//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SystemZTargetLowering class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "systemz-lower" #include "SystemZISelLowering.h" #include "SystemZCallingConv.h" #include "SystemZConstantPoolValue.h" #include "SystemZMachineFunctionInfo.h" #include "SystemZTargetMachine.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include using namespace llvm; namespace { // Represents a sequence for extracting a 0/1 value from an IPM result: // (((X ^ XORValue) + AddValue) >> Bit) struct IPMConversion { IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) : XORValue(xorValue), AddValue(addValue), Bit(bit) {} int64_t XORValue; int64_t AddValue; unsigned Bit; }; } // Classify VT as either 32 or 64 bit. static bool is32Bit(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i32: return true; case MVT::i64: return false; default: llvm_unreachable("Unsupported type"); } } // Return a version of MachineOperand that can be safely used before the // final use. static MachineOperand earlyUseOperand(MachineOperand Op) { if (Op.isReg()) Op.setIsKill(false); return Op; } SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) : TargetLowering(tm, new TargetLoweringObjectFileELF()), Subtarget(*tm.getSubtargetImpl()), TM(tm) { MVT PtrVT = getPointerTy(); // Set up the register classes. if (Subtarget.hasHighWord()) addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); else addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); // Compute derived properties from the register classes computeRegisterProperties(); // Set up special registers. setExceptionPointerRegister(SystemZ::R6D); setExceptionSelectorRegister(SystemZ::R7D); setStackPointerRegisterToSaveRestore(SystemZ::R15D); // TODO: It may be better to default to latency-oriented scheduling, however // LLVM's current latency-oriented scheduler can't handle physreg definitions // such as SystemZ has with CC, so set this to the register-pressure // scheduler, because it can. setSchedulingPreference(Sched::RegPressure); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? // Instructions are strings of 2-byte aligned 2-byte values. setMinFunctionAlignment(2); // Handle operations that are handled in a similar way for all types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Lower SET_CC into an IPM-based sequence. setOperationAction(ISD::SETCC, VT, Custom); // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). setOperationAction(ISD::SELECT, VT, Expand); // Lower SELECT_CC and BR_CC into separate comparisons and branches. setOperationAction(ISD::SELECT_CC, VT, Custom); setOperationAction(ISD::BR_CC, VT, Custom); } } // Expand jump table branches as address arithmetic followed by an // indirect jump. setOperationAction(ISD::BR_JT, MVT::Other, Expand); // Expand BRCOND into a BR_CC (see above). setOperationAction(ISD::BRCOND, MVT::Other, Expand); // Handle integer types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_INTEGER_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Expand individual DIV and REMs into DIVREMs. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Custom); // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP. // FIXME: probably much too conservative. setOperationAction(ISD::ATOMIC_LOAD, VT, Expand); setOperationAction(ISD::ATOMIC_STORE, VT, Expand); // No special instructions for these. setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); // Use *MUL_LOHI where possible instead of MULH*. setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Custom); setOperationAction(ISD::UMUL_LOHI, VT, Custom); // We have instructions for signed but not unsigned FP conversion. setOperationAction(ISD::FP_TO_UINT, VT, Expand); } } // Type legalization will convert 8- and 16-bit atomic operations into // forms that operate on i32s (but still keeping the original memory VT). // Lower them into full i32 operations. setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); // We have instructions for signed but not unsigned FP conversion. // Handle unsigned 32-bit types as signed 64-bit types. setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); // We have native support for a 64-bit CTLZ, via FLOGR. setOperationAction(ISD::CTLZ, MVT::i32, Promote); setOperationAction(ISD::CTLZ, MVT::i64, Legal); // Give LowerOperation the chance to replace 64-bit ORs with subregs. setOperationAction(ISD::OR, MVT::i64, Custom); // FIXME: Can we support these natively? setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); // We have native instructions for i8, i16 and i32 extensions, but not i1. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Handle the various types of symbolic address. setOperationAction(ISD::ConstantPool, PtrVT, Custom); setOperationAction(ISD::GlobalAddress, PtrVT, Custom); setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); setOperationAction(ISD::BlockAddress, PtrVT, Custom); setOperationAction(ISD::JumpTable, PtrVT, Custom); // We need to handle dynamic allocations specially because of the // 160-byte area at the bottom of the stack. setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); // Use custom expanders so that we can force the function to use // a frame pointer. setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); // Handle prefetches with PFD or PFDRL. setOperationAction(ISD::PREFETCH, MVT::Other, Custom); // Handle floating-point types. for (unsigned I = MVT::FIRST_FP_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // We can use FI for FRINT. setOperationAction(ISD::FRINT, VT, Legal); // We can use the extended form of FI for other rounding operations. if (Subtarget.hasFPExtension()) { setOperationAction(ISD::FNEARBYINT, VT, Legal); setOperationAction(ISD::FFLOOR, VT, Legal); setOperationAction(ISD::FCEIL, VT, Legal); setOperationAction(ISD::FTRUNC, VT, Legal); setOperationAction(ISD::FROUND, VT, Legal); } // No special instructions for these. setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); } } // We have fused multiply-addition for f32 and f64 but not f128. setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); setOperationAction(ISD::FMA, MVT::f128, Expand); // Needed so that we don't try to implement f128 constant loads using // a load-and-extend of a f80 constant (in cases where the constant // would fit in an f80). setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); // Floating-point truncation and stores need to be done separately. setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); // We have 64-bit FPR<->GPR moves, but need special handling for // 32-bit forms. setOperationAction(ISD::BITCAST, MVT::i32, Custom); setOperationAction(ISD::BITCAST, MVT::f32, Custom); // VASTART and VACOPY need to deal with the SystemZ-specific varargs // structure, but VAEND is a no-op. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); // We want to use MVC in preference to even a single load/store pair. MaxStoresPerMemcpy = 0; MaxStoresPerMemcpyOptSize = 0; // The main memset sequence is a byte store followed by an MVC. // Two STC or MV..I stores win over that, but the kind of fused stores // generated by target-independent code don't when the byte value is // variable. E.g. "STC ;MHI ,257;STH " is not better // than "STC;MVC". Handle the choice in target-specific code instead. MaxStoresPerMemset = 0; MaxStoresPerMemsetOptSize = 0; } bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; case MVT::f128: return false; default: break; } return false; } bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. return Imm.isZero() || Imm.isNegZero(); } bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { // Unaligned accesses should never be slower than the expanded version. // We check specifically for aligned accesses in the few cases where // they are required. if (Fast) *Fast = true; return true; } bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // Punt on globals for now, although they can be used in limited // RELATIVE LONG cases. if (AM.BaseGV) return false; // Require a 20-bit signed offset. if (!isInt<20>(AM.BaseOffs)) return false; // Indexing is OK but no scale factor can be applied. return AM.Scale == 0 || AM.Scale == 1; } bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) return false; unsigned FromBits = FromType->getPrimitiveSizeInBits(); unsigned ToBits = ToType->getPrimitiveSizeInBits(); return FromBits > ToBits; } bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { if (!FromVT.isInteger() || !ToVT.isInteger()) return false; unsigned FromBits = FromVT.getSizeInBits(); unsigned ToBits = ToVT.getSizeInBits(); return FromBits > ToBits; } //===----------------------------------------------------------------------===// // Inline asm support //===----------------------------------------------------------------------===// TargetLowering::ConstraintType SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'f': // Floating-point register case 'h': // High-part register case 'r': // General-purpose register return C_RegisterClass; case 'Q': // Memory with base and unsigned 12-bit displacement case 'R': // Likewise, plus an index case 'S': // Memory with base and signed 20-bit displacement case 'T': // Likewise, plus an index case 'm': // Equivalent to 'T'. return C_Memory; case 'I': // Unsigned 8-bit constant case 'J': // Unsigned 12-bit constant case 'K': // Signed 16-bit constant case 'L': // Signed 20-bit displacement (on all targets we support) case 'M': // 0x7fffffff return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } TargetLowering::ConstraintWeight SystemZTargetLowering:: getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'h': // High-part register case 'r': // General-purpose register if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; break; case 'f': // Floating-point register if (type->isFloatingPointTy()) weight = CW_Register; break; case 'I': // Unsigned 8-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isUInt<8>(C->getZExtValue())) weight = CW_Constant; break; case 'J': // Unsigned 12-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isUInt<12>(C->getZExtValue())) weight = CW_Constant; break; case 'K': // Signed 16-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isInt<16>(C->getSExtValue())) weight = CW_Constant; break; case 'L': // Signed 20-bit displacement (on all targets we support) if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isInt<20>(C->getSExtValue())) weight = CW_Constant; break; case 'M': // 0x7fffffff if (ConstantInt *C = dyn_cast(CallOperandVal)) if (C->getZExtValue() == 0x7fffffff) weight = CW_Constant; break; } return weight; } // Parse a "{tNNN}" register constraint for which the register type "t" // has already been verified. MC is the class associated with "t" and // Map maps 0-based register numbers to LLVM register numbers. static std::pair parseRegisterNumber(const std::string &Constraint, const TargetRegisterClass *RC, const unsigned *Map) { assert(*(Constraint.end()-1) == '}' && "Missing '}'"); if (isdigit(Constraint[2])) { std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); unsigned Index = atoi(Suffix.c_str()); if (Index < 16 && Map[Index]) return std::make_pair(Map[Index], RC); } return std::make_pair(0u, static_cast(0)); } std::pair SystemZTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; case 'd': // Data register (equivalent to 'r') case 'r': // General-purpose register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::GR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::GR128BitRegClass); return std::make_pair(0U, &SystemZ::GR32BitRegClass); case 'a': // Address register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); case 'h': // High-part register (an LLVM extension) return std::make_pair(0U, &SystemZ::GRH32BitRegClass); case 'f': // Floating-point register if (VT == MVT::f64) return std::make_pair(0U, &SystemZ::FP64BitRegClass); else if (VT == MVT::f128) return std::make_pair(0U, &SystemZ::FP128BitRegClass); return std::make_pair(0U, &SystemZ::FP32BitRegClass); } } if (Constraint[0] == '{') { // We need to override the default register parsing for GPRs and FPRs // because the interpretation depends on VT. The internal names of // the registers are also different from the external names // (F0D and F0S instead of F0, etc.). if (Constraint[1] == 'r') { if (VT == MVT::i32) return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, SystemZMC::GR32Regs); if (VT == MVT::i128) return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, SystemZMC::GR128Regs); return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, SystemZMC::GR64Regs); } if (Constraint[1] == 'f') { if (VT == MVT::f32) return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, SystemZMC::FP32Regs); if (VT == MVT::f128) return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, SystemZMC::FP128Regs); return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, SystemZMC::FP64Regs); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } void SystemZTargetLowering:: LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { // Only support length 1 constraints for now. if (Constraint.length() == 1) { switch (Constraint[0]) { case 'I': // Unsigned 8-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isUInt<8>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; case 'J': // Unsigned 12-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isUInt<12>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; case 'K': // Signed 16-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isInt<16>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), Op.getValueType())); return; case 'L': // Signed 20-bit displacement (on all targets we support) if (ConstantSDNode *C = dyn_cast(Op)) if (isInt<20>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), Op.getValueType())); return; case 'M': // 0x7fffffff if (ConstantSDNode *C = dyn_cast(Op)) if (C->getZExtValue() == 0x7fffffff) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; } } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // Calling conventions //===----------------------------------------------------------------------===// #include "SystemZGenCallingConv.inc" bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, Type *ToType) const { return isTruncateFree(FromType, ToType); } bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!CI->isTailCall()) return false; return true; } // Value is a value that has been passed to us in the location described by VA // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining // any loads onto Chain. static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, CCValAssign &VA, SDValue Chain, SDValue Value) { // If the argument has been promoted from a smaller type, insert an // assertion to capture this. if (VA.getLocInfo() == CCValAssign::SExt) Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); if (VA.isExtInLoc()) Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); else if (VA.getLocInfo() == CCValAssign::Indirect) Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, MachinePointerInfo(), false, false, false, 0); else assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); return Value; } // Value is a value of type VA.getValVT() that we need to copy into // the location described by VA. Return a copy of Value converted to // VA.getValVT(). The caller is responsible for handling indirect values. static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, CCValAssign &VA, SDValue Value) { switch (VA.getLocInfo()) { case CCValAssign::SExt: return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::ZExt: return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::AExt: return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::Full: return Value; default: llvm_unreachable("Unhandled getLocInfo()"); } } SDValue SystemZTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); const SystemZFrameLowering *TFL = static_cast(TM.getFrameLowering()); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); unsigned NumFixedGPRs = 0; unsigned NumFixedFPRs = 0; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { SDValue ArgValue; CCValAssign &VA = ArgLocs[I]; EVT LocVT = VA.getLocVT(); if (VA.isRegLoc()) { // Arguments passed in registers const TargetRegisterClass *RC; switch (LocVT.getSimpleVT().SimpleTy) { default: // Integers smaller than i64 should be promoted to i64. llvm_unreachable("Unexpected argument type"); case MVT::i32: NumFixedGPRs += 1; RC = &SystemZ::GR32BitRegClass; break; case MVT::i64: NumFixedGPRs += 1; RC = &SystemZ::GR64BitRegClass; break; case MVT::f32: NumFixedFPRs += 1; RC = &SystemZ::FP32BitRegClass; break; case MVT::f64: NumFixedFPRs += 1; RC = &SystemZ::FP64BitRegClass; break; } unsigned VReg = MRI.createVirtualRegister(RC); MRI.addLiveIn(VA.getLocReg(), VReg); ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); } else { assert(VA.isMemLoc() && "Argument not register or memory"); // Create the frame index object for this incoming parameter. int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter. Unpromoted ints and floats are // passed as right-justified 8-byte values. EVT PtrVT = getPointerTy(); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } // Convert the value of the argument register into the value that's // being passed. InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); } if (IsVarArg) { // Save the number of non-varargs registers for later use by va_start, etc. FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); // Likewise the address (in the form of a frame index) of where the // first stack vararg would be. The 1-byte size here is arbitrary. int64_t StackSize = CCInfo.getNextStackOffset(); FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); // ...and a similar frame index for the caller-allocated save area // that will be used to store the incoming registers. int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); FuncInfo->setRegSaveFrameIndex(RegSaveIndex); // Store the FPR varargs in the reserved frame slots. (We store the // GPRs as part of the prologue.) if (NumFixedFPRs < SystemZ::NumArgFPRs) { SDValue MemOps[SystemZ::NumArgFPRs]; for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], &SystemZ::FP64BitRegClass); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0); } // Join the stores, which are independent of one another. Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[NumFixedFPRs], SystemZ::NumArgFPRs - NumFixedFPRs); } } return Chain; } static bool canUseSiblingCall(CCState ArgCCInfo, SmallVectorImpl &ArgLocs) { // Punt if there are any indirect or stack arguments, or if the call // needs the call-saved argument register R6. for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (!VA.isRegLoc()) return false; unsigned Reg = VA.getLocReg(); if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) return false; } return true; } SDValue SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); EVT PtrVT = getPointerTy(); // Analyze the operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); // We don't support GuaranteedTailCallOpt, only automatically-detected // sibling calls. if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) IsTailCall = false; // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = ArgCCInfo.getNextStackOffset(); // Mark the start of the call. if (!IsTailCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), DL); // Copy argument values to their designated locations. SmallVector, 9> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; SDValue ArgValue = OutVals[I]; if (VA.getLocInfo() == CCValAssign::Indirect) { // Store the argument in a stack slot and pass its address. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast(SpillSlot)->getIndex(); MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, MachinePointerInfo::getFixedStack(FI), false, false, 0)); ArgValue = SpillSlot; } else ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); if (VA.isRegLoc()) // Queue up the argument copies and emit them at the end. RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); else { assert(VA.isMemLoc() && "Argument not register or memory"); // Work out the address of the stack slot. Unpromoted ints and // floats are passed as right-justified 8-byte values. if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) Offset += 4; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, DAG.getIntPtrConstant(Offset)); // Emit the store. MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo(), false, false, 0)); } } // Join the stores, which are independent of one another. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Accept direct calls by converting symbolic call addresses to the // associated Target* opcodes. Force %r1 to be used for indirect // tail calls. SDValue Glue; if (GlobalAddressSDNode *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (IsTailCall) { Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); Glue = Chain.getValue(1); Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); } // Build a sequence of copy-to-reg nodes, chained and glued together. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, RegsToPass[I].second, Glue); Glue = Chain.getValue(1); } // The first call operand is the chain and the second is the target address. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) Ops.push_back(DAG.getRegister(RegsToPass[I].first, RegsToPass[I].second.getValueType())); // Glue the call to the argument copies, if any. if (Glue.getNode()) Ops.push_back(Glue); // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (IsTailCall) return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size()); Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); Glue = Chain.getValue(1); // Mark the end of the call, which is glued to the call itself. Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, PtrVT, true), DAG.getConstant(0, PtrVT, true), Glue, DL); Glue = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); // Copy all of the result registers out of their specified physreg. for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; // Copy the value out, gluing the copy to the end of the call sequence. SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); Chain = RetValue.getValue(1); Glue = RetValue.getValue(2); // Convert the value of the return register into the value that's // being returned. InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); } return Chain; } SDValue SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // Assign locations to each returned value. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); // Quick exit for void returns if (RetLocs.empty()) return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); // Copy the result values into the output registers. SDValue Glue; SmallVector RetOps; RetOps.push_back(Chain); for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; SDValue RetValue = OutVals[I]; // Make the return register live on exit. assert(VA.isRegLoc() && "Can only return in registers!"); // Promote the value as required. RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); // Chain and glue the copies together. unsigned Reg = VA.getLocReg(); Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps.data(), RetOps.size()); } // CC is a comparison that will be implemented using an integer or // floating-point comparison. Return the condition code mask for // a branch on true. In the integer case, CCMASK_CMP_UO is set for // unsigned comparisons and clear for signed ones. In the floating-point // case, CCMASK_CMP_UO has its normal mask meaning (unordered). static unsigned CCMaskForCondCode(ISD::CondCode CC) { #define CONV(X) \ case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X switch (CC) { default: llvm_unreachable("Invalid integer condition!"); CONV(EQ); CONV(NE); CONV(GT); CONV(GE); CONV(LT); CONV(LE); case ISD::SETO: return SystemZ::CCMASK_CMP_O; case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; } #undef CONV } // Return a sequence for getting a 1 from an IPM result when CC has a // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. // The handling of CC values outside CCValid doesn't matter. static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { // Deal with cases where the result can be taken directly from a bit // of the IPM result. if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) return IPMConversion(0, 0, SystemZ::IPM_CC); if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(0, 0, SystemZ::IPM_CC + 1); // Deal with cases where we can add a value to force the sign bit // to contain the right value. Putting the bit in 31 means we can // use SRL rather than RISBG(L), and also makes it easier to get a // 0/-1 value, so it has priority over the other tests below. // // These sequences rely on the fact that the upper two bits of the // IPM result are zero. uint64_t TopBit = uint64_t(1) << 31; if (CCMask == (CCValid & SystemZ::CCMASK_0)) return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & SystemZ::CCMASK_3)) return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); // Next try inverting the value and testing a bit. 0/1 could be // handled this way too, but we dealt with that case above. if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) return IPMConversion(-1, 0, SystemZ::IPM_CC); // Handle cases where adding a value forces a non-sign bit to contain // the right value. if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are // can be done by inverting the low CC bit and applying one of the // sign-based extractions above. if (CCMask == (CCValid & SystemZ::CCMASK_1)) return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & SystemZ::CCMASK_2)) return IPMConversion(1 << SystemZ::IPM_CC, TopBit - (3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(1 << SystemZ::IPM_CC, TopBit - (1 << SystemZ::IPM_CC), 31); llvm_unreachable("Unexpected CC combination"); } // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 // can be converted to a comparison against zero, adjust the operands // as necessary. static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned, SDValue &CmpOp0, SDValue &CmpOp1, unsigned &CCMask) { if (IsUnsigned) return; ConstantSDNode *ConstOp1 = dyn_cast(CmpOp1.getNode()); if (!ConstOp1) return; int64_t Value = ConstOp1->getSExtValue(); if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) || (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) || (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) || (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) { CCMask ^= SystemZ::CCMASK_CMP_EQ; CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType()); } } // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, SDValue &CmpOp0, SDValue &CmpOp1, unsigned &CCMask) { // For us to make any changes, it must a comparison between a single-use // load and a constant. if (!CmpOp0.hasOneUse() || CmpOp0.getOpcode() != ISD::LOAD || CmpOp1.getOpcode() != ISD::Constant) return; // We must have an 8- or 16-bit load. LoadSDNode *Load = cast(CmpOp0); unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); if (NumBits != 8 && NumBits != 16) return; // The load must be an extending one and the constant must be within the // range of the unextended value. ConstantSDNode *Constant = cast(CmpOp1); uint64_t Value = Constant->getZExtValue(); uint64_t Mask = (1 << NumBits) - 1; if (Load->getExtensionType() == ISD::SEXTLOAD) { int64_t SignedValue = Constant->getSExtValue(); if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) return; // Unsigned comparison between two sign-extended values is equivalent // to unsigned comparison between two zero-extended values. if (IsUnsigned) Value &= Mask; else if (CCMask == SystemZ::CCMASK_CMP_EQ || CCMask == SystemZ::CCMASK_CMP_NE) // Any choice of IsUnsigned is OK for equality comparisons. // We could use either CHHSI or CLHHSI for 16-bit comparisons, // but since we use CLHHSI for zero extensions, it seems better // to be consistent and do the same here. Value &= Mask, IsUnsigned = true; else if (NumBits == 8) { // Try to treat the comparison as unsigned, so that we can use CLI. // Adjust CCMask and Value as necessary. if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) // Test whether the high bit of the byte is set. Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE) // Test whether the high bit of the byte is clear. Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; else // No instruction exists for this combination. return; } } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { if (Value > Mask) return; // Signed comparison between two zero-extended values is equivalent // to unsigned comparison. IsUnsigned = true; } else return; // Make sure that the first operand is an i32 of the right extension type. ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; if (CmpOp0.getValueType() != MVT::i32 || Load->getExtensionType() != ExtType) CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), Load->getBasePtr(), Load->getPointerInfo(), Load->getMemoryVT(), Load->isVolatile(), Load->isNonTemporal(), Load->getAlignment()); // Make sure that the second operand is an i32 with the right value. if (CmpOp1.getValueType() != MVT::i32 || Value != Constant->getZExtValue()) CmpOp1 = DAG.getConstant(Value, MVT::i32); } // Return true if Op is either an unextended load, or a load suitable // for integer register-memory comparisons of type ICmpType. static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { LoadSDNode *Load = dyn_cast(Op.getNode()); if (Load) { // There are no instructions to compare a register with a memory byte. if (Load->getMemoryVT() == MVT::i8) return false; // Otherwise decide on extension type. switch (Load->getExtensionType()) { case ISD::NON_EXTLOAD: return true; case ISD::SEXTLOAD: return ICmpType != SystemZICMP::UnsignedOnly; case ISD::ZEXTLOAD: return ICmpType != SystemZICMP::SignedOnly; default: break; } } return false; } // Return true if it is better to swap comparison operands Op0 and Op1. // ICmpType is the type of an integer comparison. static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1, unsigned ICmpType) { // Leave f128 comparisons alone, since they have no memory forms. if (Op0.getValueType() == MVT::f128) return false; // Always keep a floating-point constant second, since comparisons with // zero can use LOAD TEST and comparisons with other constants make a // natural memory operand. if (isa(Op1)) return false; // Never swap comparisons with zero since there are many ways to optimize // those later. ConstantSDNode *COp1 = dyn_cast(Op1); if (COp1 && COp1->getZExtValue() == 0) return false; // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. // In that case we generally prefer the memory to be second. if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) && !