//===- MCAsmLayout.h - Assembly Layout Object -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCASMLAYOUT_H #define LLVM_MC_MCASMLAYOUT_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" namespace llvm { class MCAssembler; class MCFragment; class MCSectionData; class MCSymbolData; /// Encapsulates the layout of an assembly file at a particular point in time. /// /// Assembly may require computing multiple layouts for a particular assembly /// file as part of the relaxation process. This class encapsulates the layout /// at a single point in time in such a way that it is always possible to /// efficiently compute the exact address of any symbol in the assembly file, /// even during the relaxation process. class MCAsmLayout { public: typedef llvm::SmallVectorImpl::const_iterator const_iterator; typedef llvm::SmallVectorImpl::iterator iterator; private: MCAssembler &Assembler; /// List of sections in layout order. llvm::SmallVector SectionOrder; /// The last fragment which was laid out, or 0 if nothing has been laid /// out. Fragments are always laid out in order, so all fragments with a /// lower ordinal will be valid. mutable DenseMap LastValidFragment; /// \brief Make sure that the layout for the given fragment is valid, lazily /// computing it if necessary. void ensureValid(const MCFragment *F) const; /// \brief Is the layout for this fragment valid? bool isFragmentValid(const MCFragment *F) const; /// \brief Compute the amount of padding required before this fragment to /// obey bundling restrictions. uint64_t computeBundlePadding(const MCFragment *F, uint64_t FOffset, uint64_t FSize); public: MCAsmLayout(MCAssembler &_Assembler); /// Get the assembler object this is a layout for. MCAssembler &getAssembler() const { return Assembler; } /// \brief Invalidate the fragments after F because it has been resized. /// The fragment's size should have already been updated. void invalidateFragmentsAfter(MCFragment *F); /// \brief Perform layout for a single fragment, assuming that the previous /// fragment has already been laid out correctly, and the parent section has /// been initialized. void layoutFragment(MCFragment *Fragment); /// @name Section Access (in layout order) /// @{ llvm::SmallVectorImpl &getSectionOrder() { return SectionOrder; } const llvm::SmallVectorImpl &getSectionOrder() const { return SectionOrder; } /// @} /// @name Fragment Layout Data /// @{ /// \brief Get the offset of the given fragment inside its containing section. uint64_t getFragmentOffset(const MCFragment *F) const; /// @} /// @name Utility Functions /// @{ /// \brief Get the address space size of the given section, as it effects /// layout. This may differ from the size reported by \see getSectionSize() by /// not including section tail padding. uint64_t getSectionAddressSize(const MCSectionData *SD) const; /// \brief Get the data size of the given section, as emitted to the object /// file. This may include additional padding, or be 0 for virtual sections. uint64_t getSectionFileSize(const MCSectionData *SD) const; /// \brief Get the offset of the given symbol, as computed in the current /// layout. uint64_t getSymbolOffset(const MCSymbolData *SD) const; /// @} }; } // end namespace llvm #endif