//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The inline spiller modifies the machine function directly instead of // inserting spills and restores in VirtRegMap. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "spiller" #include "Spiller.h" #include "SplitKit.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class InlineSpiller : public Spiller { MachineFunctionPass &pass_; MachineFunction &mf_; LiveIntervals &lis_; MachineLoopInfo &loops_; VirtRegMap &vrm_; MachineFrameInfo &mfi_; MachineRegisterInfo &mri_; const TargetInstrInfo &tii_; const TargetRegisterInfo &tri_; const BitVector reserved_; SplitAnalysis splitAnalysis_; // Variables that are valid during spill(), but used by multiple methods. LiveInterval *li_; std::vector *newIntervals_; const TargetRegisterClass *rc_; int stackSlot_; const SmallVectorImpl *spillIs_; // Values of the current interval that can potentially remat. SmallPtrSet reMattable_; // Values in reMattable_ that failed to remat at some point. SmallPtrSet usedValues_; ~InlineSpiller() {} public: InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) : pass_(pass), mf_(mf), lis_(pass.getAnalysis()), loops_(pass.getAnalysis()), vrm_(vrm), mfi_(*mf.getFrameInfo()), mri_(mf.getRegInfo()), tii_(*mf.getTarget().getInstrInfo()), tri_(*mf.getTarget().getRegisterInfo()), reserved_(tri_.getReservedRegs(mf_)), splitAnalysis_(mf, lis_, loops_) {} void spill(LiveInterval *li, std::vector &newIntervals, SmallVectorImpl &spillIs, SlotIndex *earliestIndex); private: bool split(); bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx); bool reMaterializeFor(MachineBasicBlock::iterator MI); void reMaterializeAll(); bool coalesceStackAccess(MachineInstr *MI); bool foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops); void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI); void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI); }; } namespace llvm { Spiller *createInlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) { return new InlineSpiller(pass, mf, vrm); } } /// split - try splitting the current interval into pieces that may allocate /// separately. Return true if successful. bool InlineSpiller::split() { // FIXME: Add intra-MBB splitting. if (lis_.intervalIsInOneMBB(*li_)) return false; splitAnalysis_.analyze(li_); if (const MachineLoop *loop = splitAnalysis_.getBestSplitLoop()) { // We can split, but li_ may be left intact with fewer uses. if (SplitEditor(splitAnalysis_, lis_, vrm_, *newIntervals_) .splitAroundLoop(loop)) return true; } return false; } /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool InlineSpiller::allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx) { OrigIdx = OrigIdx.getUseIndex(); UseIdx = UseIdx.getUseIndex(); for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = OrigMI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg) continue; // Reserved registers are OK. if (MO.isUndef() || !lis_.hasInterval(MO.getReg())) continue; // We don't want to move any defs. if (MO.isDef()) return false; // We cannot depend on virtual registers in spillIs_. They will be spilled. for (unsigned si = 0, se = spillIs_->size(); si != se; ++si) if ((*spillIs_)[si]->reg == MO.getReg()) return false; LiveInterval &LI = lis_.getInterval(MO.getReg()); const VNInfo *OVNI = LI.getVNInfoAt(OrigIdx); if (!OVNI) continue; if (OVNI != LI.getVNInfoAt(UseIdx)) return false; } return true; } /// reMaterializeFor - Attempt to rematerialize li_->reg before MI instead of /// reloading it. bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) { SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex(); VNInfo *OrigVNI = li_->getVNInfoAt(UseIdx); if (!OrigVNI) { DEBUG(dbgs() << "\tadding flags: "); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) MO.setIsUndef(); } DEBUG(dbgs() << UseIdx << '\t' << *MI); return true; } if (!reMattable_.count(OrigVNI)) { DEBUG(dbgs() << "\tusing non-remat valno " << OrigVNI->id << ": " << UseIdx << '\t' << *MI); return false; } MachineInstr *OrigMI = lis_.getInstructionFromIndex(OrigVNI->def); if (!allUsesAvailableAt(OrigMI, OrigVNI->def, UseIdx)) { usedValues_.insert(OrigVNI); DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); return false; } // If the instruction also writes li_->reg, it had better not require the same // register for uses and defs. bool Reads, Writes; SmallVector Ops; tie(Reads, Writes) = MI->readsWritesVirtualRegister(li_->reg, &Ops); if (Writes) { for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { usedValues_.insert(OrigVNI); DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); return false; } } } // Alocate a new register for the remat. unsigned NewVReg = mri_.createVirtualRegister(rc_); vrm_.grow(); LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg); NewLI.markNotSpillable(); newIntervals_->push_back(&NewLI); // Finally we can rematerialize OrigMI before MI. MachineBasicBlock &MBB = *MI->getParent(); tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigMI, tri_); MachineBasicBlock::iterator RematMI = MI; SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--RematMI).getDefIndex(); DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *RematMI); // Replace operands for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) { MO.setReg(NewVReg); MO.setIsKill(); } } DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); return true; } /// reMaterializeAll - Try to rematerialize as many uses of li_ as possible, /// and trim the live ranges after. void InlineSpiller::reMaterializeAll() { // Do a quick scan of the interval values to find if any are remattable. reMattable_.clear(); usedValues_.clear(); for (LiveInterval::const_vni_iterator I = li_->vni_begin(), E = li_->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused() || !VNI->isDefAccurate()) continue; MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def); if (!DefMI || !tii_.isTriviallyReMaterializable(DefMI)) continue; reMattable_.insert(VNI); } // Often, no defs are remattable. if (reMattable_.empty()) return; // Try to remat before all uses of li_->reg. bool anyRemat = false; for (MachineRegisterInfo::use_nodbg_iterator RI = mri_.use_nodbg_begin(li_->reg); MachineInstr *MI = RI.skipInstruction();) anyRemat |= reMaterializeFor(MI); if (!anyRemat) return; // Remove any values that were completely rematted. bool anyRemoved = false; for (SmallPtrSet::iterator I = reMattable_.begin(), E = reMattable_.end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->hasPHIKill() || usedValues_.count(VNI)) continue; MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def); DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI); lis_.RemoveMachineInstrFromMaps(DefMI); vrm_.RemoveMachineInstrFromMaps(DefMI); DefMI->eraseFromParent(); li_->removeValNo(VNI); anyRemoved = true; } if (!anyRemoved) return; // Removing values may cause debug uses where li_ is not live. for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(li_->reg); MachineInstr *MI = RI.skipInstruction();) { if (!MI->isDebugValue()) continue; // Try to preserve the debug value if li_ is live immediately after it. MachineBasicBlock::iterator NextMI = MI; ++NextMI; if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) { SlotIndex NearIdx = lis_.getInstructionIndex(NextMI); if (li_->liveAt(NearIdx)) continue; } DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI); MI->eraseFromParent(); } } /// If MI is a load or store of stackSlot_, it can be removed. bool InlineSpiller::coalesceStackAccess(MachineInstr *MI) { int FI = 0; unsigned reg; if (!(reg = tii_.isLoadFromStackSlot(MI, FI)) && !(reg = tii_.isStoreToStackSlot(MI, FI))) return false; // We have a stack access. Is it the right register and slot? if (reg != li_->reg || FI != stackSlot_) return false; DEBUG(dbgs() << "Coalescing stack access: " << *MI); lis_.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); return true; } /// foldMemoryOperand - Try folding stack slot references in Ops into MI. /// Return true on success, and MI will be erased. bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops) { // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied // operands. SmallVector FoldOps; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { unsigned Idx = Ops[i]; MachineOperand &MO = MI->getOperand(Idx); if (MO.isImplicit()) continue; // FIXME: Teach targets to deal with subregs. if (MO.getSubReg()) return false; // Tied use operands should not be passed to foldMemoryOperand. if (!MI->isRegTiedToDefOperand(Idx)) FoldOps.push_back(Idx); } MachineInstr *FoldMI = tii_.foldMemoryOperand(MI, FoldOps, stackSlot_); if (!FoldMI) return false; lis_.ReplaceMachineInstrInMaps(MI, FoldMI); vrm_.addSpillSlotUse(stackSlot_, FoldMI); MI->eraseFromParent(); DEBUG(dbgs() << "\tfolded: " << *FoldMI); return true; } /// insertReload - Insert a reload of NewLI.reg before MI. void InlineSpiller::insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_); --MI; // Point to load instruction. SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); vrm_.addSpillSlotUse(stackSlot_, MI); DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); } /// insertSpill - Insert a spill of NewLI.reg after MI. void InlineSpiller::insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_); --MI; // Point to store instruction. SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); vrm_.addSpillSlotUse(stackSlot_, MI); DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); } void InlineSpiller::spill(LiveInterval *li, std::vector &newIntervals, SmallVectorImpl &spillIs, SlotIndex *earliestIndex) { DEBUG(dbgs() << "Inline spilling " << *li << "\n"); assert(li->isSpillable() && "Attempting to spill already spilled value."); assert(!li->isStackSlot() && "Trying to spill a stack slot."); li_ = li; newIntervals_ = &newIntervals; rc_ = mri_.getRegClass(li->reg); spillIs_ = &spillIs; if (split()) return; reMaterializeAll(); // Remat may handle everything. if (li_->empty()) return; stackSlot_ = vrm_.getStackSlot(li->reg); if (stackSlot_ == VirtRegMap::NO_STACK_SLOT) stackSlot_ = vrm_.assignVirt2StackSlot(li->reg); // Iterate over instructions using register. for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg); MachineInstr *MI = RI.skipInstruction();) { // Debug values are not allowed to affect codegen. if (MI->isDebugValue()) { // Modify DBG_VALUE now that the value is in a spill slot. uint64_t Offset = MI->getOperand(1).getImm(); const MDNode *MDPtr = MI->getOperand(2).getMetadata(); DebugLoc DL = MI->getDebugLoc(); if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_, Offset, MDPtr, DL)) { DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MBB->erase(MI), NewDV); } else { DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); MI->eraseFromParent(); } continue; } // Stack slot accesses may coalesce away. if (coalesceStackAccess(MI)) continue; // Analyze instruction. bool Reads, Writes; SmallVector Ops; tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops); // Attempt to fold memory ops. if (foldMemoryOperand(MI, Ops)) continue; // Allocate interval around instruction. // FIXME: Infer regclass from instruction alone. unsigned NewVReg = mri_.createVirtualRegister(rc_); vrm_.grow(); LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg); NewLI.markNotSpillable(); if (Reads) insertReload(NewLI, MI); // Rewrite instruction operands. bool hasLiveDef = false; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); MO.setReg(NewVReg); if (MO.isUse()) { if (!MI->isRegTiedToDefOperand(Ops[i])) MO.setIsKill(); } else { if (!MO.isDead()) hasLiveDef = true; } } // FIXME: Use a second vreg if instruction has no tied ops. if (Writes && hasLiveDef) insertSpill(NewLI, MI); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); newIntervals.push_back(&NewLI); } }