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) { // The only exceptions are when the second operand is a constant and // we can use things like CHHSI. if (!COp1) return true; // The unsigned memory-immediate instructions can handle 16-bit // unsigned integers. if (ICmpType != SystemZICMP::SignedOnly && isUInt<16>(COp1->getZExtValue())) return false; // The signed memory-immediate instructions can handle 16-bit // signed integers. if (ICmpType != SystemZICMP::UnsignedOnly && isInt<16>(COp1->getSExtValue())) return false; return true; } return false; } // Return true if shift operation N has an in-range constant shift value. // Store it in ShiftVal if so. static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { ConstantSDNode *Shift = dyn_cast(N.getOperand(1)); if (!Shift) return false; uint64_t Amount = Shift->getZExtValue(); if (Amount >= N.getValueType().getSizeInBits()) return false; ShiftVal = Amount; return true; } // Check whether an AND with Mask is suitable for a TEST UNDER MASK // instruction and whether the CC value is descriptive enough to handle // a comparison of type Opcode between the AND result and CmpVal. // CCMask says which comparison result is being tested and BitSize is // the number of bits in the operands. If TEST UNDER MASK can be used, // return the corresponding CC mask, otherwise return 0. static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, uint64_t Mask, uint64_t CmpVal, unsigned ICmpType) { assert(Mask != 0 && "ANDs with zero should have been removed by now"); // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) return 0; // Work out the masks for the lowest and highest bits. unsigned HighShift = 63 - countLeadingZeros(Mask); uint64_t High = uint64_t(1) << HighShift; uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); // Signed ordered comparisons are effectively unsigned if the sign // bit is dropped. bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); // Check for equality comparisons with 0, or the equivalent. if (CmpVal == 0) { if (CCMask == SystemZ::CCMASK_CMP_EQ) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_NE) return SystemZ::CCMASK_TM_SOME_1; } if (EffectivelyUnsigned && CmpVal <= Low) { if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_SOME_1; } if (EffectivelyUnsigned && CmpVal < Low) { if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_SOME_1; } // Check for equality comparisons with the mask, or the equivalent. if (CmpVal == Mask) { if (CCMask == SystemZ::CCMASK_CMP_EQ) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_NE) return SystemZ::CCMASK_TM_SOME_0; } if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_SOME_0; } if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_SOME_0; } // Check for ordered comparisons with the top bit. if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_MSB_1; } if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_MSB_1; } // If there are just two bits, we can do equality checks for Low and High // as well. if (Mask == Low + High) { if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) return SystemZ::CCMASK_TM_MIXED_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) return SystemZ::CCMASK_TM_MIXED_MSB_1; if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; } // Looks like we've exhausted our options. return 0; } // See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be // implemented as a TEST UNDER MASK instruction when the condition being // tested is as described by CCValid and CCMask. Update the arguments // with the TM version if so. static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode, SDValue &CmpOp0, SDValue &CmpOp1, unsigned &CCValid, unsigned &CCMask, unsigned &ICmpType) { // Check that we have a comparison with a constant. ConstantSDNode *ConstCmpOp1 = dyn_cast(CmpOp1); if (!ConstCmpOp1) return; uint64_t CmpVal = ConstCmpOp1->getZExtValue(); // Check whether the nonconstant input is an AND with a constant mask. if (CmpOp0.getOpcode() != ISD::AND) return; SDValue AndOp0 = CmpOp0.getOperand(0); SDValue AndOp1 = CmpOp0.getOperand(1); ConstantSDNode *Mask = dyn_cast(AndOp1.getNode()); if (!Mask) return; uint64_t MaskVal = Mask->getZExtValue(); // Check whether the combination of mask, comparison value and comparison // type are suitable. unsigned BitSize = CmpOp0.getValueType().getSizeInBits(); unsigned NewCCMask, ShiftVal; if (ICmpType != SystemZICMP::SignedOnly && AndOp0.getOpcode() == ISD::SHL && isSimpleShift(AndOp0, ShiftVal) && (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal, CmpVal >> ShiftVal, SystemZICMP::Any))) { AndOp0 = AndOp0.getOperand(0); AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType()); } else if (ICmpType != SystemZICMP::SignedOnly && AndOp0.getOpcode() == ISD::SRL && isSimpleShift(AndOp0, ShiftVal) && (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal << ShiftVal, CmpVal << ShiftVal, SystemZICMP::UnsignedOnly))) { AndOp0 = AndOp0.getOperand(0); AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType()); } else { NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal, ICmpType); if (!NewCCMask) return; } // Go ahead and make the change. Opcode = SystemZISD::TM; CmpOp0 = AndOp0; CmpOp1 = AndOp1; ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); CCValid = SystemZ::CCMASK_TM; CCMask = NewCCMask; } // Return a target node that compares CmpOp0 with CmpOp1 and stores a // 2-bit result in CC. Set CCValid to the CCMASK_* of all possible // 2-bit results and CCMask to the subset of those results that are // associated with Cond. static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG, SDLoc DL, SDValue CmpOp0, SDValue CmpOp1, ISD::CondCode Cond, unsigned &CCValid, unsigned &CCMask) { bool IsUnsigned = false; CCMask = CCMaskForCondCode(Cond); unsigned Opcode, ICmpType = 0; if (CmpOp0.getValueType().isFloatingPoint()) { CCValid = SystemZ::CCMASK_FCMP; Opcode = SystemZISD::FCMP; } else { IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; CCValid = SystemZ::CCMASK_ICMP; CCMask &= CCValid; adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); Opcode = SystemZISD::ICMP; // Choose the type of comparison. Equality and inequality tests can // use either signed or unsigned comparisons. The choice also doesn't // matter if both sign bits are known to be clear. In those cases we // want to give the main isel code the freedom to choose whichever // form fits best. if (CCMask == SystemZ::CCMASK_CMP_EQ || CCMask == SystemZ::CCMASK_CMP_NE || (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1))) ICmpType = SystemZICMP::Any; else if (IsUnsigned) ICmpType = SystemZICMP::UnsignedOnly; else ICmpType = SystemZICMP::SignedOnly; } if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) { std::swap(CmpOp0, CmpOp1); CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) | (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | (CCMask & SystemZ::CCMASK_CMP_UO)); } adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask, ICmpType); if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM) return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1, DAG.getConstant(ICmpType, MVT::i32)); return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1); } // Implement a 32-bit *MUL_LOHI operation by extending both operands to // 64 bits. Extend is the extension type to use. Store the high part // in Hi and the low part in Lo. static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, unsigned Extend, SDValue Op0, SDValue Op1, SDValue &Hi, SDValue &Lo) { Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); } // Lower a binary operation that produces two VT results, one in each // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation // on the extended Op0 and (unextended) Op1. Store the even register result // in Even and the odd register result in Odd. static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, unsigned Extend, unsigned Opcode, SDValue Op0, SDValue Op1, SDValue &Even, SDValue &Odd) { SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, SDValue(In128, 0), Op1); bool Is32Bit = is32Bit(VT); Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); } SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(0); SDValue CmpOp1 = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); SDLoc DL(Op); unsigned CCValid, CCMask; SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); IPMConversion Conversion = getIPMConversion(CCValid, CCMask); SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); if (Conversion.XORValue) Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, DAG.getConstant(Conversion.XORValue, MVT::i32)); if (Conversion.AddValue) Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, DAG.getConstant(Conversion.AddValue, MVT::i32)); // The SHR/AND sequence should get optimized to an RISBG. Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, DAG.getConstant(Conversion.Bit, MVT::i32)); if (Conversion.Bit != 31) Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, DAG.getConstant(1, MVT::i32)); return Result; } SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue CmpOp0 = Op.getOperand(2); SDValue CmpOp1 = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc DL(Op); unsigned CCValid, CCMask; SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), Chain, DAG.getConstant(CCValid, MVT::i32), DAG.getConstant(CCMask, MVT::i32), Dest, Flags); } SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(0); SDValue CmpOp1 = Op.getOperand(1); SDValue TrueOp = Op.getOperand(2); SDValue FalseOp = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDLoc DL(Op); unsigned CCValid, CCMask; SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); SmallVector Ops; Ops.push_back(TrueOp); Ops.push_back(FalseOp); Ops.push_back(DAG.getConstant(CCValid, MVT::i32)); Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); Ops.push_back(Flags); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); } SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); Reloc::Model RM = TM.getRelocationModel(); CodeModel::Model CM = TM.getCodeModel(); SDValue Result; if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { // Assign anchors at 1<<12 byte boundaries. uint64_t Anchor = Offset & ~uint64_t(0xfff); Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); // The offset can be folded into the address if it is aligned to a halfword. Offset -= Anchor; if (Offset != 0 && (Offset & 1) == 0) { SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); Offset = 0; } } else { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); } // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, DAG.getConstant(Offset, PtrVT)); return Result; } SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); EVT PtrVT = getPointerTy(); TLSModel::Model model = TM.getTLSModel(GV); if (model != TLSModel::LocalExec) llvm_unreachable("only local-exec TLS mode supported"); // The high part of the thread pointer is in access register 0. SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, DAG.getConstant(0, MVT::i32)); TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); // The low part of the thread pointer is in access register 1. SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, DAG.getConstant(1, MVT::i32)); TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); // Merge them into a single 64-bit address. SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, DAG.getConstant(32, PtrVT)); SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); // Get the offset of GA from the thread pointer. SystemZConstantPoolValue *CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); // Force the offset into the constant pool and load it from there. SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); // Add the base and offset together. return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); } SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const { SDLoc DL(Node); const BlockAddress *BA = Node->getBlockAddress(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); return Result; } SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const { SDLoc DL(JT); EVT PtrVT = getPointerTy(); SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); // Use LARL to load the address of the table. