInt::getTrue()); CHECK_FOR_ERROR } | FALSETOK { $$ = ValID::create(ConstantInt::getFalse()); CHECK_FOR_ERROR } | NULL_TOK { $$ = ValID::createNull(); CHECK_FOR_ERROR } | UNDEF { $$ = ValID::createUndef(); CHECK_FOR_ERROR } | ZEROINITIALIZER { // A vector zero constant. $$ = ValID::createZeroInit(); CHECK_FOR_ERROR } | '<' ConstVector '>' { // Nonempty unsized packed vector const Type *ETy = (*$2)[0]->getType(); int NumElements = $2->size(); VectorType* pt = VectorType::get(ETy, NumElements); PATypeHolder* PTy = new PATypeHolder( HandleUpRefs( VectorType::get( ETy, NumElements) ) ); // Verify all elements are correct type! for (unsigned i = 0; i < $2->size(); i++) { if (ETy != (*$2)[i]->getType()) GEN_ERROR("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '" + (*$2)[i]->getType()->getDescription() + "'."); } $$ = ValID::create(ConstantVector::get(pt, *$2)); delete PTy; delete $2; CHECK_FOR_ERROR } | ConstExpr { $$ = ValID::create($1); CHECK_FOR_ERROR } | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { $$ = ValID::createInlineAsm(*$3, *$5, $2); delete $3; delete $5; CHECK_FOR_ERROR }; // SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value. // SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...? $$ = ValID::createLocalID($1); CHECK_FOR_ERROR } | GLOBALVAL_ID { $$ = ValID::createGlobalID($1); CHECK_FOR_ERROR } | LocalName { // Is it a named reference...? $$ = ValID::createLocalName(*$1); delete $1; CHECK_FOR_ERROR } | GlobalName { // Is it a named reference...? $$ = ValID::createGlobalName(*$1); delete $1; CHECK_FOR_ERROR }; // ValueRef - A reference to a definition... either constant or symbolic ValueRef : SymbolicValueRef | ConstValueRef; // ResolvedVal - a pair. This is used only in cases where the // type immediately preceeds the value reference, and allows complex constant // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') ResolvedVal : Types ValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); $$ = getVal(*$1, $2); delete $1; CHECK_FOR_ERROR } ; ReturnedVal : ResolvedVal { $$ = new std::vector(); $$->push_back($1); CHECK_FOR_ERROR } | ReturnedVal ',' ConstVal { ($$=$1)->push_back($3); CHECK_FOR_ERROR }; BasicBlockList : BasicBlockList BasicBlock { $$ = $1; CHECK_FOR_ERROR } | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks $$ = $1; CHECK_FOR_ERROR }; // Basic blocks are terminated by branching instructions: // br, br/cc, switch, ret // BasicBlock : InstructionList OptLocalAssign BBTerminatorInst { setValueName($3, $2); CHECK_FOR_ERROR InsertValue($3); $1->getInstList().push_back($3); $$ = $1; CHECK_FOR_ERROR }; InstructionList : InstructionList Inst { if (CastInst *CI1 = dyn_cast($2)) if (CastInst *CI2 = dyn_cast(CI1->getOperand(0))) if (CI2->getParent() == 0) $1->getInstList().push_back(CI2); $1->getInstList().push_back($2); $$ = $1; CHECK_FOR_ERROR } | /* empty */ { // Empty space between instruction lists $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum)); CHECK_FOR_ERROR } | LABELSTR { // Labelled (named) basic block $$ = defineBBVal(ValID::createLocalName(*$1)); delete $1; CHECK_FOR_ERROR }; BBTerminatorInst : RET ReturnedVal { // Return with a result... if($2->size() == 1) $$ = new ReturnInst($2->back()); else { std::vector Elements; std::vector Vals; for (std::vector::iterator I = $2->begin(), E = $2->end(); I != E; ++I) { Value *V = *I; Constant *C = cast(V); Elements.push_back(V->getType()); Vals.push_back(C); } const StructType *STy = StructType::get(Elements); PATypeHolder *PTy = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); Constant *CS = ConstantStruct::get(STy, Vals); // *$2); $$ = new ReturnInst(CS); delete PTy; } delete $2; CHECK_FOR_ERROR } | RET VOID { // Return with no result... $$ = new ReturnInst(); CHECK_FOR_ERROR } | BR LABEL ValueRef { // Unconditional Branch... BasicBlock* tmpBB = getBBVal($3); CHECK_FOR_ERROR $$ = new BranchInst(tmpBB); } // Conditional Branch... | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { assert(cast($2)->getBitWidth() == 1 && "Not Bool?"); BasicBlock* tmpBBA = getBBVal($6); CHECK_FOR_ERROR BasicBlock* tmpBBB = getBBVal($9); CHECK_FOR_ERROR