//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transform is designed to eliminate unreachable internal globals from the // program. It uses an aggressive algorithm, searching out globals that are // known to be alive. After it finds all of the globals which are needed, it // deletes whatever is left over. This allows it to delete recursive chunks of // the program which are unreachable. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "globaldce" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include using namespace llvm; STATISTIC(NumAliases , "Number of global aliases removed"); STATISTIC(NumFunctions, "Number of functions removed"); STATISTIC(NumVariables, "Number of global variables removed"); namespace { struct VISIBILITY_HIDDEN GlobalDCE : public ModulePass { static char ID; // Pass identification, replacement for typeid GlobalDCE() : ModulePass(&ID) {} // run - Do the GlobalDCE pass on the specified module, optionally updating // the specified callgraph to reflect the changes. // bool runOnModule(Module &M); private: std::set AliveGlobals; /// GlobalIsNeeded - mark the specific global value as needed, and /// recursively mark anything that it uses as also needed. void GlobalIsNeeded(GlobalValue *GV); void MarkUsedGlobalsAsNeeded(Constant *C); bool SafeToDestroyConstant(Constant* C); bool RemoveUnusedGlobalValue(GlobalValue &GV); }; } char GlobalDCE::ID = 0; static RegisterPass X("globaldce", "Dead Global Elimination"); ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCE(); } bool GlobalDCE::runOnModule(Module &M) { bool Changed = false; // Loop over the module, adding globals which are obviously necessary. for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { Changed |= RemoveUnusedGlobalValue(*I); // Functions with external linkage are needed if they have a body if (!I->hasLocalLinkage() && !I->hasLinkOnceLinkage() && !I->isDeclaration()) GlobalIsNeeded(I); } for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { Changed |= RemoveUnusedGlobalValue(*I); // Externally visible & appending globals are needed, if they have an // initializer. if (!I->hasLocalLinkage() && !I->hasLinkOnceLinkage() && !I->isDeclaration()) GlobalIsNeeded(I); } for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { Changed |= RemoveUnusedGlobalValue(*I); // Externally visible aliases are needed. if (!I->hasLocalLinkage() && !I->hasLinkOnceLinkage()) GlobalIsNeeded(I); } // Now that all globals which are needed are in the AliveGlobals set, we loop // through the program, deleting those which are not alive. // // The first pass is to drop initializers of global variables which are dead. std::vector DeadGlobalVars; // Keep track of dead globals for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!AliveGlobals.count(I)) { DeadGlobalVars.push_back(I); // Keep track of dead globals I->setInitializer(0); } // The second pass drops the bodies of functions which are dead... std::vector DeadFunctions; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!AliveGlobals.count(I)) { DeadFunctions.push_back(I); // Keep track of dead globals if (!I->isDeclaration()) I->deleteBody(); } // The third pass drops targets of aliases which are dead... std::vector DeadAliases; for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) if (!AliveGlobals.count(I)) { DeadAliases.push_back(I); I->setAliasee(0); } if (!DeadFunctions.empty()) { // Now that all interferences have been dropped, delete the actual objects // themselves. for (unsigned i = 0, e = DeadFunctions.size(); i != e; ++i) { RemoveUnusedGlobalValue(*DeadFunctions[i]); M.getFunctionList().erase(DeadFunctions[i]); } NumFunctions += DeadFunctions.size(); Changed = true; } if (!DeadGlobalVars.empty()) { for (unsigned i = 0, e = DeadGlobalVars.size(); i != e; ++i) { RemoveUnusedGlobalValue(*DeadGlobalVars[i]); M.getGlobalList().erase(DeadGlobalVars[i]); } NumVariables += DeadGlobalVars.size(); Changed = true; } // Now delete any dead aliases. if (!DeadAliases.empty()) { for (unsigned i = 0, e = DeadAliases.size(); i != e; ++i) { RemoveUnusedGlobalValue(*DeadAliases[i]); M.getAliasList().erase(DeadAliases[i]); } NumAliases += DeadAliases.size(); Changed = true; } // Make sure that all memory is released AliveGlobals.clear(); return Changed; } /// GlobalIsNeeded - the specific global value as needed, and /// recursively mark anything that it uses as also needed. void GlobalDCE::GlobalIsNeeded(GlobalValue *G) { std::set::iterator I = AliveGlobals.find(G); // If the global is already in the set, no need to reprocess it. if (I != AliveGlobals.end()) return; // Otherwise insert it now, so we do not infinitely recurse AliveGlobals.insert(I, G); if (GlobalVariable *GV = dyn_cast(G)) { // If this is a global variable, we must make sure to add any global values // referenced by the initializer to the alive set. if (GV->hasInitializer()) MarkUsedGlobalsAsNeeded(GV->getInitializer()); } else if (GlobalAlias *GA = dyn_cast(G)) { // The target of a global alias is needed. MarkUsedGlobalsAsNeeded(GA->getAliasee()); } else { // Otherwise this must be a function object. We have to scan the body of // the function looking for constants and global values which are used as // operands. Any operands of these types must be processed to ensure that // any globals used will be marked as needed. Function *F = cast(G); // For all basic blocks... for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) // For all instructions... for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) // For all operands... for (User::op_iterator U = I->op_begin(), E = I->op_end(); U != E; ++U) if (GlobalValue *GV = dyn_cast(*U)) GlobalIsNeeded(GV); else if (Constant *C = dyn_cast(*U)) MarkUsedGlobalsAsNeeded(C); } } void GlobalDCE::MarkUsedGlobalsAsNeeded(Constant *C) { if (GlobalValue *GV = dyn_cast(C)) GlobalIsNeeded(GV); else { // Loop over all of the operands of the constant, adding any globals they // use to the list of needed globals. for (User::op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) MarkUsedGlobalsAsNeeded(cast(*I)); } } // RemoveUnusedGlobalValue - Loop over all of the uses of the specified // GlobalValue, looking for the constant pointer ref that may be pointing to it. // If found, check to see if the constant pointer ref is safe to destroy, and if // so, nuke it. This will reduce the reference count on the global value, which // might make it deader. // bool GlobalDCE::RemoveUnusedGlobalValue(GlobalValue &GV) { if (GV.use_empty()) return false; GV.removeDeadConstantUsers(); return GV.use_empty(); } // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used // by constants itself. Note that constants cannot be cyclic, so this test is // pretty easy to implement recursively. // bool GlobalDCE::SafeToDestroyConstant(Constant *C) { for (Value::use_iterator I = C->use_begin(), E = C->use_end(); I != E; ++I) if (Constant *User = dyn_cast(*I)) { if (!SafeToDestroyConstant(User)) return false; } else { return false; } return true; }