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const { SDLoc DL(CP); EVT PtrVT = getPointerTy(); SDValue Result; if (CP->isMachineConstantPoolEntry()) Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset()); // Use LARL to load the address of the constant pool entry. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); EVT ResVT = Op.getValueType(); if (InVT == MVT::i32 && ResVT == MVT::f32) { SDValue In64; if (Subtarget.hasHighWord()) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64); In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, MVT::i64, SDValue(U64, 0), In); } else { In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, DAG.getConstant(32, MVT::i64)); } SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, MVT::f32, Out64); } if (InVT == MVT::f32 && ResVT == MVT::i32) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, MVT::f64, SDValue(U64, 0), In); SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); if (Subtarget.hasHighWord()) return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, MVT::i32, Out64); SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, DAG.getConstant(32, MVT::i64)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); } llvm_unreachable("Unexpected bitcast combination"); } SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = getPointerTy(); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); SDLoc DL(Op); // The initial values of each field. const unsigned NumFields = 4; SDValue Fields[NumFields] = { DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) }; // Store each field into its respective slot. SDValue MemOps[NumFields]; unsigned Offset = 0; for (unsigned I = 0; I < NumFields; ++I) { SDValue FieldAddr = Addr; if (Offset != 0) FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, DAG.getIntPtrConstant(Offset)); MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, MachinePointerInfo(SV, Offset), false, false, 0); Offset += 8; } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); } SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); SDLoc DL(Op); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } SDValue SystemZTargetLowering:: lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDLoc DL(Op); unsigned SPReg = getStackPointerRegisterToSaveRestore(); // Get a reference to the stack pointer. SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); // Get the new stack pointer value. SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); // Copy the new stack pointer back. Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); // The allocated data lives above the 160 bytes allocated for the standard // frame, plus any outgoing stack arguments. We don't know how much that // amounts to yet, so emit a special ADJDYNALLOC placeholder. SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); SDValue Ops[2] = { Result, Chain }; return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Ops[2]; if (is32Bit(VT)) // Just do a normal 64-bit multiplication and extract the results. // We define this so that it can be used for constant division. lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else { // Do a full 128-bit multiplication based on UMUL_LOHI64: // // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) // // but using the fact that the upper halves are either all zeros // or all ones: // // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) // // and grouping the right terms together since they are quicker than the // multiplication: // // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) SDValue C63 = DAG.getConstant(63, MVT::i64); SDValue LL = Op.getOperand(0); SDValue RL = Op.getOperand(1); SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); // UMUL_LOHI64 returns the low result in the odd register and the high // result in the even register. SMUL_LOHI is defined to return the // low half first, so the results are in reverse order. lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, LL, RL, Ops[1], Ops[0]); SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); } return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Ops[2]; if (is32Bit(VT)) // Just do a normal 64-bit multiplication and extract the results. // We define this so that it can be used for constant division. lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else // UMUL_LOHI64 returns the low result in the odd register and the high // result in the even register. UMUL_LOHI is defined to return the // low half first, so the results are in reverse order. lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Opcode; // We use DSGF for 32-bit division. if (is32Bit(VT)) { Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); Opcode = SystemZISD::SDIVREM32; } else if (DAG.ComputeNumSignBits(Op1) > 32) { Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); Opcode = SystemZISD::SDIVREM32; } else Opcode = SystemZISD::SDIVREM64; // DSG(F) takes a 64-bit dividend, so the even register in the GR128 // input is "don't care". The instruction returns the remainder in // the even register and the quotient in the odd register. SDValue Ops[2]; lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, Op0, Op1, Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); // DL(G) uses a double-width dividend, so we need to clear the even // register in the GR128 input. The instruction returns the remainder // in the even register and the quotient in the odd register. SDValue Ops[2]; if (is32Bit(VT)) lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); // Get the known-zero masks for each operand. SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; APInt KnownZero[2], KnownOne[2]; DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); // See if the upper 32 bits of one operand and the lower 32 bits of the // other are known zero. They are the low and high operands respectively. uint64_t Masks[] = { KnownZero[0].getZExtValue(), KnownZero[1].getZExtValue() }; unsigned High, Low; if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) High = 1, Low = 0; else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) High = 0, Low = 1; else return Op; SDValue LowOp = Ops[Low]; SDValue HighOp = Ops[High]; // If the high part is a constant, we're better off using IILH. if (HighOp.getOpcode() == ISD::Constant) return Op; // If the low part is a constant that is outside the range of LHI, // then we're better off using IILF. if (LowOp.getOpcode() == ISD::Constant) { int64_t Value = int32_t(cast(LowOp)->getZExtValue()); if (!isInt<16>(Value)) return Op; } // Check whether the high part is an AND that doesn't change the // high 32 bits and just masks out low bits. We can skip it if so. if (HighOp.getOpcode() == ISD::AND && HighOp.getOperand(1).getOpcode() == ISD::Constant) { ConstantSDNode *MaskNode = cast(HighOp.getOperand(1)); uint64_t Mask = MaskNode->getZExtValue() | Masks[High]; if ((Mask >> 32) == 0xffffffff) HighOp = HighOp.getOperand(0); } // Take advantage of the fact that all GR32 operations only change the // low 32 bits by truncating Low to an i32 and inserting it directly // using a subreg. The interesting cases are those where the truncation // can be folded. SDLoc DL(Op); SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, MVT::i64, HighOp, Low32); } // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first // two into the fullword ATOMIC_LOADW_* operation given by Opcode. SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const { AtomicSDNode *Node = cast(Op.getNode()); // 32-bit operations need no code outside the main loop. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = MVT::i32; if (NarrowVT == WideVT) return Op; int64_t BitSize = NarrowVT.getSizeInBits(); SDValue ChainIn = Node->getChain(); SDValue Addr = Node->getBasePtr(); SDValue Src2 = Node->getVal(); MachineMemOperand *MMO = Node->getMemOperand(); SDLoc DL(Node); EVT PtrVT = Addr.getValueType(); // Convert atomic subtracts of constants into additions. if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) if (ConstantSDNode *Const = dyn_cast(Src2)) { Opcode = SystemZISD::ATOMIC_LOADW_ADD; Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); } // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, WideVT), BitShift); // Extend the source operand to 32 bits and prepare it for the inner loop. // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other // operations require the source to be shifted in advance. (This shift // can be folded if the source is constant.) For AND and NAND, the lower // bits must be set, while for other opcodes they should be left clear. if (Opcode != SystemZISD::ATOMIC_SWAPW) Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, DAG.getConstant(32 - BitSize, WideVT)); if (Opcode == SystemZISD::ATOMIC_LOADW_AND || Opcode == SystemZISD::ATOMIC_LOADW_NAND) Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); // Construct the ATOMIC_LOADW_* node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, DAG.getConstant(BitSize, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, array_lengthof(Ops), NarrowVT, MMO); // Rotate the result of the final CS so that the field is in the lower // bits of a GR32, then truncate it. SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, DAG.getConstant(BitSize, WideVT)); SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; return DAG.getMergeValues(RetOps, 2, DL); } // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two // into a fullword ATOMIC_CMP_SWAPW operation. SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *Node = cast(Op.getNode()); // We have native support for 32-bit compare and swap. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = MVT::i32; if (NarrowVT == WideVT) return Op; int64_t BitSize = NarrowVT.getSizeInBits(); SDValue ChainIn = Node->getOperand(0); SDValue Addr = Node->getOperand(1); SDValue CmpVal = Node->getOperand(2); SDValue SwapVal = Node->getOperand(3); MachineMemOperand *MMO = Node->getMemOperand(); SDLoc DL(Node); EVT PtrVT = Addr.getValueType(); // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, WideVT), BitShift); // Construct the ATOMIC_CMP_SWAPW node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, NegBitShift, DAG.getConstant(BitSize, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, VTList, Ops, array_lengthof(Ops), NarrowVT, MMO); return AtomicOp; } SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), SystemZ::R15D, Op.getValueType()); } SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), SystemZ::R15D, Op.getOperand(1)); } SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { bool IsData = cast(Op.getOperand(4))->getZExtValue(); if (!IsData) // Just preserve the chain. return Op.getOperand(0); bool IsWrite = cast(Op.getOperand(2))->getZExtValue(); unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; MemIntrinsicSDNode *Node = cast(Op.getNode()); SDValue Ops[] = { Op.getOperand(0), DAG.getConstant(Code, MVT::i32), Op.getOperand(1) }; return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), Node->getVTList(), Ops, array_lengthof(Ops), Node->getMemoryVT(), Node->getMemOperand()); } SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BR_CC: return lowerBR_CC(Op, DAG); case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); case ISD::SETCC: return lowerSETCC(Op, DAG); case ISD::GlobalAddress: return lowerGlobalAddress(cast(Op), DAG); case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(cast(Op), DAG); case ISD::BlockAddress: return lowerBlockAddress(cast(Op), DAG); case ISD::JumpTable: return lowerJumpTable(cast(Op), DAG); case ISD::ConstantPool: return lowerConstantPool(cast(Op), DAG); case ISD::BITCAST: return lowerBITCAST(Op, DAG); case ISD::VASTART: return lowerVASTART(Op, DAG); case ISD::VACOPY: return lowerVACOPY(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return lowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::SMUL_LOHI: return lowerSMUL_LOHI(Op, DAG); case ISD::UMUL_LOHI: return lowerUMUL_LOHI(Op, DAG); case ISD::SDIVREM: return lowerSDIVREM(Op, DAG); case ISD::UDIVREM: return lowerUDIVREM(Op, DAG); case ISD::OR: return lowerOR(Op, DAG); case ISD::ATOMIC_SWAP: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW); case ISD::ATOMIC_LOAD_ADD: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); case ISD::ATOMIC_LOAD_SUB: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); case ISD::ATOMIC_LOAD_AND: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); case ISD::ATOMIC_LOAD_OR: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); case ISD::ATOMIC_LOAD_XOR: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); case ISD::ATOMIC_LOAD_NAND: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); case ISD::ATOMIC_LOAD_MIN: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); case ISD::ATOMIC_LOAD_MAX: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); case ISD::ATOMIC_LOAD_UMIN: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); case ISD::ATOMIC_LOAD_UMAX: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); case ISD::ATOMIC_CMP_SWAP: return lowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STACKSAVE: return lowerSTACKSAVE(Op, DAG); case ISD::STACKRESTORE: return lowerSTACKRESTORE(Op, DAG); case ISD::PREFETCH: return lowerPREFETCH(Op, DAG); default: llvm_unreachable("Unexpected node to lower"); } } const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME switch (Opcode) { OPCODE(RET_FLAG); OPCODE(CALL); OPCODE(SIBCALL); OPCODE(PCREL_WRAPPER); OPCODE(PCREL_OFFSET); OPCODE(ICMP); OPCODE(FCMP); OPCODE(TM); OPCODE(BR_CCMASK); OPCODE(SELECT_CCMASK); OPCODE(ADJDYNALLOC); OPCODE(EXTRACT_ACCESS); OPCODE(UMUL_LOHI64); OPCODE(SDIVREM64); OPCODE(UDIVREM32); OPCODE(UDIVREM64); OPCODE(MVC); OPCODE(MVC_LOOP); OPCODE(NC); OPCODE(NC_LOOP); OPCODE(OC); OPCODE(OC_LOOP); OPCODE(XC); OPCODE(XC_LOOP); OPCODE(CLC); OPCODE(CLC_LOOP); OPCODE(STRCMP); OPCODE(STPCPY); OPCODE(SEARCH_STRING); OPCODE(IPM); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); OPCODE(ATOMIC_LOADW_AND); OPCODE(ATOMIC_LOADW_OR); OPCODE(ATOMIC_LOADW_XOR); OPCODE(ATOMIC_LOADW_NAND); OPCODE(ATOMIC_LOADW_MIN); OPCODE(ATOMIC_LOADW_MAX); OPCODE(ATOMIC_LOADW_UMIN); OPCODE(ATOMIC_LOADW_UMAX); OPCODE(ATOMIC_CMP_SWAPW); OPCODE(PREFETCH); } return NULL; #undef OPCODE } //===----------------------------------------------------------------------===// // Custom insertion //===----------------------------------------------------------------------===// // Create a new basic block after MBB. static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { MachineFunction &MF = *MBB->getParent(); MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); return NewMBB; } // Split MBB after MI and return the new block (the one that contains // instructions after MI). static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, MachineBasicBlock *MBB) { MachineBasicBlock *NewMBB = emitBlockAfter(MBB); NewMBB->splice(NewMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); NewMBB->transferSuccessorsAndUpdatePHIs(MBB); return NewMBB; } // Split MBB before MI and return the new block (the one that contains MI). static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, MachineBasicBlock *MBB) { MachineBasicBlock *NewMBB = emitBlockAfter(MBB); NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); NewMBB->transferSuccessorsAndUpdatePHIs(MBB); return NewMBB; } // Force base value Base into a register before MI. Return the register. static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, const SystemZInstrInfo *TII) { if (Base.isReg()) return Base.getReg(); MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) .addOperand(Base).addImm(0).addReg(0); return Reg; } // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. MachineBasicBlock * SystemZTargetLowering::emitSelect(MachineInstr *MI, MachineBasicBlock *MBB) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); unsigned DestReg = MI->getOperand(0).getReg(); unsigned TrueReg = MI->getOperand(1).getReg(); unsigned FalseReg = MI->getOperand(2).getReg(); unsigned CCValid = MI->getOperand(3).getImm(); unsigned CCMask = MI->getOperand(4).getImm(); DebugLoc DL = MI->getDebugLoc(); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: // BRC CCMask, JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); // FalseMBB: // # fallthrough to JoinMBB MBB = FalseMBB; MBB->addSuccessor(JoinMBB); // JoinMBB: // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] // ... MBB = JoinMBB; BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) .addReg(TrueReg).addMBB(StartMBB) .addReg(FalseReg).addMBB(FalseMBB); MI->eraseFromParent(); return JoinMBB; } // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. // StoreOpcode is the store to use and Invert says whether the store should // happen when the condition is false rather than true. If a STORE ON // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. MachineBasicBlock * SystemZTargetLowering::emitCondStore(MachineInstr *MI, MachineBasicBlock *MBB, unsigned StoreOpcode, unsigned STOCOpcode, bool Invert) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); unsigned SrcReg = MI->getOperand(0).getReg(); MachineOperand Base = MI->getOperand(1); int64_t Disp = MI->getOperand(2).getImm(); unsigned IndexReg = MI->getOperand(3).getReg(); unsigned CCValid = MI->getOperand(4).getImm(); unsigned CCMask = MI->getOperand(5).getImm(); DebugLoc DL = MI->getDebugLoc(); StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); // Use STOCOpcode if possible. We could use different store patterns in // order to avoid matching the index register, but the performance trade-offs // might be more complicated in that case. if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) { if (Invert) CCMask ^= CCValid; BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) .addReg(SrcReg).addOperand(Base).addImm(Disp) .addImm(CCValid).addImm(CCMask); MI->eraseFromParent(); return MBB; } // Get the condition needed to branch around the store. if (!Invert) CCMask ^= CCValid; MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: // BRC CCMask, JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); // FalseMBB: // store %SrcReg, %Disp(%Index,%Base) // # fallthrough to JoinMBB MBB = FalseMBB; BuildMI(MBB, DL, TII->get(StoreOpcode)) .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); MBB->addSuccessor(JoinMBB); MI->eraseFromParent(); return JoinMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. // BitSize is the width of the field in bits, or 0 if this is a partword // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize // is one of the operands. Invert says whether the field should be // inverted after performing BinOpcode (e.g. for NAND). MachineBasicBlock * SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, MachineBasicBlock *MBB, unsigned BinOpcode, unsigned BitSize, bool Invert) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. // Src2 can be a register or immediate. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); DebugLoc DL = MI->getDebugLoc(); if (IsSubWord) BitSize = MI->getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = (BinOpcode || IsSubWord ? MRI.createVirtualRegister(RC) : Src2.getReg()); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert a basic block for the main loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // %RotatedNewVal = OP %RotatedOldVal, %Src2 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(LoopMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); if (Invert) { // Perform the operation normally and then invert every bit of the field. unsigned Tmp = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) .addReg(RotatedOldVal).addOperand(Src2); if (BitSize < 32) // XILF with the upper BitSize bits set. BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); else if (BitSize == 32) // XILF with every bit set. BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) .addReg(Tmp).addImm(~uint32_t(0)); else { // Use LCGR and add -1 to the result, which is more compact than // an XILF, XILH pair. unsigned Tmp2 = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) .addReg(Tmp2).addImm(-1); } } else if (BinOpcode) // A simply binary operation. BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) .addReg(RotatedOldVal).addOperand(Src2); else if (IsSubWord) // Use RISBG to rotate Src2 into position and use it to replace the // field in RotatedOldVal. BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) .addReg(RotatedOldVal).addReg(Src2.getReg()) .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the // instruction that should be used to compare the current field with the // minimum or maximum value. KeepOldMask is the BRC condition-code mask // for when the current field should be kept. BitSize is the width of // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. MachineBasicBlock * SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); unsigned Src2 = MI->getOperand(3).getReg(); unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); DebugLoc DL = MI->getDebugLoc(); if (IsSubWord) BitSize = MI->getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = MRI.createVirtualRegister(RC); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert 3 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // CompareOpcode %RotatedOldVal, %Src2 // BRC KeepOldMask, UpdateMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(UpdateMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); BuildMI(MBB, DL, TII->get(CompareOpcode)) .addReg(RotatedOldVal).addReg(Src2); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); MBB->addSuccessor(UpdateMBB); MBB->addSuccessor(UseAltMBB); // UseAltMBB: // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 // # fall through to UpdateMMB MBB = UseAltMBB; if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) .addReg(RotatedOldVal).addReg(Src2) .addImm(32).addImm(31 + BitSize).addImm(0); MBB->addSuccessor(UpdateMBB); // UpdateMBB: // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], // [ %RotatedAltVal, UseAltMBB ] // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = UpdateMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) .addReg(RotatedOldVal).addMBB(LoopMBB) .addReg(RotatedAltVal).addMBB(UseAltMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW // instruction MI. MachineBasicBlock * SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, MachineBasicBlock *MBB) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); unsigned OrigCmpVal = MI->getOperand(3).getReg(); unsigned OrigSwapVal = MI->getOperand(4).getReg(); unsigned BitShift = MI->getOperand(5).getReg(); unsigned NegBitShift = MI->getOperand(6).getReg(); int64_t BitSize = MI->getOperand(7).getImm(); DebugLoc DL = MI->getDebugLoc(); const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; // Get the right opcodes for the displacement. unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigOldVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned CmpVal = MRI.createVirtualRegister(RC); unsigned SwapVal = MRI.createVirtualRegister(RC); unsigned StoreVal = MRI.createVirtualRegister(RC); unsigned RetryOldVal = MRI.createVirtualRegister(RC); unsigned RetryCmpVal = MRI.createVirtualRegister(RC); unsigned RetrySwapVal = MRI.createVirtualRegister(RC); // Insert 2 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); // StartMBB: // ... // %OrigOldVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] // %Dest = RLL %OldVal, BitSize(%BitShift) // ^^ The low BitSize bits contain the field // of interest. // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the // comparison value with those that we loaded, // so that we can use a full word comparison. // CR %Dest, %RetryCmpVal // JNE DoneMBB // # Fall through to SetMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigOldVal).addMBB(StartMBB) .addReg(RetryOldVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) .addReg(OrigCmpVal).addMBB(StartMBB) .addReg(RetryCmpVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) .addReg(OrigSwapVal).addMBB(StartMBB) .addReg(RetrySwapVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) .addReg(OldVal).addReg(BitShift).addImm(BitSize); BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::CR)) .addReg(Dest).addReg(RetryCmpVal); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP) .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); MBB->addSuccessor(DoneMBB); MBB->addSuccessor(SetMBB); // SetMBB: // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the new // value with those that we loaded. // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) // ^^ Rotate the new field to its proper position. // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) // JNE LoopMBB // # fall through to ExitMMB MBB = SetMBB; BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true // if the high register of the GR128 value must be cleared or false if // it's "don't care". SubReg is subreg_l32 when extending a GR32 // and subreg_l64 when extending a GR64. MachineBasicBlock * SystemZTargetLowering::emitExt128(MachineInstr *MI, MachineBasicBlock *MBB, bool ClearEven, unsigned SubReg) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); if (ClearEven) { unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) .addImm(0); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); In128 = NewIn128; } BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) .addReg(In128).addReg(Src).addImm(SubReg); MI->eraseFromParent(); return MBB; } MachineBasicBlock * SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, MachineBasicBlock *MBB, unsigned Opcode) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI->getDebugLoc(); MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); uint64_t DestDisp = MI->getOperand(1).getImm(); MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); uint64_t SrcDisp = MI->getOperand(3).getImm(); uint64_t Length = MI->getOperand(4).getImm(); // When generating more than one CLC, all but the last will need to // branch to the end when a difference is found. MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? splitBlockAfter(MI, MBB) : 0); // Check for the loop form, in which operand 5 is the trip count. if (MI->getNumExplicitOperands() > 5) { bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); uint64_t StartCountReg = MI->getOperand(5).getReg(); uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); uint64_t NextSrcReg = MRI.createVirtualRegister(RC); uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); RC = &SystemZ::GR64BitRegClass; uint64_t ThisCountReg = MRI.createVirtualRegister(RC); uint64_t NextCountReg = MRI.createVirtualRegister(RC); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); // StartMBB: // # fall through to LoopMMB MBB->addSuccessor(LoopMBB); // LoopMBB: // %ThisDestReg = phi [ %StartDestReg, StartMBB ], // [ %NextDestReg, NextMBB ] // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], // [ %NextSrcReg, NextMBB ] // %ThisCountReg = phi [ %StartCountReg, StartMBB ], // [ %NextCountReg, NextMBB ] // ( PFD 2, 768+DestDisp(%ThisDestReg) ) // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) // ( JLH EndMBB ) // // The prefetch is used only for MVC. The JLH is used only for CLC. MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) .addReg(StartDestReg).addMBB(StartMBB) .addReg(NextDestReg).addMBB(NextMBB); if (!HaveSingleBase) BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) .addReg(StartSrcReg).addMBB(StartMBB) .addReg(NextSrcReg).addMBB(NextMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) .addReg(StartCountReg).addMBB(StartMBB) .addReg(NextCountReg).addMBB(NextMBB); if (Opcode == SystemZ::MVC) BuildMI(MBB, DL, TII->get(SystemZ::PFD)) .addImm(SystemZ::PFD_WRITE) .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); BuildMI(MBB, DL, TII->get(Opcode)) .addReg(ThisDestReg).addImm(DestDisp).addImm(256) .addReg(ThisSrcReg).addImm(SrcDisp); if (EndMBB) { BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(EndMBB); MBB->addSuccessor(EndMBB); MBB->addSuccessor(NextMBB); } // NextMBB: // %NextDestReg = LA 256(%ThisDestReg) // %NextSrcReg = LA 256(%ThisSrcReg) // %NextCountReg = AGHI %ThisCountReg, -1 // CGHI %NextCountReg, 0 // JLH LoopMBB // # fall through to DoneMMB // // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. MBB = NextMBB; BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) .addReg(ThisDestReg).addImm(256).addReg(0); if (!HaveSingleBase) BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) .addReg(ThisSrcReg).addImm(256).addReg(0); BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) .addReg(ThisCountReg).addImm(-1); BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) .addReg(NextCountReg).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); DestBase = MachineOperand::CreateReg(NextDestReg, false); SrcBase = MachineOperand::CreateReg(NextSrcReg, false); Length &= 255; MBB = DoneMBB; } // Handle any remaining bytes with straight-line code. while (Length > 0) { uint64_t ThisLength = std::min(Length, uint64_t(256)); // The previous iteration might have created out-of-range displacements. // Apply them using LAY if so. if (!isUInt<12>(DestDisp)) { unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) .addOperand(DestBase).addImm(DestDisp).addReg(0); DestBase = MachineOperand::CreateReg(Reg, false); DestDisp = 0; } if (!isUInt<12>(SrcDisp)) { unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) .addOperand(SrcBase).addImm(SrcDisp).addReg(0); SrcBase = MachineOperand::CreateReg(Reg, false); SrcDisp = 0; } BuildMI(*MBB, MI, DL, TII->get(Opcode)) .