Value* tmpVal = getVal(Type::Int1Ty, $3); CHECK_FOR_ERROR $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal); } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { Value* tmpVal = getVal($2, $3); CHECK_FOR_ERROR BasicBlock* tmpBB = getBBVal($6); CHECK_FOR_ERROR SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size()); $$ = S; std::vector >::iterator I = $8->begin(), E = $8->end(); for (; I != E; ++I) { if (ConstantInt *CI = dyn_cast(I->first)) S->addCase(CI, I->second); else GEN_ERROR("Switch case is constant, but not a simple integer"); } delete $8; CHECK_FOR_ERROR } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { Value* tmpVal = getVal($2, $3); CHECK_FOR_ERROR BasicBlock* tmpBB = getBBVal($6); CHECK_FOR_ERROR SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0); $$ = S; CHECK_FOR_ERROR } | INVOKE OptCallingConv ResultTypes ValueRef '(' ParamList ')' OptFuncAttrs TO LABEL ValueRef UNWIND LABEL ValueRef { // Handle the short syntax const PointerType *PFTy = 0; const FunctionType *Ty = 0; if (!(PFTy = dyn_cast($3->get())) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; ParamList::iterator I = $6->begin(), E = $6->end(); for (; I != E; ++I) { const Type *Ty = I->Val->getType(); if (Ty == Type::VoidTy) GEN_ERROR("Short call syntax cannot be used with varargs"); ParamTypes.push_back(Ty); } Ty = FunctionType::get($3->get(), ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } delete $3; Value *V = getVal(PFTy, $4); // Get the function we're calling... CHECK_FOR_ERROR BasicBlock *Normal = getBBVal($11); CHECK_FOR_ERROR BasicBlock *Except = getBBVal($14); CHECK_FOR_ERROR ParamAttrsVector Attrs; if ($8 != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8; Attrs.push_back(PAWI); } // Check the arguments ValueList Args; if ($6->empty()) { // Has no arguments? // Make sure no arguments is a good thing! if (Ty->getNumParams() != 0) GEN_ERROR("No arguments passed to a function that " "expects arguments"); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); ParamList::iterator ArgI = $6->begin(), ArgE = $6->end(); unsigned index = 1; for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) { if (ArgI->Val->getType() != *I) GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" + (*I)->getDescription() + "'"); Args.push_back(ArgI->Val); if (ArgI->Attrs != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = ArgI->Attrs; Attrs.push_back(PAWI); } } if (Ty->isVarArg()) { if (I == E) for (; ArgI != ArgE; ++ArgI, ++index) { Args.push_back(ArgI->Val); // push the remaining varargs if (ArgI->Attrs != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = ArgI->Attrs; Attrs.push_back(PAWI); } } } else if (I != E || ArgI != ArgE) GEN_ERROR("Invalid number of parameters detected"); } const ParamAttrsList *PAL = 0; if (!Attrs.empty()) PAL = ParamAttrsList::get(Attrs); // Create the InvokeInst InvokeInst *II = new InvokeInst(V, Normal, Except, Args.begin(), Args.end()); II->setCallingConv($2); II->setParamAttrs(PAL); $$ = II; delete $6; CHECK_FOR_ERROR } | UNWIND { $$ = new UnwindInst(); CHECK_FOR_ERROR } | UNREACHABLE { $$ = new UnreachableInst(); CHECK_FOR_ERROR }; JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { $$ = $1; Constant *V = cast(getExistingVal($2, $3)); CHECK_FOR_ERROR if (V == 0) GEN_ERROR("May only switch on a constant pool value"); BasicBlock* tmpBB = getBBVal($6); CHECK_FOR_ERROR $$->push_back(std::make_pair(V, tmpBB)); } | IntType ConstValueRef ',' LABEL ValueRef { $$ = new std::vector >(); Constant *V = cast(getExistingVal($1, $2)); CHECK_FOR_ERROR if (V == 0) GEN_ERROR("May only switch on a constant pool value"); BasicBlock* tmpBB = getBBVal($5); CHECK_FOR_ERROR $$->push_back(std::make_pair(V, tmpBB)); }; Inst : OptLocalAssign InstVal { // Is this definition named?? if so, assign the name... setValueName($2, $1); CHECK_FOR_ERROR InsertValue($2); $$ = $2; CHECK_FOR_ERROR }; PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); $$ = new std::list >(); Value* tmpVal = getVal(*$1, $3); CHECK_FOR_ERROR BasicBlock* tmpBB = getBBVal($5); CHECK_FOR_ERROR $$->push_back(std::make_pair(tmpVal, tmpBB)); delete $1; } | PHIList ',' '[' ValueRef ',' ValueRef ']' { $$ = $1; Value* tmpVal = getVal($1->front().first->getType(), $4); CHECK_FOR_ERROR BasicBlock* tmpBB = getBBVal($6); CHECK_FOR_ERROR $1->push_back(std::make_pair(tmpVal, tmpBB)); }; ParamList : Types OptParamAttrs ValueRef OptParamAttrs { // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); // Used for call and invoke instructions $$ = new ParamList(); ParamListEntry E; E.Attrs = $2 | $4; E.Val = getVal($1->get(), $3); $$->push_back(E); delete $1; CHECK_FOR_ERROR } | LABEL OptParamAttrs ValueRef OptParamAttrs { // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 // Labels are only valid in ASMs $$ = new ParamList(); ParamListEntry E; E.Attrs = $2 | $4; E.Val = getBBVal($3); $$->push_back(E); CHECK_FOR_ERROR } | ParamList ',' Types OptParamAttrs ValueRef OptParamAttrs { // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); $$ = $1; ParamListEntry E; E.Attrs = $4 | $6; E.Val = getVal($3->get(), $5); $$->push_back(E); delete $3; CHECK_FOR_ERROR } | ParamList ',' LABEL OptParamAttrs ValueRef OptParamAttrs { // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 $$ = $1; ParamListEntry E; E.Attrs = $4 | $6; E.Val = getBBVal($5); $$->push_back(E); CHECK_FOR_ERROR } | /*empty*/ { $$ = new ParamList(); }; IndexList // Used for gep instructions and constant expressions : /*empty*/ { $$ = new std::vector(); } | IndexList ',' ResolvedVal { $$ = $1; $$->push_back($3); CHECK_FOR_ERROR } ; OptTailCall : TAIL CALL { $$ = true; CHECK_FOR_ERROR } | CALL { $$ = false; CHECK_FOR_ERROR }; InstVal : ArithmeticOps Types ValueRef ',' ValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && !isa((*$2).get())) GEN_ERROR( "Arithmetic operator requires integer, FP, or packed operands"); Value* val1 = getVal(*$2, $3); CHECK_FOR_ERROR Value* val2 = getVal(*$2, $5); CHECK_FOR_ERROR $$ = BinaryOperator::create($1, val1, val2); if ($$ == 0) GEN_ERROR("binary operator returned null"); delete $2; } | LogicalOps Types ValueRef ',' ValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); if (!(*$2)->isInteger()) { if (Instruction::isShift($1) || !isa($2->get()) || !cast($2->get())->getElementType()->isInteger()) GEN_ERROR("Logical operator requires integral operands"); } Value* tmpVal1 = getVal(*$2, $3); CHECK_FOR_ERROR Value* tmpVal2 = getVal(*$2, $5); CHECK_FOR_ERROR $$ = BinaryOperator::create($1, tmpVal1, tmpVal2); if ($$ == 0) GEN_ERROR("binary operator returned null"); delete $2; } | ICMP IPredicates Types ValueRef ',' ValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); if (isa((*$3).get())) GEN_ERROR("Vector types not supported by icmp instruction"); Value* tmpVal1 = getVal(*$3, $4); CHECK_FOR_ERROR Value* tmpVal2 = getVal(*$3, $6); CHECK_FOR_ERROR $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2); if ($$ == 0) GEN_ERROR("icmp operator returned null"); delete $3; } | FCMP FPredicates Types ValueRef ',' ValueRef { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); if (isa((*$3).get())) GEN_ERROR("Vector types not supported by fcmp instruction"); Value* tmpVal1 = getVal(*$3, $4); CHECK_FOR_ERROR Value* tmpVal2 = getVal(*$3, $6); CHECK_FOR_ERROR $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2); if ($$ == 0) GEN_ERROR("fcmp operator returned null"); delete $3; } | CastOps ResolvedVal TO Types { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription()); Value* Val = $2; const Type* DestTy = $4->get(); if (!CastInst::castIsValid($1, Val, DestTy)) GEN_ERROR("invalid cast opcode for cast from '" + Val->getType()->getDescription() + "' to '" + DestTy->getDescription() + "'"); $$ = CastInst::create($1, Val, DestTy); delete $4; } | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { if ($2->getType() != Type::Int1Ty) GEN_ERROR("select condition must be boolean"); if ($4->getType() != $6->getType()) GEN_ERROR("select value types should match"); $$ = new SelectInst($2, $4, $6); CHECK_FOR_ERROR } | VAARG ResolvedVal ',' Types { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription()); $$ = new VAArgInst($2, *$4); delete $4; CHECK_FOR_ERROR } | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { if (!ExtractElementInst::isValidOperands($2, $4)) GEN_ERROR("Invalid extractelement operands"); $$ = new ExtractElementInst($2, $4); CHECK_FOR_ERROR } | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { if (!InsertElementInst::isValidOperands($2, $4, $6)) GEN_ERROR("Invalid insertelement operands"); $$ = new InsertElementInst($2, $4, $6); CHECK_FOR_ERROR } | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { if (!ShuffleVectorInst::isValidOperands($2, $4, $6)) GEN_ERROR("Invalid shufflevector operands"); $$ = new ShuffleVectorInst($2, $4, $6); CHECK_FOR_ERROR } | PHI_TOK PHIList { const Type *Ty = $2->front().first->getType(); if (!Ty->isFirstClassType()) GEN_ERROR("PHI node operands must be of first class type"); $$ = new PHINode(Ty); ((PHINode*)$$)->reserveOperandSpace($2->size()); while ($2->begin() != $2->end()) { if ($2->front().first->getType() != Ty) GEN_ERROR("All elements of a PHI node must be of the same type"); cast($$)->addIncoming($2->front().first, $2->front().second); $2->pop_front(); } delete $2; // Free the list... CHECK_FOR_ERROR } | OptTailCall OptCallingConv ResultTypes ValueRef '(' ParamList ')' OptFuncAttrs { // Handle the short syntax const PointerType *PFTy = 0; const FunctionType *Ty = 0; if (!(PFTy = dyn_cast($3->get())) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; ParamList::iterator I = $6->begin(), E = $6->end(); for (; I != E; ++I) { const Type *Ty = I->Val->getType(); if (Ty == Type::VoidTy) GEN_ERROR("Short call syntax cannot be used with varargs"); ParamTypes.push_back(Ty); } Ty = FunctionType::get($3->get(), ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } Value *V = getVal(PFTy, $4); // Get the function we're calling... CHECK_FOR_ERROR // Check for call to invalid intrinsic to avoid crashing later. if (Function *theF = dyn_cast(V)) { if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) && (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) && !theF->getIntrinsicID(true)) GEN_ERROR("Call to invalid LLVM intrinsic function '" + theF->getName() + "'"); } // Set up the ParamAttrs for the function ParamAttrsVector Attrs; if ($8 != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8; Attrs.push_back(PAWI); } // Check the arguments ValueList Args; if ($6->empty()) { // Has no arguments? // Make sure no arguments is a good thing! if (Ty->getNumParams() != 0) GEN_ERROR("No arguments passed to a function that " "expects arguments"); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); ParamList::iterator ArgI = $6->begin(), ArgE = $6->end(); unsigned index = 1; for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) { if (ArgI->Val->getType() != *I) GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" + (*I)->getDescription() + "'"); Args.push_back(ArgI->Val); if (ArgI->Attrs != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = ArgI->Attrs; Attrs.push_back(PAWI); } } if (Ty->isVarArg()) { if (I == E) for (; ArgI != ArgE; ++ArgI, ++index) { Args.push_back(ArgI->Val); // push the remaining varargs if (ArgI->Attrs != ParamAttr::None) { ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = ArgI->Attrs; Attrs.push_back(PAWI); } } } else if (I != E || ArgI != ArgE) GEN_ERROR("Invalid number of parameters detected"); } // Finish off the ParamAttrs and check them const ParamAttrsList *PAL = 0; if (!Attrs.empty()) PAL = ParamAttrsList::get(Attrs); // Create the call node CallInst *CI = new CallInst(V, Args.begin(), Args.end()); CI->setTailCall($1); CI->setCallingConv($2); CI->setParamAttrs(PAL); $$ = CI; delete $6; delete $3; CHECK_FOR_ERROR } | MemoryInst { $$ = $1; CHECK_FOR_ERROR }; OptVolatile : VOLATILE { $$ = true; CHECK_FOR_ERROR } | /* empty */ { $$ = false; CHECK_FOR_ERROR }; MemoryInst : MALLOC Types OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); $$ = new MallocInst(*$2, 0, $3); delete $2; CHECK_FOR_ERROR } | MALLOC Types ',' INTTYPE ValueRef OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); Value* tmpVal = getVal($4, $5); CHECK_FOR_ERROR $$ = new MallocInst(*$2, tmpVal, $6); delete $2; } | ALLOCA Types OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); $$ = new AllocaInst(*$2, 0, $3); delete $2; CHECK_FOR_ERROR } | ALLOCA Types ',' INTTYPE ValueRef OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); Value* tmpVal = getVal($4, $5); CHECK_FOR_ERROR $$ = new AllocaInst(*$2, tmpVal, $6); delete $2; } | FREE ResolvedVal { if (!isa($2->getType())) GEN_ERROR("Trying to free nonpointer type " + $2->getType()->getDescription() + ""); $$ = new FreeInst($2); CHECK_FOR_ERROR } | OptVolatile LOAD Types ValueRef OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); if (!isa($3->get())) GEN_ERROR("Can't load from nonpointer type: " + (*$3)->getDescription()); if (!cast($3->get())->getElementType()->isFirstClassType()) GEN_ERROR("Can't load from pointer of non-first-class type: " + (*$3)->getDescription()); Value* tmpVal = getVal(*$3, $4); CHECK_FOR_ERROR $$ = new LoadInst(tmpVal, "", $1, $5); delete $3; } | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription()); const PointerType *PT = dyn_cast($5->get()); if (!PT) GEN_ERROR("Can't store to a nonpointer type: " + (*$5)->getDescription()); const Type *ElTy = PT->getElementType(); if (ElTy != $3->getType()) GEN_ERROR("Can't store '" + $3->getType()->getDescription() + "' into space of type '" + ElTy->getDescription() + "'"); Value* tmpVal = getVal(*$5, $6); CHECK_FOR_ERROR $$ = new StoreInst($3, tmpVal, $1, $7); delete $5; } | GETRESULT Types LocalName ',' EUINT64VAL { ValID TmpVID = ValID::createLocalName(*$3); Value *TmpVal = getVal($2->get(), TmpVID); if (!GetResultInst::isValidOperands(TmpVal, $5)) GEN_ERROR("Invalid getresult operands"); $$ = new GetResultInst(TmpVal, $5); CHECK_FOR_ERROR } | GETELEMENTPTR Types ValueRef IndexList { if (!UpRefs.empty()) GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); if (!isa($2->get())) GEN_ERROR("getelementptr insn requires pointer operand"); if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end(), true)) GEN_ERROR("Invalid getelementptr indices for type '" + (*$2)->getDescription()+ "'"); Value* tmpVal = getVal(*$2, $3); CHECK_FOR_ERROR $$ = new GetElementPtrInst(tmpVal, $4->begin(), $4->end()); delete $2; delete $4; }; %% // common code from the two 'RunVMAsmParser' functions static Module* RunParser(Module * M) { CurModule.CurrentModule = M; // Check to make sure the parser succeeded if (yyparse()) { if (ParserResult) delete ParserResult; return 0; } // Emit an error if there are any unresolved types left. if (!CurModule.LateResolveTypes.empty()) { const ValID &DID = CurModule.LateResolveTypes.begin()->first; if (DID.Type == ValID::LocalName) { GenerateError("Undefined type remains at eof: '"+DID.getName() + "'"); } else { GenerateError("Undefined type remains at eof: #" + itostr(DID.Num)); } if (ParserResult) delete ParserResult; return 0; } // Emit an error if there are any unresolved values left. if (!CurModule.LateResolveValues.empty()) { Value *V = CurModule.LateResolveValues.back(); std::map >::iterator I = CurModule.PlaceHolderInfo.find(V); if (I != CurModule.PlaceHolderInfo.end()) { ValID &DID = I->second.first; if (DID.Type == ValID::LocalName) { GenerateError("Undefined value remains at eof: "+DID.getName() + "'"); } else { GenerateError("Undefined value remains at eof: #" + itostr(DID.Num)); } if (ParserResult) delete ParserResult; return 0; } } // Check to make sure that parsing produced a result if (!ParserResult) return 0; // Reset ParserResult variable while saving its value for the result. Module *Result = ParserResult; ParserResult = 0; return Result; } void llvm::GenerateError(const std::string &message, int LineNo) { if (LineNo == -1) LineNo = LLLgetLineNo(); // TODO: column number in exception if (TheParseError) TheParseError->setError(LLLgetFilename(), message, LineNo); TriggerError = 1; } int yyerror(const char *ErrorMsg) { std::string where = LLLgetFilename() + ":" + utostr(LLLgetLineNo()) + ": "; std::string errMsg = where + "error: " + std::string(ErrorMsg); if (yychar != YYEMPTY && yychar != 0) { errMsg += " while reading token: '"; errMsg += std::string(LLLgetTokenStart(), LLLgetTokenStart()+LLLgetTokenLength()) + "'"; } GenerateError(errMsg); return 0; }