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) .addOperand(SrcBase).addImm(SrcDisp); DestDisp += ThisLength; SrcDisp += ThisLength; Length -= ThisLength; // If there's another CLC to go, branch to the end if a difference // was found. if (EndMBB && Length > 0) { MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(EndMBB); MBB->addSuccessor(EndMBB); MBB->addSuccessor(NextMBB); MBB = NextMBB; } } if (EndMBB) { MBB->addSuccessor(EndMBB); MBB = EndMBB; MBB->addLiveIn(SystemZ::CC); } MI->eraseFromParent(); return MBB; } // Decompose string pseudo-instruction MI into a loop that continually performs // Opcode until CC != 3. MachineBasicBlock * SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, MachineBasicBlock *MBB, unsigned Opcode) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI->getDebugLoc(); uint64_t End1Reg = MI->getOperand(0).getReg(); uint64_t Start1Reg = MI->getOperand(1).getReg(); uint64_t Start2Reg = MI->getOperand(2).getReg(); uint64_t CharReg = MI->getOperand(3).getReg(); const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; uint64_t This1Reg = MRI.createVirtualRegister(RC); uint64_t This2Reg = MRI.createVirtualRegister(RC); uint64_t End2Reg = MRI.createVirtualRegister(RC); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: // # fall through to LoopMMB MBB->addSuccessor(LoopMBB); // LoopMBB: // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] // R0L = %CharReg // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L // JO LoopMBB // # fall through to DoneMMB // // The load of R0L can be hoisted by post-RA LICM. MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) .addReg(Start1Reg).addMBB(StartMBB) .addReg(End1Reg).addMBB(LoopMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) .addReg(Start2Reg).addMBB(StartMBB) .addReg(End2Reg).addMBB(LoopMBB); BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); BuildMI(MBB, DL, TII->get(Opcode)) .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) .addReg(This1Reg).addReg(This2Reg); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); DoneMBB->addLiveIn(SystemZ::CC); MI->eraseFromParent(); return DoneMBB; } MachineBasicBlock *SystemZTargetLowering:: EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { case SystemZ::Select32Mux: case SystemZ::Select32: case SystemZ::SelectF32: case SystemZ::Select64: case SystemZ::SelectF64: case SystemZ::SelectF128: return emitSelect(MI, MBB); case SystemZ::CondStore8Mux: return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); case SystemZ::CondStore8MuxInv: return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); case SystemZ::CondStore16Mux: return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); case SystemZ::CondStore16MuxInv: return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); case SystemZ::CondStore8: return emitCondStore(MI, MBB, SystemZ::STC, 0, false); case SystemZ::CondStore8Inv: return emitCondStore(MI, MBB, SystemZ::STC, 0, true); case SystemZ::CondStore16: return emitCondStore(MI, MBB, SystemZ::STH, 0, false); case SystemZ::CondStore16Inv: return emitCondStore(MI, MBB, SystemZ::STH, 0, true); case SystemZ::CondStore32: return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); case SystemZ::CondStore32Inv: return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); case SystemZ::CondStore64: return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); case SystemZ::CondStore64Inv: return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); case SystemZ::CondStoreF32: return emitCondStore(MI, MBB, SystemZ::STE, 0, false); case SystemZ::CondStoreF32Inv: return emitCondStore(MI, MBB, SystemZ::STE, 0, true); case SystemZ::CondStoreF64: return emitCondStore(MI, MBB, SystemZ::STD, 0, false); case SystemZ::CondStoreF64Inv: return emitCondStore(MI, MBB, SystemZ::STD, 0, true); case SystemZ::AEXT128_64: return emitExt128(MI, MBB, false, SystemZ::subreg_l64); case SystemZ::ZEXT128_32: return emitExt128(MI, MBB, true, SystemZ::subreg_l32); case SystemZ::ZEXT128_64: return emitExt128(MI, MBB, true, SystemZ::subreg_l64); case SystemZ::ATOMIC_SWAPW: return emitAtomicLoadBinary(MI, MBB, 0, 0); case SystemZ::ATOMIC_SWAP_32: return emitAtomicLoadBinary(MI, MBB, 0, 32); case SystemZ::ATOMIC_SWAP_64: return emitAtomicLoadBinary(MI, MBB, 0, 64); case SystemZ::ATOMIC_LOADW_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); case SystemZ::ATOMIC_LOADW_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); case SystemZ::ATOMIC_LOAD_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); case SystemZ::ATOMIC_LOAD_AHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); case SystemZ::ATOMIC_LOAD_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); case SystemZ::ATOMIC_LOAD_AGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); case SystemZ::ATOMIC_LOAD_AGHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); case SystemZ::ATOMIC_LOAD_AGFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); case SystemZ::ATOMIC_LOADW_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); case SystemZ::ATOMIC_LOAD_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); case SystemZ::ATOMIC_LOAD_SGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); case SystemZ::ATOMIC_LOADW_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); case SystemZ::ATOMIC_LOADW_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); case SystemZ::ATOMIC_LOAD_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); case SystemZ::ATOMIC_LOAD_NILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); case SystemZ::ATOMIC_LOAD_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); case SystemZ::ATOMIC_LOAD_NILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); case SystemZ::ATOMIC_LOAD_NGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); case SystemZ::ATOMIC_LOAD_NILL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); case SystemZ::ATOMIC_LOAD_NILH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); case SystemZ::ATOMIC_LOAD_NIHL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); case SystemZ::ATOMIC_LOAD_NIHH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); case SystemZ::ATOMIC_LOAD_NILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); case SystemZ::ATOMIC_LOAD_NIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); case SystemZ::ATOMIC_LOADW_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); case SystemZ::ATOMIC_LOADW_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); case SystemZ::ATOMIC_LOAD_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); case SystemZ::ATOMIC_LOAD_OILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); case SystemZ::ATOMIC_LOAD_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); case SystemZ::ATOMIC_LOAD_OILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); case SystemZ::ATOMIC_LOAD_OGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); case SystemZ::ATOMIC_LOAD_OILL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); case SystemZ::ATOMIC_LOAD_OILH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); case SystemZ::ATOMIC_LOAD_OIHL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); case SystemZ::ATOMIC_LOAD_OIHH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); case SystemZ::ATOMIC_LOAD_OILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); case SystemZ::ATOMIC_LOAD_OIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); case SystemZ::ATOMIC_LOADW_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); case SystemZ::ATOMIC_LOADW_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); case SystemZ::ATOMIC_LOAD_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); case SystemZ::ATOMIC_LOAD_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); case SystemZ::ATOMIC_LOAD_XGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); case SystemZ::ATOMIC_LOAD_XILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); case SystemZ::ATOMIC_LOAD_XIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); case SystemZ::ATOMIC_LOADW_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); case SystemZ::ATOMIC_LOADW_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); case SystemZ::ATOMIC_LOAD_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); case SystemZ::ATOMIC_LOAD_NILLi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); case SystemZ::ATOMIC_LOAD_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); case SystemZ::ATOMIC_LOAD_NILFi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); case SystemZ::ATOMIC_LOAD_NGRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); case SystemZ::ATOMIC_LOAD_NILL64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); case SystemZ::ATOMIC_LOAD_NILH64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); case SystemZ::ATOMIC_LOAD_NIHL64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); case SystemZ::ATOMIC_LOAD_NIHH64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); case SystemZ::ATOMIC_LOAD_NILF64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); case SystemZ::ATOMIC_LOAD_NIHF64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); case SystemZ::ATOMIC_LOADW_MIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_MIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_MIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_MAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_MAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_MAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_LOADW_UMIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_UMIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_UMIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_UMAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_UMAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_UMAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_CMP_SWAPW: return emitAtomicCmpSwapW(MI, MBB); case SystemZ::MVCSequence: case SystemZ::MVCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::MVC); case SystemZ::NCSequence: case SystemZ::NCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::NC); case SystemZ::OCSequence: case SystemZ::OCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::OC); case SystemZ::XCSequence: case SystemZ::XCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::XC); case SystemZ::CLCSequence: case SystemZ::CLCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::CLC); case SystemZ::CLSTLoop: return emitStringWrapper(MI, MBB, SystemZ::CLST); case SystemZ::MVSTLoop: return emitStringWrapper(MI, MBB, SystemZ::MVST); case SystemZ::SRSTLoop: return emitStringWrapper(MI, MBB, SystemZ::SRST); default: llvm_unreachable("Unexpected instr type to insert"); } }